1 Характеристики больших данных
Большие данные могут быть описаны следующими характеристиками:
– Объем — количество генерируемых данных очень важно в этом контексте. Именно размер данных определяет ценность и потенциал рассматриваемых данных, а также то, могут ли они фактически рассматриваться как большие данные или нет.
Само название ≪Большие данные≫ содержит термин, который связан с размером и, следовательно, характеристикой.
– Разнообразие. Следующим аспектом больших данных является их разнообразие. Это означает, что категория, к которой относятся большие данные, также является очень важным фактом, который должен знать аналитик данных. Это помогает людям, которые тщательно анализируют данные и связаны с ними, эффективно использовать данные в своих интересах и, таким образом, отстаивать важность больших данных.
– Скорость — в данном контексте относится к скорости генерации данных и обработки данных для удовлетворения потребностей и задач, стоящих на пути роста и развития.
– Изменчивость — это фактор, который может стать проблемой для тех, кто анализирует данные. Это относится к несогласованности, которая может иногда проявляться в данных, что затрудняет процесс эффективного управления данными и их обработки.
– Достоверность — качество собираемых данных может сильно отличаться. Точность анализа зависит от достоверности исходных данных.
– Сложность — управление данными может стать очень сложным процессом, особенно когда большие объемы данных поступают из нескольких источников. Эти данные должны быть связаны, чтобы иметь возможность понять информацию, которая, как предполагается, передается этими данными. Поэтому эта ситуация называется ≪сложностью≫ больших данных.
2 Большие данные в производстве
Основываясь на исследованиях о важности больших данных [1], становится понятно, что главным преимуществом обработки больших данных для производства становится улучшение планирования поставок и качества продукции.
Большие данные обеспечивают инфраструктуру для прозрачности в обрабатывающей промышленности, которая заключается в способности устранять такие неопределенности, как несоответствие производительности компонентов и доступности.
Прогнозное производство как применимый подход к почти нулевому времени простоя и прозрачности требует огромного объема данных и передовых инструментов прогнозирования для систематического процесса преобразования данных в полезную информацию. Концептуальная основа прогнозного производства начинается со сбора данных, где доступны раз-
личные типы сенсорных данных, таких как акустика, вибрация, давление, ток, напряжение и данные контроллера. Огромное количество сенсорных данных в дополнение к историческим данным создают большие данные в производстве. Сгенерированные большие данные выступают в качестве входных данных для инструментов прогнозирования и превентивных стратегий, таких как прогнозирование и управление качеством.
Достарыңызбен бөлісу: |