Учебно-методический комплекс дисциплины «физика 2» для специальности «5В070200» автоматизация и управление



бет26/31
Дата25.06.2016
өлшемі7.1 Mb.
#158001
түріУчебно-методический комплекс
1   ...   23   24   25   26   27   28   29   30   31












Типы взаимодействий элементарных частиц



Согласно современным представлениям, в природе осуществляется четыре типа фун­даментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.
Элементарные частицы принято делить на три группы:

1) фотоны; эта группа состоит всего лишь из одной частицы — фотона — кванта электромагнитного излучения;

2) лептоны (от греч. «лептос» — легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон — -лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

3) адроны (от греч. «адрос» — крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.










Частицы и античастицы


Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона, обнаруженного спустя четыре года К. Андерсеном в составе космического излучения.

Антипротон отличается от протона знаками электрического заряда и собственного магнитного момента. Антипротон может аннигилировать не только с протоном, но и с нейтроном:







Реакция перезарядки состоит в об­мене зарядов между нуклоном и антинуклоном и может протекать по схемам





Если антипротоны — стабильные частицы, то свободный антинейтрон, если он не испытывает аннигиляции, в конце концов претерпевает распад по схеме



Коуэн (1956) надежно зафиксировали реакцию захвата электронного антинейтрино протоном:



Аналогично зафиксирована реакция захвата электронного нейтрино нейтроном:



Оказа­лось, что реакция не идет, а захват происходит по схеме



т. е. вместо электронов в реакции рождались -мюоны.

Для объяснения экспериментальных данных предполагают, что у нейтрино спин s ориентирован антипараллельно импульсу р, т. е. направления р и s образуют левый винт и нейтрино обладает левой спиральностью (рис. 349, а). У антинейтрино направления р и s образуют правый винт, т. е. антинейтрино обладает правой спиральностью (рис. 349,б). Это свойство справедливо в равной мере как для электронного, так и для мюонного нейтрино (антинейтрино).


Гипероны. Странность и четность элементарных частиц


В ядерных фотоэмульсиях (конец 40-х годов) и на ускорителях заряженных частиц (50-е годы) обнаружены тяжелые нестабильные элементарные частицы массой, большей массы нуклона, названные гиперонами (от греч. hyper — сверх, выше). Гипероны имеют массы в пределах (2183—3273) тe, их спин равен ½ (только спин -гиперона равен 3/2), время жизни приблизительно 10–10 с (для -гиперона время жизни равно приблизительно 10–20 с). Они участвуют в сильных взаимодействиях, т. е. принадлежат к группе адронов. Гипероны распадаются на нуклоны и легкие частицы (-мезоны, электроны, нейтрино и -кванты).

Кроме того, оказалось, что всякий раз гиперон рождается в паре с К-мезоном. Например, в реакции



с -гипероном всегда рождается К0-мезон, в поведении которого обнаруживаются те же особенности, что и у гиперона. Распад же -гиперона происходит по схеме



Элементарным частицам приписывают еще одну квантово-механическую величи­ну — четность Р квантовое число, характеризующее симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения.

Из квантовой механики вытекает закон сохранения четности, согласно которому при всех превращениях, претерпеваемых системой частиц, четность состояния не изменяет­ся. Таким образом, закон сохранения четности, как и закон сохранения странности, выполняется только при сильных и электромагнитных взаимодействиях.



Достарыңызбен бөлісу:
1   ...   23   24   25   26   27   28   29   30   31




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет