Учебное пособие «История и методология биологии и биофизики»


Разработка биохимических основ учения о питании



бет38/57
Дата13.07.2016
өлшемі12.91 Mb.
#196489
түріУчебное пособие
1   ...   34   35   36   37   38   39   40   41   ...   57

4.1.5. Разработка биохимических основ учения о питании
Еще Гиппократ выдвигал теорию о необходимости, сбалансированной и разнообразной пищи для предотвращения заболеваний. В период Великих географических открытий при длительных путешествиях это правило не соблюдалось, свирепствовала цинга. Шотландский врач Джеймс Линд (1714 — 1794) отметил тот факт, что цинга возникает на фоне однообразной пищи и не только при морских путешествиях, но и в осажденных городах и тюрьмах.

В 1747 г. Линд экспериментально подтвердил, что соки цитрусовых культур благотворно влияли на состояние больных цингой, и те удивительно быстро выздоравливали. Капитан Джеймс Кук, великий английский первооткрыватель, поил своих моряков соком цитрусовых в морских путешествиях, в результате чего от цинги у него умер всего один моряк. В 1795 г., после неудачной войны с Францией, командование английского флота приняло решение о введении сока цитрусов в рацион моряков, и цинга покинула английские корабли.

В XIX в. основные открытия в питании касались значения протеина и факта, что некоторые протеины полные (в то время как другие, например желатин, неполные) и могут в одиночку поддерживать жизнь. Первым заговорил о важности протеина для жизни французский физиолог Франсуа Мажанди (1783—1855). В 1816 г. Мажанди в опытах по кормлению собак беспротеиновой пищей, содержащей сахар, оливковое масло и воду, потерпел неудачу: собаки умерли от голода. Одних лишь калорий не хватало для полноценной работы организма. Кроме того, не все протеины равно полезны. К сожалению, и в опытах, где желатин был единственным протеином, собаки погибали также. Так начиналась тогда наука диетология, или изучение состава питания и его связи с жизнью и здоровьем.

Однако объяснение этому пришло лишь с более подробным изучением молекулы протеинов. В 1820 г. сложную молекулу желатина удалось расщепить обработкой кислотой и изолировать простую молекулу так называемого глицина, который относился к аминокислотам. Поначалу предполагали, что глицин — блок, из которого состоит протеин, подобно тому, как простой сахар — глюкоза — строительный материал для сложной молекулы крахмала. Но в XIX в. эта теория уже стала неадекватной. Из разных протеинов удалось выделить другие простые молекулы. Все они были из класса аминокислот, однако разнились в деталях. Протеиновые молекулы оказались составленными из разных аминокислот.

К 1900 г. было уже известно около дюжины разных аминокислот. Некоторые аминокислоты, оказывается, насущно необходимы для жизни. Первым это показал английский биохимик Фредерик Гоуленд Хонкинс (1861 — 1947). В 1900 г. он открыл новую аминокислоту, триптофан, и разработал химический тест на ее присутствие. Зеин, протеин, содержащийся в кукурузе, был неполным протеином, поскольку в одиночку не мог поддерживать жизнь. Если к зеину добавить некоторое количество триптофана, жизнь подопытных худо-бедно поддерживалась.

Подобные эксперименты проводили и в первые десятилетия XX в., в результате выявили, какие аминокислоты воспроизводятся материнским организмом и тот факт, что некоторые из них синтезировать невозможно. Именно отсутствие одной или более жизненно важных аминокислот делало протеины неполными, приводило к заболеваниям и смертности.

Таким образом, в число медицинских понятий вошел фактор питания, однако вопрос аминокислот, сколь бы важным он ни был для диеты, не стал существенным для медицины. Тайну, оказалось, разрешить легче, чем представлялось ранее. После выработки концепции существенных аминокислот были открыты другие вещества, необходимые лишь в следовых (малых) количествах.
4.1.6. Открытие витаминов и коэнзимов
После работ Ю. Либиха господствовало убеждение, что три категории питательных веществ — пластические (белки), дыхательные (углеводы и жиры) и минеральные (соли) — способны полностью удовлетворить по­требности организма. Были про­ведены многочисленные исследования рационов, предложены первые хи­мические и биологические принципы определения питательной ценности различных веществ (в частности, опубликованы таблицы питательной ценности множества продуктов) и разработаны представления о хими­ческом и энергетическом балансах организма. В 1898 г. Ч. Лэнгуорти сформулировал «закон питания», согласно которому пища служит двум целям: поставке энергии для поддержания темпера­туры тела и работы и снабжению материалом для построения тела. Было подсчитано даже необходимое соотношение белков, жиров и углеводов как источников энергии (1 : 2,5 : 1).

Но уже в 80-х годах было показано, что в отличие от животных, питавшихся естественной пищей, подопытные животные, получавшие смесь очищенных белков, жиров, углеводов и солей, погибали. Было выс­казано предположение, что искусственные питательные смеси неполно­ценны из-за отсутствия в них некоторых солей, в первую очередь солей редких элементов.

В 1886 г. голландский врач Христиан Эйкман (1858 — 1930) был командирован на Яву для изучения болезни бери-бери (авитаминоза). Были причины предположить, что болезнь могла явиться результатом несбалансированной диеты. Японские моряки неимоверно страдали от этой странной болезни. В 1880-х годах, когда по приказу японского адмирала к рациону, составлявшему ранее рыбу и рис, были добавлены молоко и мясо, болезнь почти отступила.

Эйкман, будучи поклонником микробиологической теории, полагал, что возбудитель болезни — бактерия. Он привез с собой на Яву выводок цыплят и вознамерился выявить возбудителя в их организмах. Сделать это ему не удалось, но в 1896 г. подопытные цыплята начали погибать от заболевания, по симптомам очень похожего на бери-бери. Эйкман вновь не сумел выявить причин: болезнь исчезла. Восстанавливая историю своих подопытных, Эйкман выяснил, что некоторое время их кормили только рисом из госпитальных запасов и именно в это время они заболели. Откормив оставшихся в живых коммерческим кормом, специально разработанным для цыплят, их спасли. Вскоре Эйкман убедился, что болезнь как возникает, так и излечивается при смене рациона. Поначалу он не оценил по достоинству важность своих наблюдений. Он предполагал наличие в рисе какого-либо токсина. Его дело продолжили Хопкинс и биохимик-поляк Казимир Фанк. Каждый независимо друг от друга предположил, что не только бери-бери, но и такие болезни, как цинга, пеллагра, рахит, бывают вызваны дефицитом каких-то веществ в следовых количествах в рационе (рис.4.1.9).



Рис. 4.1.9. Больной, страдающей пеллагрой — заболеванием, которое является следствием длительного неполноценного питания (недостаток витамина B3 и белков, в особенности содержащих незаменимую аминокислоту триптофан)
Под впечатлением того, что почти все пищевые продукты принадлежат к классу веществ, известных под названием амины, Фанк в 1912 г. предложил назвать эти вещества витаминами («вита» — жизнь).

Витаминная гипотеза Хопкинса — Фанка появилась вовремя: уже в первой трети XX в. удалось победить некоторые заболевания, просто установив разумный рацион, или диету. Австрийско-американский врач Джозеф Голдбергер (1874 — 1929) показал в 1915 г., что эндемическая болезнь пеллагра, характерная для американского Юга, вовсе не бактериального происхождения. Она была преодолена добавлением молока в рацион больных.

Поначалу о витаминах не было известно ничего, помимо их способности преодолевать и излечивать болезни. Американский биохимик Элмер Верной Макколлам в 1913 г. предложил именовать витамины первыми буквами латинского алфавита. Теперь науке известны витамины А, В, С, D, Е, К. Впоследствии выяснилось, что витамин В способен корректировать несколько разных симптомов, поэтому выделили витамины В1, В2 и т. д. Именно дефицит В1 вызывал болезнь бери-бери, а дефицит В3 — пеллагру. Дефицит витамина С ведет к цинге, а витамина D — к рахиту. Недостаток витамина А становится причиной ухудшения зрения и вызывает ночную слепоту. По мере накопления знаний о витаминах такие заболевания перестали быть серьезной проблемой человечества.

XX в. открывал все новые и новые детали метаболизма клетки. Каждая метаболическая реакция, как выяснилось, катализируется каким-то определенным энзимом. Для того чтобы понять природу метаболизма, нужно исследовать данный энзим. Хэрден в своих исследованиях клеточного метаболизма также приоткрыл завесу тайны над энзимами. Он и еще несколько ученых пришли к заключению, что энзим — очень большая молекула, включающая еще и маленькую молекулу, способную открепиться от большой и пройти через молекулярную мембрану. Эта малая, свободно связанная с большой, молекула была названа коэнзим. Структуру коэнзима исследовал в 1920-х годах немецкий химик Ганс Карл фон Элер-Челпин. По мере выяснения молекулярной структуры витаминов стало совершенно очевидным, что многие коэнзимы содержат витаминоподобные структуры.

Было установлено, что витамины представляют собой те части коэнзимов, которые организм сам не вырабатывает и поэтому должен потреблять с пищей (рис.4.1.10). Без витаминов коэнзимы не формируются; без коэнзимов, в свою очередь, энзимы бывают неэффективны, и метаболизм расстраивается. В результате возникают авитаминоз и болезнь дефицита витаминов.

Рис. 4.1.10. Синтез коэнзима тиаминпирофосфата (ТРР) из витамина В1.
Поскольку энзимы представляют собой катализаторы, необходимые организму лишь в небольших количествах, коэнзимы (и витамины) также нужны в небольших количествах. Вот почему следовые количества витаминов бывают насущно необходимы. Легко было установить, что организму необходимы следовые количества таких элементов, как медь, кобальт, молибден, цинк.
4.1.7. Открытие гормонов
В 1902 г. два английских физиолога — Эрнест Генри Старлинг (1866 — 1927) и Уильям Мэддок Бэйлисс (1866 — 1924) обнаружили, что если уничтожить все нервные окончания, ведущие к поджелудочной железе, то она все равно будет выполнять свою функцию. Железа начинает производить пищеварительные соки, как только в кишечный тракт поступает кислотное содержимое желудка. Выяснилось, что внутренняя оболочка тонкого кишечника под влиянием желудочной кислоты выделяет вещество, названное Старлингом и Бэйлиссом секретином.

Два года спустя Старлинг предложил называть все вещества, выбрасываемые в кровоток эндокринной железой, гормонами (от греч. «вызывающий активность»). Гормоны служат для побуждения к деятельности того или иного органа.



Гормональная теория зарекомендовала себя исключительно полезной, поскольку вскоре было обнаружено множество гормонов, поступающих в кровоток в следовых (крайне малых) количествах, которые поддерживают жизненно важный баланс химических компонентов тела либо привносят хорошо контролируемые изменения там, где они необходимы (рис.4.1.11). Японско-американский химик Йокихи Такамини (1854— 1922) в 1901 г. выделил из адреналиновой железы вещество, которое сейчас называется эпинефрин (коммерческое наименование — адреналин). Именно адреналин стал первым выделенным, с известной структурой и применяемым гормоном.

Обмен веществ в организме является гормоноконтролируемым. Магнус-Леви в свое время показал взаимосвязь между изменениями в обмене веществ и заболеванием щитовидной железы. Американский биохимик Эдуард Кальвин Кендалл в 1916 г. выделил из щитовидной железы вещество, названное им тироксин. Выяснилось, что производство этого гормона в небольших количествах контролирует общий обмен веществ.

Наиболее показательный результат работы гормонов — взаимосвязь их содержания с заболеванием диабетом. Нарушения здесь касаются процесса разложения Сахаров для высвобождения энергии, в результате чего происходит резкое повышение содержания сахара в крови. В результате тело освобождается от избытка сахара через мочу, и присутствие сахара в моче является симптомом приближающегося диабета. До XX в. заболевание неизменно приводило к смерти.

Рис. 4.1.11. Система гормональной регуляции.
В 1893 г. у немецких физиологов Йозефа фон Меринга (1849 — 1908) и Оскара Минковского (1858—1931) возникло подозрение, что диабет каким-то образом связан с деятельностью поджелудочной железы. При удалении поджелудочной железы у подопытных животных в проведенных учеными опытах диабет развивался стремительно. На основании гормональной теории Старлинга и Бэйлисса было логичным предположить, что поджелудочная железа производит гормон, контролирующий процесс разложения сахара.

Попытки выделить гормон из поджелудочной железы, как Кендалл изолировал тироксин из щитовидной железы, провалились. Конечно, главной функцией поджелудочной железы является производство желудочных соков — таким образом, чтобы в них было большое содержание протеинрасщепляющих энзимов. Если гормон сам по себе является протеином (что было доказано позднее), он разрушится в процессе экстракции.

В 1920 г. канадский физик Фредерик Грант Бантинг (1891 — 1941) провел опыт с перевязыванием поджелудочной железы у животных. Сама железа при этом не удалялась. Аппарат пищеварительных соков при этом дегенерирует, поскольку пищеварительные соки не поставляются; однако порции, которыми гормон выбрасывается в кровь, надеялся Бантинг, останутся эффективными. В 1921 г. он со своим ассистентом Чарлзом Гербертом Вестом проверил свое предположение на практике. Ему удалось выделить гормон инсулин. Использование инсулина позволило контролировать развитие диабета, и хотя диабет неизлечим и больным приходится всю жизнь проходить лечение, но жизнь их удается спасти и сделать вполне нормальной.

Впоследствии были выделены и другие гормоны. Половые гормоны (контролирующие развитие вторичных половых признаков в подростковом возрасте и полового цикла у женщин) из яичников и яичек выделил немецкий химик Адольф Фридрих Йоханнес Бутенандт (1903-1995) в 1929 г.

Кендалл, первооткрыватель тироксина, а также польский химик Тадеуш Рейхштейн выделили целое семейство гормонов-кортикоидов из открытых порций (или кортекса) адреналиновых желез. В 1948 г. один из сотрудников Кендалла, Филип Шоуолтер Хенч (1896 — 1965), показал, что один из кортикоидов — кортизон — дает положительное влияние на излечение ревматоидного артрита.

Гипофиз — небольшая структура у основания черепа — в 1924 г. был исследован аргентинским физиологом Бернардо Альберто Хуссеем (1887-1971). Он показал, что гипофиз имеет связь с процессом разложения Сахаров. Позже выяснилось, что у гипофиза есть и другие крайне важные функции. Китайско-американский биохимик Чао Хао Ли (род. 1913) в 1930-х годах выделил из гипофиза ряд различных гормонов. Один из них — «гормон роста», контролирующий процесс роста;, Когда гормон выделяется в избыточных количествах, рост получается гигантским, когда в недостаточных — наблюдается карниковость (рис.4.1.12).



Рис. 4.1.12. Гигантизм и карликовость (гипофизарная), обусловленные нарушением синтеза гормона роста (соматотропного гормона, соматотропина)
В настоящее время установлено, что существует сложная иерархическая система функционирования гормонов. Наука о гормонах, эндокринология, остается крайне сложным аспектом биологии.
4.1.8. Создание новых методов
Развитие новых химических и физических инструментов биологических исследований в первой половине XX в. сделало возможным выявление тонких деталей больших протеиновых молекул, которые являются сущностью жизни. По сути, возникла новая наука на грани физики, химии и биологии, которая исследовала механизм функционирования органических молекул. Эта наука — молекулярная биология — стала особо важной после Второй мировой войны.
Радиоактивные изотопы
Методы исследования метаболизма клетки облегчаются использованием атомов-изотопов. В первую треть XX в. физики выяснили, что большинство элементов состоит из нескольких изотопов.

Американский биохимик Рудольф Шенхеймер (1898—1941) первым осуществил крупномасштабные исследования в биохимии. К 1935 г. был выделен редкий изотоп водорода — дейтерий. Он вдвое тяжелее обычного водорода и используется для синтеза молекул жира. Будучи внедрен в ткани лабораторных животных, он дает освещение метаболизму клетки.

К тому времени считалось, что запасы жира в организме в целом неизменны, но было известно, что они мобилизуются в периоды голода. Однако Шенхаймер обнаружил, что к концу четвертого дня ткани подопытных крыс, которым скармливали насыщенный дейтерием корм, содержали лишь его половину. Другими словами, потребленный жир запасался, а запасенный расходовался. Итак, составляющие тела претерпевают постоянное изменение.

Шенхаймер перешел к опытам с азотом-15. Им метили аминокислоты. Молекулы аминокислот в организме крыс, как выяснилось, постоянно проходили взаимообмен.

Радиоактивные изотопы позволили американскому биохимику Мелвину Калвину детально разработать последовательность реакций фотосинтеза, при котором зеленые растения превращают солнечный свет в химическую энергию и снабжают животный мир пищей и кислородом.
Электрофорез и рентгеновская дифракция
В 1923 г. шведский химик Теодор Сведберг (1884 — 1971) представил новый метод определения размера протеиновых молекул. Этот метод назывался ультрацентрифугированием. Термическое движение молекул воды поддерживает молекулы протеина в суспензии: на них не действует сила гравитации; однако при центростремительных силах, создаваемых в центрифуге, молекулы протеина оседают. По скорости оседания можно определить молекулярный вес протеина. Протеин средней массы, например, гемоглобин, имеет молекулярную массу 67 000. Другие протеиновые молекулы еще тяжелее.

Размеры и сложность протеиновых молекул определяют их электрический заряд. Каждый протеин имеет свой положительный или отрицательный заряд, который меняется в зависимости от изменения кислотности среды.

Если протеиновый раствор поместить в электрическое поле, индивидуальные молекулы протеина движутся либо к положительному, либо к отрицательному электроду с определенной скоростью, заданной силой тока, размерами и формой молекулы и т. д. Скорость у каждого протеина строго своя.

В 1937 г. шведский биохимик Арне Вильгельм Каурин Тиселиус (1902 — 1971) изобрел метод электрофоретического и хроматографического анализа. Поскольку каждый компонент раствора движется строго со своей скоростью, их можно разделить. Более того, определенные цилиндрические линзы позволяют видеть изменения дифрагируемого света при прохождении его через раствор. Изменения в рефракции раствора можно сфотографировать. По интенсивности волны света можно подсчитать количество протеина каждого вида в данной смеси. Были подвергнуты электрофорезу и сфотографированы протеины плазмы крови. Их разделили на фракции, включая альбумин, три группы глобулинов. Оказалось, что фракция гаммаглобулина содержит антитела.

Ультрацентрифугирование и электрофорез зависят от свойств протеиновой молекулы. Но наиболее эффективен способ рентгеновской дифракции. Когда рентгеновский луч проходит через вещество, создается определенное распределение частиц. Х-луч фиксируется на фотопленке, и по рассеянию луча можно идентифицировать протеин. По виду рентгеновской дифракции можно делать математические просчеты. В помощь биохимикам как раз в эти годы были разработаны компьютеры. Первой была обсчитана молекула не протеина, но витамина. С использованием рентгеновской дифракции и компьютерной обработки впервые в 1960 г. английские ученые Макс Фердинанд Перутц и Джон Коудери Кендрю показали миру трехмерную молекулу миоглобина со всеми наличествующими аминокислотами в ее составе.
Хроматография
Использование физических методов исследования, например дифракции рентгеновских лучей, очень помогает в работе химикам, если предварительно исследована химическая природа составляющих молекулы и получена ее цельная картина. В таком случае физический метод будет направлен на практическое измерение и уточнение.

В случае с протеинами химический прогресс был неспешен. В XIX в. было лишь показано, что молекула протеина состоит из аминокислот.

Но какова структура гораздо более сложных молекул, встречающихся в природе? Какова точная численность каждого типа аминокислот в данной протеиновой молекуле? Прямого ответа на этот вопрос не последовало, поскольку для него предстояло разбить молекулу протеина на смесь индивидуальных аминокислот и определить относительные количества каждого компонента методами химического анализа. В начале XX в. Э. Фишер смог только определить, как именно аминокислоты соединены между собой в молекуле протеина. Для времени, в котором жил Фишер, остальные задачи были невыполнимы. Некоторые из аминокислот достаточно схожи по структуре между собой, а методы не были столь тонкими, чтобы определить их избирательно.

Ответ на проблему пришел с методикой, впервые увидевшей свет в 1906 г. и основанной на трудах русского ботаника Михаила Цвета (1872 — 1919). Он работал с растительными пигментами и нашел способ отделять один от другого нехимически. Ему пришло в голову дать смеси стекать по трубке, опудренной окисью алюминия. Разные субстанции в смеси пигментов прилипали к частицам порошка с различной силой. По мере промывания смеси свежим растворителем компоненты разделялись, осаждаясь: те, которые притягивались с меньшей силой, промылись вниз первыми; в конце концов смесь была разделена на компоненты, каждый со своим оттенком. Ответ был как бы «написан цветом», поэтому автор назвал методику греческим термином «хроматография» (буквально: «написано цветом»),

Работа Цвета в то время не вызвала интереса, но в 1920-х годах Вилштеер сделал методику популярной. Хроматография стала широко использоваться для разделения смесей. Необходимая модификация к методике Цвета пришла в 1944 г. и совершила буквально революцию в биохимии. Английские биохимики Арчер Джон Портер Мартин (род. 1910) и Ричард Лоуренс Миллингтон Синг (1914—1994) разработали методику хроматографии на простой фильтровальной бумаге.

Капля смеси аминокислот стекала до конца бумажной полоски, а затем по полоске способом капилляров поднимался специальный растворитель. По мере того как растворитель смачивал высохшие следы смеси, аминокислоты по очереди «поднимались» по бумажной полоске, каждая со своей скоростью. Их положение на полоске определялось наиболее подходящим химическим или физическим методом. Количественный анализ содержания аминокислот можно было провести без особого труда.

Бумажная хроматография завоевала немедленную популярность. Без дорогостоящего оборудования, просто и быстро она позволяла точно разделять сложнейшие смеси. Методика стала приложимой к любой ветви биохимии: в частности, к фотосинтезу по Калвину. В особенности хроматография позволила определять точные количества аминокислот в молекуле данного протеина, будто то была простая молекула обычного вещества. Но этого было недостаточно. Химиков интересовало не просто число аминокислот в молекуле протеина, но их последовательность. Число вероятных последовательностей — астрономическое; а, например, в средней по сложности молекуле гемоглобина число разных аминокислот — 500. Число вероятностей положения здесь выражается шестизначной цифрой.

Но и тут пришла на помощь бумажная хроматография. Работая с инсулином, состоящим из 50 аминокислот, английский биохимик Фредерик Сенгер (рис.4.1.13) восемь лет разрабатывал специфичный метод. Он разбил молекулу инсулина, оставив нетронутыми короткие цепочки аминокислот. Их он разделил хроматографически и идентифицировал как их состав, так и порядок соединения. Медленно, но верно Сенгер соединял короткие цепи в более длинные. К 1953 г. был установлен точный порядок аминокислот в молекуле инсулина.



Рис. 4.1.13. Фредерик Сенгер (род. 1918)
Ценность методики продемонстрировал американский биохимик Винсент дю Виньо (род. 1901). Он применил методику к простой молекуле окситоцина, гормону с восемью аминокислотами в составе. Это было проделано в 1954 г., и полученный синтетический окситоцин по свойствам в точности повторял натуральный.

В 1960 г. была разработана молекула рибонуклеазы с точной последовательностью аминокислот в этом энзиме. Молекула состояла из 124 аминокислот. Более того, фрагменты молекулы рибонуклеазы могли быть синтезированы отдельно и показали энзиматическую активность. К 1963 г. было обнаружено, что аминокислоты под номерами 12 и 13 (гистидин и метионин) были существенны для энзиматической активности. Это был шаг навстречу точному анализу функций компонентов сложных молекул.

Так была «приручена» молекула протеина.



Достарыңызбен бөлісу:
1   ...   34   35   36   37   38   39   40   41   ...   57




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет