Системная динамика и агентное моделирование


узел: устойчивый при 𝜆 2 ≤ 𝜆 1  0 седло



Pdf көрінісі
бет7/7
Дата19.09.2024
өлшемі0.78 Mb.
#503808
түріРеферат
1   2   3   4   5   6   7
MMDP1 Introduction 2021

узел: устойчивый при 𝜆
2
≤ 𝜆
1
< 0, неустойчивый при 𝜆
2
≥ 𝜆
1
> 0
седло: 𝜆
1
< 0 < 𝜆
2
всегда неустойчивое
фокус: 𝜆
1,2
= 𝜇 + 𝑖𝑣, 𝑣 ≠ 0, устойчивый при 𝜇 < 0, неустойчивый при 𝜇 > 0
центр: 𝜆
1,2
= 0 + 𝑖𝑣, 𝑣 ≠ 0 всегда устойчивый, но не асимптотически устойчивый
𝜆
1
= 0, 𝜆
2
≠ 0: 𝜆
2
< 0 -- устойчивое ПР, 𝜆
2
> 0 -- неустойчивое ПР
𝜆
1
= 𝜆
2
= 0:
2/15/2021
Математическое моделирование динамических процессов I
31
Линейная ДС: устойчивость нулевого решения


Рассмотрим нелинейную ДС 𝑛-го порядка вида 
𝑑𝒙
𝑑𝑡
= 𝒇 𝒙
Пусть 𝒇 𝒙 = 𝐴𝒙 + 𝑭 𝒙 -- линеаризация системы в окрестности 
положения равновесия 𝒙 = 𝟎
𝑑𝒙
𝑑𝑡
= 𝐴𝒙 + 𝑭 𝒙 ,
𝑭(𝒙) ≤ 𝑀 𝒙
1+𝛼
, 𝑀 > 0, 𝛼 > 0
Если собственные значения матрицы 𝐴 различны и имеют 
вещественные части, отличные от нуля, то положение равновесия 𝒙 =
𝟎 нелинейной системы имеет тот же характер, что и положение 
равновесия линеаризованной системы 
𝑑𝒙
𝑑𝑡
= 𝐴𝒙
2/15/2021
Математическое моделирование динамических процессов I
32
Нелинейная ДС: устойчивость нулевого решения


Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет