Кирхгоф заңы
Кирхгоф термодинамиканың екінші заңына және оңашаланған жүйелердегі термодинамикалық тепе-теңдік шартына сүйене отырып, денелердің сәуле шығару спектрлік тығыздығы мен спектрлік сәуле жұтқыштық қабілеттіліктерінің арасындағы сандық байланысты тағайындады. Сәуле шығару спектрлік тығыздығының спектрлік сәуле жұтқыштық қабілеттілігіне қатынасы дененің табиғатына байланысты болмайды, ол барлық денелер үшін жиіліктері мен температураларының универсал функциясы болып табылады (Кирхгоф заңы)
(18.13)
Абсолют қара денелер үшін болғандықтан Кирхгоф заңынан , сондықтан бұл универсал заң қара дененің энергетикалық жарқырауының спектрлік тығыздығы болып табылады. Олай болса абсолют қара дененің энергетикалық жарқырауы төмендегі формуламен анықталады:
(18.14)
Қара дененің сәуле шығару заңдары
Абсолютті қара дененің сәулеленуін зерттеу нәтижесінде екі заң тағайындалды: Стефан – Больцман және Виннің ығысу заңы.
Ағылшын ғалымы Стефан мен Больцман термодинамикалық әдісті қолдана отырып, абсолютті қара дененің энергетикалық жарқырауы термодинамикалық температурасының төртінші дәрежесіне пропорционал екендігін тағайындаған, сондықтан Стефан-Больцман заңы деп аталады
(18.15)
мұнда - Больцман тұрақтысы делінеді.
Егер дене абсолютті қара болмаса, онда (18.15) заңына болатын қараңғылық коэффициенті енгізіледі
(18.16)
Неміс ғалымы В.Вин термо - және электродинамика заңдарына сүйене отырып, берілген температурада абсолют қара дененің сәулелену спектріндегі энергияның таралу қисығында толқын ұзындығына функциясының максимумы сәйкес келетінін дғлелдеді. Ол Виннің ығысу заңы делінеді
(18.17)
мұндағы - Вин тұрақтысы делінеді.
Абсолютті қара дененің интегралдық сәуле шығару қабілеті мен абсолют температура арасындағы байланысты көрсететін Стефан – Больцман заңы энергияның спектрлік таралуын анықтамайды.
Қара денелердің энергетикалық жарқырауының спектрлік тығыздығы Рэлей-Джинс формуласымен анықталады
(18.18)
Мұнда - осциллятордың меншікті жиілігі. Рэлей-Джинс жылулық сәулеленуге энергияның еркіндік дәреже бойынша бірқалыпты таралуының классикалық заңын пайдалана отырып статистикалық физиканың әдістерін қолданды. Бірақ-та (18.18) формуласы эксперименттер нәтижемен тек өте төмен жиіліктер мен үлкен температураларда ғана орындалады. Жоғары жиіліктерде Рэлей-Джинс заңы эксперимент нәтижелерімен, Вин заңымен өте алшақ болып шықты. (18.18) формуласымен есептелген қатты дененің энергетикалық жарқырауы мынаған тең
Ал Стефан-Болцман заңы бойынша температураның төртінші дәрежесіне пропорционал. Бұл нәтиже «ультракүлгін катастрофа» делінеді. Сонымен, классикалық физика тұрғысынан қара дене спектріндегі энергияның таралу заңын түсіндіру мүмкін болмады.
Қатты дененің энергетикалық жарқырауының спектрлік тығыздығының тәжірибелер мәндерімен сәйкес келетін өрнегін 1900 жылы Планк тағайындады. Ол үшін классикалық теорияда орныққан, кез-келген жүйенің энергиясы үздіксіз өзгереді деген көзқарастан бас тарту қажет болды. Планктің кванттық гипотезасы бойынша атомдық осцилляторлар энергияны үздіксіз шығармайды, тек белгілі порциялармен- кванттармен- шығарады. Ал квант энергиясы тербеліс жиілігіне пропорционал болады
(18.19)
мұнда - Планк тұрақтысы.
Достарыңызбен бөлісу: |