Учебно-методический комплекс дисциплины «Климатология и метрология» для специальности 5М060800 «Экология» учебно-методические материалы



бет38/62
Дата11.07.2016
өлшемі8.34 Mb.
#192433
түріУчебно-методический комплекс
1   ...   34   35   36   37   38   39   40   41   ...   62

3. Струйные течения


Аэрологические наблюдения помогли изучить многие особенности ураганных ветров на высотах – струйных течений в атмосфере.

На ежедневных картах барической топографии в средней и верхней тропосфере, как и в нижней стратосфере, обнаруживаются переходные зоны между высокими холодными циклонами и тёплыми антициклонами. Это уже знакомые нам фронтальные зоны. Высотные фронтальные зоны окаймляют земной шар в обоих полушариях.

К числу основных характеристик высотных фронтальных зон относят градиенты температуры, влажности, давления и ветра. Во фронтальных зонах очень часто скорости ветра на высотах превышают 30 м/с (108 км/ч).

Своё название струйные течения получили в 1940-х гг. Они представляют собой сильные воздушные течения (струи) в середине воздушных потоков, имеющих малые скорости. Они быстро перемещаются вместе с высотными фронтальными зонами, усиливаясь или ослабевая.



Струйное течение (по определению Аэрологической комиссии ВМО) – сильный узкий поток с квазигоризонтальной осью, расположенной в верхней тропосфере или стратосфере, и характеризующийся большими горизонтальными и вертикальными изменениями градиента скорости ветра с наличием одного или нескольких максимумов скорости ветра.

Длина струйного течения – порядка тысяч километров, ширина – сотен километров, вертикальная мощность – несколько километров. От оси струйного течения к его периферии скорости ветра быстро уменьшаются. Максимальные скорости ветра на оси могут достигать 50–100 м/с, за нижний предел условно принимается 30м/с. Изменение градиента скорости ветра называется сдвигом ветра. Сдвиг ветра в зоне струйных течений достигает больших величин, как в горизонтальном (10 м/с и более на 100 км), так и в вертикальном направлении (около 5–10 м/с на 1 км).

Струйные течения характерны для всех районов земного шара. По высоте расположения их делят на тропосферные и стратосферные.

Тропосферное струйное течение – перенос воздуха в виде узкого течения с большими скоростями ветра в верхней тропосфере или нижней стратосфере, с осью вблизи тропопаузы; в полярных широтах – также и на более низких уровнях.

Тропосферные струйные течения делятся на:



  • струйные течения умеренных широт (полярно-фронтовые),

  • субтропические струйные течения,

  • арктические струйные течения.

Тропосферные струйные течения характеризуются западным направлением ветров в течение года.

Струйные течения умеренных широт возникают между высокими антициклонами и циклонами (рисунок 67). Они являются наиболее подвижными, а по интенсивности наиболее изменчивы. Высота оси струи располагается чаще всего на уровне 7–10 км зимой и 8–10 км летом. Максимальные скорости на оси изменяются в широких пределах в зависимости от контрастов температуры в высотных фронтальных зонах. Средние мах скорости ветра обычно равны 40–50 м/с, иногда превышают 80–100 м/с.



Рисунок 67 – Струйное течение умеренных широт

Субтропические струйные течения в Северном полушарии формируются на северной периферии высоких субтропических антициклонов. Они менее подвижны. Высота оси течения 12–14 км. Средний максимум скорости ветра зимой превышают 50–60 м/с, летом – 30–40 м/с. Зимой течения смещаются в сторону тропиков и находятся над широтами 25–35°. Летом она (зона течений) смещена к северу над океанами на 50–10°, над материками – на 10–15°. Струйные течения особенно интенсивны у восточных берегов Азии и Северной Америки и относительно слабее выражены над восточными районами Атлантики и Тихого океана.

Стратосферные струйные течения – струйные течения с осью выше тропопаузы. Такие течения наблюдаются на всех широтах. Среди них различают:


  • струйное течение на краю полярной ночи. Западное течение в верхней стратосфере и мезосфере планетарного характера, возникает зимой вблизи полярного круга, в зоне больших меридиональных градиентов температуры между приполюсной областью, где господствует полярная ночь, и более низкими широтами, где наблюдается суточная смена дня и ночи. Ось его расположена на высоте около 60 км.

  • летнее стратосферное струйное течение. Восточное струйное течение планетарного характера в стратосфере, оно возникает на обращённой к экватору периферии летнего стратосферного антициклона, ось его расположена в среднем на широте 45° и высоте около 60 км, средняя скорость ветра на оси около 50 м/с.

  • экваториальное струйное течение. Восточное струйное течение в стратосфере вблизи экватора (не далее, чем под 15–20° широты), его ось расположена на высоте около 20–30 км, максимум скорости ветра 50 м/с. Режим его неустойчив.

Струйные течения обычно изображают на вертикальных разрезах атмосферы. На них наносятся изотахи (линии равных скоростей ветра), изотермы, атмосферные фронты, тропопауза.

Струйные течения играют важную роль в режиме атмсферной циркуляции. Они – главные артерии атмосферы. Знание их особенностей важно для авиации, особенно для безопасности полётов.



Общая циркуляция атмосферы



1. Общая циркуляция атмосферы. Факторы, определяющие общую циркуляцию атмосферы.

2. Зоны давления и ветер на высоте.

3. Центры действия атмосферы.

1. Общая циркуляция атмосферы


Под общей циркуляцией атмосферы обычно понимают совокупность течений воздуха крупных масштабов, благодаря которым осуществляется обмен его по горизонтали и вертикали.

Другими словами общая циркуляция атмосферы – система крупномасштабных воздушных течений по Земле (т.е. течений, соизмеримых по размерам с большими частями материков и океанов).

Основными крупномасштабными атмосферными движениями являются воздушные течения, обусловленные разностью температуры между различными широтами вблизи земной поверхности и на высотах. К ним относятся также воздушные течения в системе циклонов и антициклонов, тропосферные и стратосферные струйные течения, пассаты и муссоны. Именно эти виды воздушных течений играют важную роль в формировании погоды и климата. Мелкомасштабные движения (бризы, горно-долинные ветры, шквалы, смерчи и пр.) имеют местное значение, они зарождаются (шквалы, смерчи) или разрушаются под влиянием крупномасштабной циркуляции.

Исследования общей циркуляции атмосферы начались в XVII–XVIII вв. с попыток объяснить пассатную циркуляцию. В середине XIX века Мори уже дал схему циркуляции атмосферы на всем земном шаре. В XIX–XX вв. основой для изучения общей циркуляции атмосферы служили карты средних значений метеоэлементов (температуры, давления, ветра, осадков). Были установлены сезонные характеристики ветра, давления, температуры и общие черты климата в разных районах земного шара. Но эти значения не могли дать исчерпывающей информации о многообразии непериодических процессов. Отсутствовали данные о распределении метеоэлементов на высотах, что увеличивало трудности.

В результате переоценки роли средних карт приземного давления и ветра долгое время главенствовало представление о малой изменчивости характера атмосферных процессов в низких широтах, об устойчивости субтропических антициклонов, зимнего сибирского антициклона. С развитием синоптических карт появилась возможность изучать непериодические процессы.

С введением анализа атмосферных фронтов было сделано несколько попыток создать схемы общей циркуляции атмосферы. В этих схемах большое значение в междуширотном обмене придавалось вертикальной циркуляции, представляемой в виде замкнутых и незамкнутых колес. При изображении междуширотного обмена между экватором и тропиками всеми исследователями принималось классическое представление о пассатной циркуляции, основу которой дали Галлей (1686) и Гадлей (1735) (ячейка Гадлея).

Изучался и междуширотный обмен на высотах. Показано, что он осуществляется путем горизонтального переноса, в котором главную роль играют струйные течения.

Очевидно, невозможно построить одну схему общей циркуляции атмосферы, которая бы полностью отражала многообразие ее характера над материками и океанами в разные сезоны года. В настоящее время при построении схем общей циркуляции атмосферы исходят из положения квазигеострофичности течений обшей циркуляции, т.е. приближены к геострофическому ветру. В слое трения течения отклоняются от геострофичности ветра и от изобар, но зная средний угол отклонения, можно восстановить по полю давления поле ветра.

В свободной атмосфере, где отклонения течений общей циркуляции от геострофичности ветра невелики, течения можно назвать квазигеострофичным. Условия квазигеострофичности не выполняется на экваторе (сила Кориолиса равна нулю или ничтожно мала и не может уравновесить силу горизонтального барического градиента).



Достарыңызбен бөлісу:
1   ...   34   35   36   37   38   39   40   41   ...   62




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет