Республики казахстан южно-казахстанский экономико-технологический



бет7/15
Дата15.06.2016
өлшемі2.05 Mb.
#137969
түріПрограмма обучения студентов
1   2   3   4   5   6   7   8   9   10   ...   15

Сумматоры

Микросхемы сумматоров (английское Adder), как следует из их названия, предназначены для суммирования двух входных двоичных кодов, то есть, выходной код будет равен арифметической сумме двух входных кодов.

Например, если один входной код - 7 (0111), а второй - 5 (0101), то суммарный код на выходе будет 12 (1100).

Сумма двух двоичных чисел с числом разрядов N может иметь число разрядов (N + 1).

Например, при суммировании чисел 13 (1101) и 6 (0110) получается число 19 (10011). Поэтому количество выходов сумматора на единицу больше количества разрядов входных кодов. Этот дополнительный (старший) разряд называется выходом переноса.

На схемах сумматоры обозначаются буквами SM. В отечественных сериях код, обозначающий микросхему сумматора, - ИМ.

Сумматоры бывают одноразрядные (для суммирования двух одноразрядных чисел), 2-х разрядные (суммируют 2-х разрядные числа) и 4-х разрядные (суммируют 4-х разрядные числа). Чаще всего применяют именно 4-разрядные сумматоры. На рис.1 показаны для примера 2-разрядный и 4-разрядный сумматоры. Микросхема ИМ6 отличается от ИМ3 только повышенным быстродействием и номерами используемых выводов микросхемы, функция же выполняется та же самая.



Рис.1. 2-разрядный и 4-разрядный сумматоры.


Помимо выходных разрядов суммы и выхода переноса, сумматоры имеют вход расширения (другое название - вход переноса) С для объединения нескольких сумматоров с целью увеличения разрядности.
Если на этот вход приходит единица, то выходная сумма увеличивается на единицу, если же приходит нуль, то выходная сумма не увеличивается. Если используется одна микросхема сумматора, то на ее вход расширения С необходимо подать нуль.
Сумматор – узел, обеспечивающий суммирование двух чисел.

Все сумматоры, применяемые в ЭВМ, подразделяются на две основные группы:



  • комбинационные – не обладающие функцией хранения;

  • накопительные – обладающие функцией хранения.

Каждый из указанных типов сумматоров подразделяется на сумматоры параллельного действия, обеспечивающие суммирование n-разрядных кодов во всех разрядах одновременно, и одноразрядные суммирующие схемы (одноразрядные сумматоры). Одноразрядные сумматоры являются основой построения как АУ последовательного действия, так и сумматоров параллельного действия.

Сущность функционирования всех указанных типов сумматоров определяется логикой работы одноразрядного сумматора, которой соответствует таблица истинности (см. рис. ниже).

В этой таблице истинности отражены все возможные комбинации исходных кодов Xi, Yi, Pi+1 и соответствующих им результатов Si и Pi, которые могут получиться при суммировании двух чисел в i-том разряде. Здесь Xi и Yi – соответственно двоичные коды первого и второго слагаемого в i-том разряде, а Pi+1 – перенос из (i+1)-го разряда в i –ый разряд; Si – код суммы, а Pi – перенос из i-того разряда в (i –1)-й разряд.

Данной таблице истинности соответствуют следующие логические уравнения:



Входы

выходы

Xi

Yi

Pi+1

Si

Pi

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

0

1

1

0

1

1

1

0

0

1

1

0

1

0

1

1

1

1

1

1

Si = Xi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1;

Pi = Xi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1;
Эти уравнения называются каноническими уравнениями одноразрядного сумматора комбинационного. Применяя к ним классические методы минимизации логических функций, можно упростить одно из уравнений:

Si = Xi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1vXi&Yi&Pi+1;

Pi = Xi&YivXi&Pi+1vYi&Pi+1;

Одноразрядные сумматоры (SM).

Комбинационные сумматоры SM.
Рассмотрим пример построения такого сумматора в базисе ИЛИ-НЕ.

Для этого представим уравнения в следующей записи:


Si = (Xi|Yi|Pi+1)|(Xi|Yi|Pi+1)|(Xi|Yi|Pi+1)|(Xi|Yi|Pi+1);

Pi = (Xi|Yi)|(Xi|Pi+1)|(Yi|Pi+1);


В соответствии с уравнениями легко строится схема комбинационного сумматора SM. В этой схеме для каждой входной переменной предусмотрены две входные шины. Если Xi= Yi= Pi+1=1, то сигнал в виде высокого уровня напряжения поступает по шинам Xi, Yi и Pi+1. если Xi= Yi= Pi+1=0, то сигнал соответственно появляется на шинах Xi, Yi и Pi+1.

Допустим, поданы сигналы, соответствующие единице, по шинам Xi, Yi и Pi+1. При этом на выходе элементов 4, 5, 6 и 7 появится низкий уровень, соответствующий логическому нулю, а выходе элементов 8 и 9, появятся высокие уровни, т.е. сигналы, соответствующие единице.




Таблица 6.1. Таблица истинности микросхемы 2-разрядного сумматора ИМ2

Входы

Выходы




C=0

C=1

A1

A0

B1

B0

P

S1

S0

P

S1

S0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

0

1

0

0

1

1

0

0

1

1

0

1

1

1

0

0

0

1

0

0

0

0

1

0

1

0

0

1

0

1

0

1

0

0

1

1

0

1

1

0

0

1

1

1

0

0

0

1

1

1

1

0

0

1

0

1

1

0

0

0

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

1

0

1

1

1

0

1

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

0

1

0

1

1

1

1

0

1

0

1

1

1

0

1

1

1

1

1

1

0

1

1

1

Данная схема относится к разряду комбинационных схем, т.к. она не обладает функцией хранения. Сигналы на выходе этой схемы присутствуют до тех пор, пока действуют сигналы на входах схемы. Для примера в табл. 6.1 приведена полная таблица истинности 2-разрядного сумматора ИМ2. Как видно из таблицы, выходной 3-разрядный код (Р, S1, S0) равен сумме входных 2-разрядных кодов (А1, А0) и (В1, В0), а также сигнала С. Нулевые разряды - младшие, первые разряды - старшие. Полная таблица истинности 4-разрядного сумматора будет чрезмерно большой, поэтому она не приводится. Но суть работы остается точно такой же, как и в случае 2-разрядного сумматора.

Сумматоры могут использоваться также для суммирования чисел в отрицательной логике (когда логической единице соответствует электрический нуль, и наоборот, логическому нулю соответствует электрическая единица). Но в этом случае входной сигнал переноса С также становится инверсным, поэтому при использовании одной микросхемы сумматора на вход С надо подать электрическую единицу (высокий уровень напряжения). Инверсным становится и выходной сигнал переноса Р, низкий уровень напряжения на нем (электрический нуль) соответствует наличию переноса. То есть получается, что сумматор абсолютно одинаково работает как с положительной, так и с отрицательной логикой.


Мультиплексоры
Мультиплексоры (английское Multiplexer) предназначены для поочередной передачи на один выход одного из нескольких входных сигналов, то есть для их мультиплексирования.

Количество мультиплексируемых входов называется количеством каналов мультиплексора, а количество выходов называется числом разрядов мультиплексора.

Например, 2-канальный 4-разрядный мультиплексор имеет 4 выхода, на каждый из которых может передаваться один из двух входных сигналов. А 4-канальный 2-разрядный мультиплексор имеет 2 выхода, на каждый из которых может передаваться один из четырех входных сигналов. Число каналов мультиплексоров, входящих в стандартные серии, составляет от 2 до 16, а число разрядов — от 1 до 4, при чем, чем больше каналов имеет мультиплексор, тем меньше у него разрядов.

Управление работой мультиплексора (выбор номера канала) осуществляется с помощью входного кода адреса. Например, для 4-канального мультиплексора необходим 2-разрядный управляющий (адресный) код, а для 16-канального — 4-разрядный код. Разряды кода обозначаются 1, 2, 4, 8 или А0, А1, А2, А3. Мультиплексоры бывают с выходом 2С и с выходом 3С. Выходы мультиплексоров бывают прямыми и инверсными. Выход 3С позволяет объединять выходы мультиплексоров с выходами других микросхем, а также получать двунаправленные и мультиплексированные линии. Некоторые микросхемы мультиплексоров имеют вход разрешения/запрета С (другое обозначение — S), который при запрете устанавливает прямой выход в нулевой уровень.

Управление работой мультиплексора (выбор номера канала) осуществляется с помощью входного кода адреса. Например, для 4-канального мультиплексора необходим 2-разрядный управляющий (адресный) код, а для 16-канального — 4-разрядный код. Разряды кода обозначаются 1, 2, 4, 8 или А0, А1, А2, А3. Мультиплексоры бывают с выходом 2С и с выходом 3С. Выходы мультиплексоров бывают прямыми и инверсными. Выход 3С позволяет объединять выходы мультиплексоров с выходами других микросхем, а также получать двунаправленные и мультиплексированные линии. Некоторые микросхемы мультиплексоров имеют вход разрешения/запрета С (другое обозначение — S), который при запрете устанавливает прямой выход в нулевой уровень.



Рис.5.12.  Примеры микросхем мультиплексоров


На рис. 5.12 показаны для примера несколько микросхем мультиплексоров из состава стандартных серий. В отечественных сериях мультиплексоры имеют код типа микросхемы КП. На схемах микросхемы мультиплексоров обозначаются буквами MS.


Таблица 5.3. Таблица истинности 8-канального мультиплексора

Входы

Выходы

4

2

1

-EZ

Q

-Q

X

X

X

1

Z

Z

0

0

0

0

D0

-D0

0

0

1

0

D1

-D1

0

1

0

0

D2

-D2

0

1

1

0

D3

-D3

1

0

0

0

D4

-D4

1

0

1

0

D5

-D5

1

1

0

0

D6

-D6

1

1

1

0

D7

-D7

В табл. 5.3 в качестве примера приведена таблица истинности одноразрядного 8-канального мультиплексора с выходами 3С (КП15).

В таблице сигналы на входах 0...7 обозначены D0...D7, прямой выход — Q, инверсный выход — –Q, Z — третье состояние выхода. При единице на входе –EZ оба выхода находятся в третьем состоянии. При нуле на входе –EZ выходной сигнал на прямом выходе повторяет состояние входного сигнала, номер которого задается входным кодом на входах 1, 2, 4. Сигнал на инверсном выходе противоположен по полярности сигналу на прямом выходе.

Микросхемы мультиплексоров можно объединять для увеличения количества каналов. Например, два 8-канальных мультиплексора легко объединяются в 16-канальный с помощью инвертора на входах разрешения и элемента 2И-НЕ для смешивания выходных сигналов (рис. 5.14). Старший разряд кода будет при этом выбирать один из двух мультиплексоров. Точно так же из двух 16-канальных мультиплексоров можно сделать 32-канальный. Если нужно большее число каналов, то необходимо вместо инвертора включать дешифратор, на который подаются старшие разряды кода. Выходные сигналы дешифратора будут выбирать один из мультиплексоров.

Рис. 5.14.  Объединение мультиплексоров для увеличения количества каналов

Триггеры.

Принцип работы и разновидности триггеров

Важнейшей структурной единицей оперативной памяти компьютера, а также внутренних регистров процессора является триггер (рис. 15). Это устройство позволяет запоминать, хранить и считывать информацию (каждый триггер может хранить 1 бит информации).    




Триггер – это запоминающий элемент с двумя (или более) устойчивыми состояниями, изменение которых происходит под действием входных сигналов и предназначен для хранения одного бита информации, то есть лог. 0 или лог. 1.

Все разновидности триггеров представляют собой элементарный автомат, включающий собственно элемент памяти (ЭП) и комбинационную схему (КС), которая может называться схемой управления или входной логикой.

Состояние триггера определяется сигналами на прямом и инверсном выходах. При положительном кодировании (позитивная логика) высокий уровень напряжения на прямом выходе отображает значение лог. 1 (состояние = 1), а низкий уровень – значение лог. 0 (состояние = 0).

******** Изменение состояния триггера (его переключение или запись) обеспечивается внешними сигналами и сигналами обратной связи, с выходов триггера поступающих на входы схемы управления (комбинационной схемы или входной логики).

******** Обычно внешние сигналы, как и входы триггера, обозначают латинскими буквами R, S, T, C, D, V и др. В простейших схемах триггеров отдельная схема управления (КС) может отсутствовать. Поскольку функциональные свойства триггеров определяется их входной логикой, то названия основных входов переносятся на всю схему триггера.

******** Входы триггеров разделяются на информационные (R, S, T и др.) и управляющие (С, V). Информационные входы предназначены для приема сигналов запоминаемой информации. Названия входных сигналов отождествляют с названиями входов триггера. Управляющие входы служат для управления записью информации. В триггерах может быть два вида управляющих сигналов:


  • синхронизирующий (тактовый) сигнал С, поступающий на С-вход (тактовый вход);

  • разрешающий сигнал V, поступающий на V-вход.

На V-входы триггера поступают сигналы, которые разрешают (V=1) или запрещают (V=0) запись информации. В синхронных триггерах с V-входом запись информации возможна при совпадении сигналов на информационном С и V-входах.

Каждый тип триггера имеет собственную таблицу работы (таблицу истинности). Выходное состояние триггера обычно обозначают буквой Q. Индекс возле буквы означает состояние до подачи сигнала (t) или после подачи сигнала (t+1).

Для построения триггера достаточно двух логических элементов «ИЛИ» и двух элементов «НЕ».   
    
Триггеры и регистры являются простейшими представителями цифровых микросхем, имеющих внутреннюю память. Если выходные сигналы логических элементов и комбинационных микросхем однозначно определяются их текущими входными сигналами, то выходные сигналы микросхем с внутренней памятью зависят также еще и от того, какие входные сигналы и в какой последовательности поступали на них в прошлом, то есть они помнят предысторию поведения схемы. Именно поэтому их применение позволяет строить гораздо более сложные и интеллектуальные цифровые устройства, чем в случае простейших микросхем без памяти. Микросхемы с внутренней памятью называются еще последовательными или последовательностными, в отличие от комбинационных микросхем.

Триггеры и регистры сохраняют свою память только до тех пор, пока на них подается напряжение питания. Иначе говоря, их память относится к типу оперативной (в отличие от постоянной памяти и перепрограммируемой постоянной памяти, которым отключение питания не мешает сохранять информацию). После выключения питания и его последующего включения триггеры и регистры переходят в случайное состояние, то есть их выходные сигналы могут устанавливаться как в уровень логической единицы, так и в уровень логического нуля. Это необходимо учитывать при проектировании схем.

Большим преимуществом триггеров и регистров перед другими типами микросхем с памятью является их максимально высокое быстродействие (то есть минимальные времена задержек срабатывания и максимально высокая допустимая рабочая частота). Именно поэтому триггеры и регистры иногда называют также сверхоперативной памятью. Однако недостаток триггеров и регистров в том, что объем их внутренней памяти очень мал, они могут хранить только отдельные сигналы, биты (триггеры) или отдельные коды, байты, слова (регистры).

Триггер можно рассматривать как одноразрядную, а регистр — как многоразрядную ячейку памяти, которая состоит из нескольких триггеров, соединенных параллельно (обычный, параллельный регистр) или последовательно (сдвиговый регистр или, что то же самое, регистр сдвига).

В основе любого триггера (англ. — "тrigger" или "flip-flop") лежит схема из двух логических элементов, которые охвачены положительными обратными связями (то есть сигналы с выходов подаются на входы). В результате подобного включения схема может находиться в одном из двух устойчивых состояний, причем находиться сколь угодно долго, пока на нее подано напряжение питания.

Рис. 7.1.  Схема триггерной ячейки

Пример такой схемы (так называемой триггерной ячейки) на двух двухвходовых элементах И-НЕ представлен на рис. 7.1. У схемы есть два инверсных входа: –R — сброс (от английского Reset), и –S — установка (от английского Set), а также два выхода: прямой выход Q и инверсный выход –Q.

Для правильной работы схемы отрицательные импульсы должны поступать на ее входы не одновременно. Приход импульса на вход -R переводит выход -Q в состояние единицы, а так как сигнал -S при этом единичный, выход Q становится нулевым. Этот же сигнал Q поступает по цепи обратной связи на вход нижнего элемента. Поэтому даже после окончания импульса на входе -R состояние схемы не изменяется (на Q остается нуль, на -Q остается единица). Точно так же при приходе импульса на вход -S выход Q в единицу, а выход -Q — в нуль. Оба эти устойчивых состояния триггерной ячейки могут сохраняться сколь угодно долго, пока не придет очередной входной импульс, — иными словами, схема обладает памятью.

Если оба входных импульса придут строго одновременно, то в момент действия этих импульсов на обоих выходах будут единичные сигналы, а после окончания входных импульсов выходы случайным образом попадут в одно из двух устойчивых состояний. Точно так же случайным образом будет выбрано одно из двух устойчивых состояний триггерной ячейки при включении питания. Временная диаграмма работы триггерной ячейки показана на рисунке.


Таблица 7.1. Таблица истинности триггерной ячейки

Входы

Выходы

-R

-S

Q

-Q

0

1

0

1

1

0

1

0

1

1

Без изменения

0

0

Не определено

В стандартные серии цифровых микросхем входит несколько типов микросхем триггеров, различающихся методами управления, а также входными и выходными сигналами. На схемах триггеры обозначаются буквой Т. В отечественных сериях микросхем триггеры имеют наименование ТВ, ТМ и ТР в зависимости от типа триггера. Наиболее распространены три типа ( рис. 7.2):



  • RS-триггер (обозначается ТР) — самый простой триггер, но редко используемый (а).

  • JK-триггер (обозначается ТВ) имеет самое сложное управление, также используется довольно редко (б).

  • D-триггер (обозначается ТМ) — наиболее распространенный тип триггера (в).

Примером RS-триггера является микросхема ТР2, в одном корпусе которой находятся четыре RS-триггера. Два триггера имеют по одному входу –R и –S, а два других триггера — по одному входу –R и по два входа –S1 и –S2, объединенных по функции И. Все триггеры имеют только по одному прямому выходу. RS-триггер практически ничем не отличается по своим функциям от триггерной ячейки, рассмотренной ранее (см. рис. 7.1). Отрицательный импульс на входе –R перебрасывает выход в нуль, а отрицательный импульс на входе –S (или на любом из входов –S1 и –S2) перебрасывает выход в единицу. Одновременные сигналы на входах –R и –S переводят выход в единицу, а после окончания импульсов триггер попадает случайным образом в одно из своих устойчивых состояний. Таблица истинности триггера ТР2 с двумя входами установки –S1 и –S2 представлена в табл. 7.2.


Рис. 7.2.  Триггеры трех основных типов




Таблица 7.2. Таблица истинности RS-триггера ТР2

Входы

Выходы

-R

-S

Q

-Q

1

1

1

Без изменения

X

0

1

1

0

X

1

1

1

1

0

0

X

0

0

Не определен

0

X

0

Не определен

JK-триггер значительно сложнее по своей структуре, чем RS-триггер. Он относится к так называемым тактируемым триггерам, то есть он срабатывает по фронту тактового сигнала. Примером может служить показанная на рис. 7.2 микросхема ТВ9, имеющая в одном корпусе два JK-триггера со входами сброса и установки -R и -S. Входы -R и -S работают точно так же, как и в RS-триггере, то есть отрицательный импульс на входе -R устанавливает прямой выход в нуль, а инверсный — в единицу, а отрицательный импульс на входе -S устанавливает прямой выход в единицу, а инверсный — в нуль.




Таблица 7.3. Таблица истинности JK-триггера ТВ9

Входы

Выходы

-S

-R

C

J

K

Q

-Q

0

1

Х

Х

Х

1

0

1

0

Х

Х

Х

0

1

0

0

Х

Х

Х

Не определено

1

1

10

1

0

1

0

1

1

10

0

1

0

1

1

1

10

0

0

Не изменяется

1

1

10

1

1

Меняется на проти-воположное

1

1

1

Х

Х

Не изменяется

1

1

0

Х

Х

Не изменяется

1

1

01

Х

Х

Не изменяется

Однако состояние триггера может быть изменено не только этими сигналами, но и сигналами на двух информационных входах J и K и синхросигналом С. Переключение триггера в этом случае происходит по отрицательному фронту сигнала С (по переходу из единицы в нуль) в зависимости от состояний сигналов J и K. При единице на входе J и нуле на входе К по фронту сигнала С прямой выход устанавливается в единицу (обратный — в нуль). При нуле на входе J и единице на входе К по фронту сигнала С прямой выход устанавливается в нуль (обратный — в единицу). При единичных уровнях на обоих входах J и K по фронту сигнала С триггер меняет состояние своих выходов на противоположные (это называется счетным режимом).



Наконец, самый распространенный D-триггер занимает, можно сказать, промежуточное положение между RS-триггером и JK-триггером. Помимо общих для всех триггеров входов установки и сброса –S и –R, он имеет один информационный вход D (вход данных) и один тактовый вход C. Примером может служить показанная на рис. 7.2 микросхема ТМ2, содержащая в одном корпусе два D-триггера с прямыми и инверсными выходами.


Таблица 7.4. Таблица истинности D-триггера ТМ2

Входы

Выходы

-S

-R

C

D

Q

-Q

0

1

Х

Х

1

0

1

0

Х

Х

0

1

0

0

Х

Х

Не определено

1

1

01

1

1

0

1

1

01

0

0

1

1

1

0

Х

Не меняется

1

1

1

Х

Не меняется

1

1

10

Х

Не меняется

Тактируется триггер (то есть меняет свое состояние) по положительному фронту сигнала С (по его переходу из нуля в единицу) в зависимости от состояния входа данных D. Если на входе D единичный сигнал, то по фронту сигнала С прямой выход триггера устанавливается в единицу (инверсный — в нуль). Если же на входе D — нулевой сигнал, то по фронту сигнала С прямой выход триггера устанавливается в нуль (инверсный — в единицу).

Таблица истинности триггера ТМ2 представлена в табл. 7.4, а временная диаграмма работы — на рис. 7.7.

Остановимся на работе D-триггера чуть подробнее, так как он наиболее часто используется. При этом многие замечания, высказанные здесь относительно D-триггера, будут верны и для других типов триггеров.

Прежде всего отметим, что все приведенные временные диаграммы относятся к первому уровню представления, к уровню логической модели. Конечно же, в реальности все триггеры имеют временные задержки установки выходных сигналов, а также предъявляют определенные временные требования к входным сигналам, при нарушении которых любой триггер будет работать неустойчиво или же не будет работать вообще. Это учитывается на втором уровне представления (в модели с временными задержками).

Например, как уже отмечалось, входные сигналы -R и -S не должны приходить одновременно, иначе состояние триггера будет неопределенным. Длительность сигналов -R и -S также не должна быть слишком малой, иначе триггер может на них не среагировать. Сигнал –R должен начинаться с определенной задержкой после окончания сигнала –S, и наоборот. В первом приближении можно считать, что минимально допустимые временные интервалы между входными сигналами должны равняться 1–2 задержкам логического элемента соответствующей серии.

Точно так же не должна быть слишком малой длительность тактового сигнала C (как положительного, так и отрицательного импульса), иначе триггер может переключаться неустойчиво. Это требование универсально для всех микросхем, срабатывающих по фронту входного сигнала. Принципиально важна и величина временного сдвига (задержки) между установлением сигнала D и рабочим (положительным) фронтом сигнала C. Этот сдвиг тоже не должен быть слишком малым. Не должен быть чрезмерно малым и сдвиг между окончанием сигналов –R и –S и рабочим фронтом сигнала С. Повышенные требования предъявляются также к длительности фронта тактового сигнала С, которая не должна быть слишком большой. Это требование также универсально для всех микросхем, срабатывающих по фронту входного сигнала.

Одним словом, чем сложнее микросхема, тем важнее для нее становятся ограничения второго уровня представления, тем выше требования к разработчику по учету временных задержек и длительностей сигналов. Правда, требования эти не слишком разнообразны и не слишком жестки, поэтому, раз и навсегда усвоив их, можно проектировать любые схемы без грубых ошибок. Самое главное, что надо запомнить, состоит в следующем: цифровые схемы не любят слишком коротких входных сигналов и слишком малых задержек между входными сигналами, функционально связанными между собой. Ориентир здесь очень простой — величина задержки логического элемента данной серии. Поэтому для более быстрых серий ограничения будут менее жесткими, а для более медленных серий — более жесткими.

Несколько слов о величинах задержек микросхем триггеров.

Несмотря на свою достаточно сложную внутреннюю структуру, микросхемы триггеров являются одними из самых быстрых. Задержка срабатывания триггера обычно не превышает 1,5–2 задержки логического элемента. (причем задержки по входам –R и –S чуть меньше, чем по тактовому входу С.) В некоторых сериях JK-триггеры несколько быстрее, чем D-триггеры, в других — наоборот. Важный параметр триггера — максимальная частота тактового сигнала С. Для ее приблизительной оценки можно придерживаться следующего простого правила: период тактового сигнала С не должен быть меньше величины задержки переключения триггера по входу С.

Говоря об областях применения триггеров, мы будем рассматривать исключительно D-триггеры, так как в большинстве случаев RS- и JK-триггеры могут быть заменены D-триггерами без ухудшения каких бы то ни было параметров схемы. Примеры такой замены показаны на рис. 7.5.

RS-триггер получается из D-триггера, если в D-триггере не использовать входы C и D, например, соединить их с общим проводом (а).



Однотактные и двухтактные триггеры. Структурные схемы и принцип работы. Область применения.

Триггеры подразделяются на две большие группы - динамические и статические. Названы они так по способу представления выходной информации. Динамический триггер представляет собой систему, одно из состояний которой (единичное) характеризуется наличием на выходе непрерывной последовательности импульсов определённой частоты, а другое - отсутствием выходных импульсов (нулевое). Смена состояний производится внешними импульсами. Динамические триггеры в настоящее время используются редко.

К статическим триггерам относят устройства, каждое состояние которых характеризуется неизменными уровнями выходного напряжения (выходными потенциалами): высоким - близким к напряжению питания и низким - около нуля. Статические триггеры по способу представления выходной информации часто называют потенциальными.

Статические (потенциальные) триггеры, в свою очередь, подразделяются на две неравные по практическому значению группы - симметричные и несимметричные триггеры. Оба класса реализуются на двухкаскадном усилителе с положительной обратной связью, а названием своим они обязаны способам организации внутренних электрических связей между элементами схемы.

Симметричные триггеры отличает симметрия схемы и по структуре, и по параметрам элементов обоих плеч. Для несимметричных триггеров характерна неидентичность параметров элементов отдельных каскадов, а также и связей между ними.

Симметричные статические триггеры составляют основную массу триггеров, используемых в современной радиоэлектронной аппаратуре.

Основной и наиболее общий классификационный признак - функциональный - позволяет систематизировать статические симметричные триггеры по способу организации логических связей между входами и выходами триггера в определённые дискретные моменты времени до и после появления входных сигналов. По этой классификации триггеры характеризуются числом логических входов и их функциональным назначением.

Вторая классификационная схема, независимая от функциональной, характеризует триггеры по способу ввода информации и оценивает их по времени обновления выходной информации относительно момента смены информации на входах.

Каждая из систем классификации характеризует триггеры по разным показателям и поэтому дополняет одна другую. К примеру, триггеры RS-типа могут быть в синхронном и асинхронном исполнении.

Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала(ов), с некоторой задержкой равной сумме задержек на элементах составляющих данный триггер.

Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают термином «такт». Такие информационные сигналы называют синхронными. Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации С.

******** Одноступенчатые триггеры состоят из одной ступени представляющей собой элемент памяти и схему управления, делятся на триггеры со статическим управлением и триггеры с динамическим управлением.



Триггеры со статическим управлением воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).

Триггеры с динамическим управлением воспринимают информационные сигналы при изменении (перепаде) сигнала на входе С от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход). Также встречается название "триггер, управляемый фронтом".

******** Двухступенчатые триггеры бывают, как правило, со статическим управлением. При одном уровне сигнала на входе С запись информации, в соответствии с логикой работы триггера, записывается в первую ступень (вторая ступень заблокирована для записи). При другом уровне этого сигнала происходит копирование состояния первой ступени во вторую (первая ступень заблокирована для записи), выходной сигнал появляется в этот момент времени с задержкой равной задержке срабатывания ступени. Обычно двухступенчатые триггеры применяются в схемах, где логические функции входов триггера зависят от его выходов, во избежание временных гонок. Двухступенчатые триггеры с динамическим управлением встречаются крайне редко. Двухступенчатый триггер обозначают ТТ.

******** Триггеры со сложной логикой бывают также одно- и двухступенчатые. В этих триггерах на ряду с синхронными сигналами присутствуют и асинхронные.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   ...   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет