Учебное пособие «История и методология биологии и биофизики»


Структура и функции белков



бет39/57
Дата13.07.2016
өлшемі12.91 Mb.
#196489
түріУчебное пособие
1   ...   35   36   37   38   39   40   41   42   ...   57

4.1.9. Структура и функции белков
Эти исследования со всей очевидностью по­казали, что структура белка представляет собой строго определенную аминокислотную последовательность, которая закодирована в геноме. К настоящему времени детально изучен механизм действия большого числа ферментов и определена структура многих белков.

Как известно, окончательным доказательством правильности определения той или иной структуры является ее синтез. В 1969 г. Р. Мерифилд (США) впервые осуществил химический синтез панкреатической рибонуклеазы. При помощи разработанного им метода синтеза на твердофазовом носителе Мерифилд присоединял к цепочке одну аминокислоту за другой в соответствии с той последовательностью, которая была описана Стейном и Муром. В результате он получил белок, который по своим качествам был идентичен панкреатической рибонуклеазе А. Этот синтез природного белка открывает грандиозные пер­спективы, указывая на возможность создания любых белков в соответствии с зара­нее запланированной последовательностью.

Из рентгеноструктурных исследований У. Астбери (1933) следовало, что пептидные цепи белковых молекул скручены или уложены каким-то строго определенным образом. Начиная с этого времени, многие авторы высказывали различные гипотезы о способах укладки белковых цепей, но до 1951 г. все модели оставались умозрительными построениями, не от­вечавшими экспериментальным данным. В 1951 г. Л. Полинг и Р. Кори опубликовали серию блестящих работ, в которых окончательно была сфор­мулирована теория вторичной структуры белков — теория α-спирали (рис.4.1.14). На­ряду с этим стало также известно, что белки обладают еще третичной структурой: α -спираль пептидной цепи может быть определенным образом сложена, образуя довольно компактную структуру.

В 1957 г. Дж. Кендрю и его сотрудники впервые предложили трехмерную модель структуры миоглобина. Эта модель затем уточнялась в течение нескольких лет, пока в 1961 г. не появилась итоговая работа с характеристикой пространственной струк­туры этого белка. В 1959 г. М. Перутц и сотрудники установили трехмерную структуру гемоглобина (рис.4.1.15). На эту работу исследователи затратили более 20 лет (первые рентгенограммы гемоглобина были получены Перутцем в 1937 г.). Поскольку молекула гемоглобина состоит из четырех субъединиц, то, расшифровав его организацию, Перутц тем самым впервые описал четвертичную структуру белка.



Рис. 4.1.14. Схематичное изображение α –спиральной структуры пептидной цепи

Рис. 4.1.15. Модель гемоглобина (по Перутцу)
Знание первичной структуры и макромолекулярной организации дава­ло возможность не только установить природу активных центров многих ферментов, но и полностью раскрыть механизм функционирования этих макромолекул. Использование методов электронной микроскопии помогло раскрыть принципы макромолекулярной организации таких сложных белковых образований, как нити коллагена, фибриногена, сократительных фибрилл мышц и др.
4.1.10. Изучение структуры нуклеиновых кислот
Нуклеиновые кислоты были открыты в 1869 г., швейцарским биохимиком Фридрихом Майшером (1844 — 1895). Впервые эти кислоты были обнаружены в ядре клетки. Позже, когда их обнаружили и вовне ядра, было поздно переименовывать — и они сохранили свое название.

Нуклеиновые кислоты были впервые в деталях исследованы германским биохимиком Альбрехтом Кесселем (1853 — 1927), который в 1880-х годах и позже выделил из нуклеиновых кислот составляющие их блоки. Блоки включали в себя фосфорную кислоту и сахара, которые Кесселю не удалось идентифицировать. Два идентифицированных вещества с молекулами, состоящими из двойных спиралей атомов, Кессель назвал аденином и гуанином (сокращенно А и Г). Еще их называют пуринами. Кессель также открыл три разновидности пиримидинов (с одиночным кольцом атомов, включая два атома азота), которые называются цитозин, тимин, урацил (Ц, Т и У).

Русский ученый, работавший в Америке, Фабус Арон Теодор Левин (1869 — 1940) продолжил разработки в 1920—1930-х годах. Он показал, что в молекуле нуклеиновой кислоты молекула фосфорной кислоты, молекула сахара и один из пуринов или пиримидинов формируют трехчленный блок, названный им нуклеотидом. Молекула нуклеиновой кислоты состоит из цепочек этих нуклеотидов, как протеины состоят из цепочек аминокислот. Нуклеотидная цепочка составлена из фосфорной кислоты одного из нуклеотидов, присоединенной к сахарной группе другого нуклеотида. Таким образом, строится «сахарофосфатный позвоночник», от которого отходят индивидуальные группы пуринов и пиримидинов.

Далее Левин показал, что молекулы сахаров, находящиеся в нуклеиновых кислотах, бывают двух типов: рибоза (содержащие только пять атомов углерода вместо шести, как у общеизвестных сахаров) и дезоксирибоза (как рибоза, только в молекуле на один атом кислорода меньше). Каждая молекула нуклеиновой кислоты содержит только один тип Сахаров — но не оба вместе. Таким образом, различаются два типа нуклеиновых кислот: рибоксинуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Каждая содержит пурины и пиримидины только четырех разновидностей. У ДНК в составе нет урацила и имеется А, Г, С и Т. У РНК в составе нет тимина, но есть А, Г, У (рис.4.1.16). Шотландский химик Александер Робертус Тодд (1907 — 1997) подтвердил сделанные Левиным выводы в 1940-х годах синтезом различных нуклеотидов.

Поначалу биохимики не придали должного значения нуклеиновым кислотам. В каждом отдельном случае открытия ассоциаций протеина с непротеиновыми составляющими, именно протеин считался основной частью молекулы, а непротеиновая составляющая — подчиненной. Нуклеопротеины находили в хромосомах и вирусах, однако считалось само собой разумеющимся, что нуклеино-кислотная часть является подчиненной, а протеин — самостоятельная составляющая.

Поворотный момент наступил в 1944 г., когда группа ученых под руководством американского бактериолога Освальда Теодора Звери (1877 — 1955) вела исследования со штаммами пневмококков (бактерий, вызывающих пневмонию). Некоторые из штаммов были «гладкими» (вокруг клетки у них наличествовала капсула) — с индексом S, некоторые — «шероховатыми» (без капсулы), им присваивался индекс R. Далее эксперимент пошел по следующему пути: к штамму без капсул прибавляли экстракт штамма S. Бескапсульные бактерии (R), которые, предположительно, не могли сами ранее вырабатывать капсулу, начинали самостоятельно выполнять эту задачу. Самый ошеломляющий вывод последовал при анализе ориентирующей на изменение физических свойств вытяжки (S): она содержала только нуклеиновые кислоты. Протеин не присутствовал в ней вообще. В данном случае именно нуклеиновая кислота, а не протеин была генетической субстанцией. С этого момента признано, что нуклеиновая кислота является первоочередным и ключевым веществом жизни.



Рис. 4.1.16. Строение РНК и ДНК
Начиная с 1944 г., полностью подтвержден новый взгляд на природу нуклеиновых кислот, и ярчайшим подтверждением явилось исследование природы вирусов. Было выявлено, что наружной оболочкой вируса является протеин, а внутренним содержимым — молекула нуклеиновой кислоты. Биохимику Хайнцу Франкел-Конрату удалось расчленить эти две составляющие. При этом оказалось, что протеиновая составляющая абсолютно неинфекционна — она мертва. Нуклеиновая составляющая проявила небольшую инфекционность, однако ей не хватало для проявления своих свойств протеиновой составляющей. В дальнейшем не было сомнений, что именно молекула нуклеиновой кислоты, а не протеина несет генетическую информацию.

Молекулы вирусов содержат либо только ДНК, либо только РНК, либо и то и другое. Внутри клетки ДНК находится только в генах. Поскольку гены — это блоки, несущие наследственность, значение нуклеиновых кислот сводится к значению ДНК.

После работы Звери нуклеиновые кислоты начали пристально изучать. Обнаружилось, что они представляют собой огромные молекулы. После того как выяснилось, что предыдущие методы экстракции были слишком грубыми для расщепления молекул на фрагменты, были разработаны более тонкие методики. Они показали, что молекулы нуклеиновых кислот так же велики или даже больше, чем протеиновые молекулы.

Биохимик Эрвин Чаргафф расчленил молекулы нуклеиновых кислот и подверг фрагменты сепарации методом хроматографии. Он доказал, что в молекуле ДНК число пуриновых групп равно числу пиримидиновых групп. Число же адениновых групп (пурин) обычно равно числу тиминовых групп (пиримидин), в то время как число гуаниновых групп (пурин) равно числу цитозиновых (пиримидин). Графически можно это выразить как А=Т и Г=Ц.

Британский физиолог Морис Хью Фредерик Уилкинс применил методику рентгеновской дифракции к структуре ДНК еще в 1950-х годах, и его коллеги биохимики Фрэнсис Комптон Крик и Джеймс Деви Уотсон разработали молекулярную структуру, полученную экспериментально Уилкинсом (рис.4.1.17).

Рис. 4.1.17. Крик указывает Джеймсу Уотсону на металлическую модель ДНК, которую они собрали 7 марта 1953 года в комнате 103 в Кавендишской лаборатории, Кембридж.

Полинг как раз разработал теорию спиральной структуры протеинов, и Крик с Уотсоном взяли ее на вооружение в отношении данных, полученных Уйлкинсом. Однако в данном случае спираль должна была получиться двойная (рис.4.1.18). Ученые предположили, что «остов» спирали составляют двойные сахаро-фосфатные цепочки, закручивающиеся вокруг общей оси и формирующие цилиндрическую молекулу. Пурины и пиримидины направлены внутрь, приближаясь к центру цилиндра. Чтобы сохранить диаметр цилиндра однородным, пурин (крупная составляющая) должен прилегать к пиримидину (малая составляющая) cпецифически: А прилегает к Т, а Г прилегает к Ц. Именно таким образом объясняются наблюдения и выводы Шаргаффа. Более того, в качестве ключевого шага в митозе можно теперь было взять удвоение хромосом (в качестве следствия этого факта — воспроизведение молекул вируса внутри клетки).

Рис. 4.1.18. Две правозакрученные вокруг общей оси спиральные полинуклеотидные цепи. А — аденин; G — гуанин; Т — тимин; C — цитозин.
Каждая молекула ДНК производит собственный репликат: две сахаро-фосфатные нити раскручиваются и каждая служит моделью для нового «комплекта». Где бы ни находился аденин на данной нити, молекула тимина избирается из запаса, всегда наличествующего в клетке, и наоборот. Где бы ни находилась молекула гуанина, молекула цитозина избирается в пару ей, и наоборот. Вскоре после этих перестроений там, где была недавно двойная спираль, находятся уже две подобные ей двойные спирали (рис.4.1.19).

Если молекулы ДНК производили это вдоль линии хромосомы (или вируса), то образуются две идентичные хромосомы (или два вируса). Процесс не всегда, однако, идет гладко. Новая молекула ДНК слегка отличается от своего «предка», являясь мутацией, если в ходе удвоения произошли какие-то изменения. Эту модель представили научному миру Уотсон и Крик в 1953 г. Правила Чаргаффа резко ограничили число возможных упорядоченных сочетаний оснований в предлагаемой модели ДНК; они подсказали Уотсону и Крику, что в молекуле ДНК должно быть специфическое спаривание оснований — аденина с тимином, а гуанина с цитозином. Иными словаи аденину в одной цепи ДНК всегда строго соответствует тимин в другой цепи, а гуанину в одной цепи обязательно соответствует цитозин в другой. Тем самым Уотсон и Крик впервые сформулировали исключительной важности принцип комплементарного строения ДНК, согласно которому одна цепь ДНК дополняет другую, т.е. последовательность оснований одной цепи однозначно определяет последовательность основа­ний в другой (комплементарной) цепи (рис.4.2.20). Стало очевидно, что уже в самой структуре ДНК заложена потенциальная возможность ее точного воспроизведения. Эта модель строения ДНК в настоящее время является общепризнанной. За расшифровку структуры ДНК Крику, Уотсону и Уилкинсу в 1962 г. была присуждена Нобелевская премия.



Рис. 4.1.19. Процесс репликации молекул ДНК

Рис. 4.1.20. Комплементарные цепи в молекуле ДНК
Практически в то же время началось выделение и интенсивное изу­чение ДНК-метилаз и рестрицирующих эндонуклеаз; в 1969—1975 гг. установлены нуклеотидные последовательности, узнаваемые в ДНК некоторыми из этих ферментов (X. Бойер, X. Смит, С. Линн, К. Муррей). При гидролизе разных ДНК рестрицирующим ферментом выщепляются довольно крупные фрагменты с одинаковыми «липкими» концами. Это дает возможность не только анализировать структуру генов, как это сдела­но у небольших вирусов (Д. Натане, С. Адлер, 1973—1975), но и конструировать различные геномы. С открытием этих специфических ферментов рестрикции генетическая инженерия стала ощутимой реальностью. Встроенные в небольшие плазмидные ДНК гены различного происхождения уже легко вводят в различные клетки. Так, получен новый тип биологически активных плазмид, дающих устойчивость к некоторым антибиотикам (С. Коэн, 1973), введены рибосомальные гены лягушки и дрозофилы в плазмиды кишечной палочки (Дж. Морроу, 1974; X. Бойер, Д. Хогнесс, Р. Девис, 1974—1975). Таким образом, открыты реальные пути для получения принципиально новых организмов путем введения и встраивания в их генофонд разнообразных генов. Это открытие может быть направлено на благо всего человечества.

В конце 50-х годов американский ученый П. Доти установил, что при нагревании происходит денатурация ДНК, сопровождающаяся разрывом водородных связей между парами оснований и расхождением комплементарных цепей. Этот процесс носит характер фазового перехода по типу «спираль-клубок» и напоминает плавление кристаллов. Поэтому процесс тепловой денатурации ДНК Доти назвал плавлением ДНК. При медленном охлаждении происходит ренатурация молекул, т.е. воссоединение комплементарных половинок.

Принцип ренатурации в 1960 г. был использован Дж. Мармуром и К. Шильдкраутом для определения степени «гибридизуемости» ДНК разных микроорганизмов. Впоследствии Е. Болтон и Б. Мак-Карти усовершенствовали этот прием, предложив метод так называемых ДНК-агаровых колонок. Этот метод оказался незаменимым в изучении степени гомологии нуклеотидной последовательности разных ДНК и выяснении генетического родства разных организмов. Открытая Доти денатурация ДНК в сочетании с описанной Дж. Манделем и А. Херши (1960) хроматографией на метилированном альбумине и центрифугированием в градиенте плотности (метод разработан в 1957 г. М. Мезельсоном, Ф. Сталем и Д. Виноградом) широко используется для разделения, выделения и анализа отдельных комплементарных цепей ДНК.

А.В. Благовещенский и С.Л. Иванов еще в 20-х годах предприня­ли первые в нашей стране шаги по выяснению некоторых вопросов эволюции и систематики организмов на основе сравнительного анализа их биохимического состава. Сравнительный анализ структуры белков и нуклеиновых кислот в настоящее время становится все более ощутимым подспорьем для систематиков. Этот метод позволяет не только уточнить положение отдельных видов в системе, но и заставляет по-новому взглянуть на сами принципы классификации организмов, а иногда и пересмотреть всю систему в целом, как это случилось, например, с систематикой микроорганизмов. Несомненно, и в будущем анализ структуры генома будет занимать центральное место в хемосистематике организмов.


4.1.11. Биосинтез белка
Важный сдвиг в решении проблемы биосинтеза белка связан с успехами в изучении нуклеиновых кислот. В 1941 г. Т. Касперсон (Швеция) и в 1942 г. Ж. Браше (Бельгия) обратили внимание на то, что в тканях с активным белковым синтезом содержится повышенное количество РНК. Они пришли к выводу, что рибонуклеиновые кислоты играют определяющую роль в синтезе белка. В 1953 г. Е. Гейл и Д. Фокс, как будто, получили прямые доказательства непосредственного участия РНК в биосинтезе белка.

В 1954 г. П. Замечник, Д. Литлфилд, Р. Б. Хесин-Лурье и другие обнаружили, что наиболее активное включение аминокислот происходит в богатых РНК фракциях субклеточных частиц — микросомах. П. Замечник и Э. Келлер (1953—1954) обнаружили, что включение аминокислот заметно усиливалось в присутствии надосадочной фракции в условиях регенерации АТФ. П. Сикевиц (1952) и М. Хогланд (1956) выделили из надосадочной жидкости белко­вую фракцию (рН 5 фракция), которая была ответственной за резкое стимулирование включения аминокислот в микросомах. Наряду с белками в надосадочной жидкости был обнаружен особый класс низкомолекулярных РНК, которые теперь называют транспортными РНК (тРНК). В 1958 г. Хогланд и Замечник, а также П. Берг, Р. Свит и Ф. Аллен и многие другие исследователи обнаружили, что для активации каждой аминокислоты необходим свой особый фермент, АТФ и специфическая тРНК. Стало ясно, что тРНК выполняют исключительно функцию адаптеров, т. е. приспособлений, которые находят на нуклеиновой матрице (иРНК) место соответствующей аминокислоте в формирующейся белковой молекуле. Эти исследования полностью подтвердили адапторную гипотезу Ф. Крика (1957), предусматривавшую существование в клетке полинуклеотидных адапторов, необходимых для правильного расположе­ния аминокислотных остатков синтезирующегося белка на нуклеиновой матрице. Уже много позднее французский ученый Ф. Шапвиль (1962) в лаборатории Ф. Липмана (Нобелевская премия, 1953) в США однозначно показал, что местоположение аминокислоты в синтезирующейся белковой молекуле полностью определяется той специфической тРНК, к которой она присоединена.

К 1958 г. стали известны следующие основные этапы белкового син­теза: 1) активация аминокислоты специфическим ферментом из «рН 5 фракции» в присутствии АТФ с образованием аминоациладенилата; 2) присоединение активированной аминокислоты к специфической тРНК с высвобождением аденозинмонофосфата (АМФ); 3) связывание аминоацил-тРНК (тРНК, нагруженная аминокислотой) с микросомами и включение аминокислот в белок с высвобождением тРНК. Хогланд (1958) отметил, что на последнем этапе белкового синтеза необходим гуанозинтрифосфат (ГТФ).
4.1.12. Решение проблемы аэробного дыхания
Успехи химии жиров, белков и углеводов, разработка новых специ­альных методов анализа, привлечение методов органической и физиче­ской химии для изучения биологических объектов резко усилили интерес исследователей к проблеме метаболических процессов. В распоряжении биологии оказались методы, позволившие перейти к количественным исследованиям процессов, протекающих как в целом организме и его органах, так и в тканях и отдельных клетках. В 20-х годах XX века на первом плане были проблемы энергетики живого организма и превращения веществ в процессе их обмена.

Английский биохимик Артур Хэрден (1865 — 1940) был первооткрывателем процессов метаболизма. Он изучал ферменты дрожжевой вытяжки и в 1905 г. отметил, что эта вытяжка разлагала сахар и быстро вырабатывала двуокись углерода — однако со временем скорость процесса замедлялась. Ученый предположил, что содержание ферментов падает, однако опыт показал, что это не так. При добавлении простого неорганического вещества — фосфата натрия — ферменты начинали свою работу вновь. По мере работы ферментов содержание фосфата натрия падало. Хэрден выяснял, не образуется ли при этом какой-либо органический фосфат. Он обнаружил фосфат в виде молекулы сахара, к которой присоединились две фосфатных группы. Это положило начало химии промежуточных продуктов метаболизма.

В течение долгого времени считали, что брожение и дыхание представляют собой совершенно независимые процессы. Однако уже Э. Пфлюгер во второй половине XIX в. высказывал предположение о тесной взаимосвязи этих процессов. Окончательно представления о единстве брожения и дыхания были разработаны С.П. Костычевым (1910), согласно взглядам, которого взаимосвязь между ними могла быть представлена следующей схемой:


Работы Костычева (1907, 1911) показали, что начальные фазы аэробного дыхания должны быть сопряжены с конечными фазами анаэробного рас­пада углеводов.

Немецкий биохимик Отто Фритц Мейергоф (1884 — 1951) показал, что при мускульном сокращении исчезает гликоген (крахмал), а в соответствующих количествах появляется молочная кислота. Энергия реакции появлялась без участия кислорода. Когда же мышца отдыхала, некоторое количество молочной кислоты окислялось. Энергия, развивающаяся таким образом, позволяла большой части молочной кислоты реконвертироваться в гликоген. Английский физиолог Арчибалд Вивиен Хилл (1886—1977) пришел к тому же заключению путем измерения количества тела, выделяемого сокращающейся мышцей.

Детали превращения гликогена в молочную кислоту были разработаны в 1930-х годах американскими биохимиками Карлом Фердинандом Кори (1896 – 1984) и Герти Терезой Kopи (1896 – 1957). Ученые выделили из мышечной ткани неизвестный компонент и показали, что это – первый продукт распада гликогена в мышцах. Они профильтровали каждый компонент на каждом этапе. Супругам Кори удалось не только расчленить процесс превращения гликогена в глюкозу па отдельные этапы, но и воспроизвести синтез гликогена из глюкозы in vitro. Глюкоза была последовательно превращена с помощью соот­ветствующих ферментов в глюкозо-6-фосфат, глюкозо-1-фосфат и глико­ген. Самым важным в этих исследованиях было выяснение роли АТФ (аденозинтрифосфорной кислоты) как донора фосфатных групп, а так­же открытие процесса восстановления АТФ и АДФ (аденозиндифосфата) на последней ступени (Нобелевская премия, 1947).

Итак, в XX в. было выяснено, что фосфатная группа играет важную роль в биохимии. Американский биохимик Фриц Альберт Липман (1899 — 1986) показал, что фосфатная группа встречается в молекулах в одном-двух типах размещения: низкоэнергетическом и высокоэнергетическом. Когда молекулы крахмала либо жира разлагаются, высвобождаемая энергия используется для конвертации низкоэнергетических фосфатов в высокоэнергетические. Таким образом, энергия запасается в организме в удобной химической форме. Разложение одного высокоэнергетического фосфата освобождает столько энергии, чтобы привнести различные энергопотребляющие химические изменения в организме (рис.4.1.21).



Рис. 4.1.21. Цикл молекулы АТФ в клетке, предложенный Липманом.
Этапы в разложении гликогена, требующие присутствия кислорода, стало возможно изучить при помощи новой методики, разработанной немецким биохимиком Отто Генрихом Варбургом (1883-1970). В 1923 г. он изобрел метод изготовления тонких срезов тканей (живых, абсорбирующих кислород) и сумел измерить расход ими кислорода. В малой колбе с тонкостенной U-образной трубкой он наливал на дно трубки окрашенный раствор. Углекислый газ, выработанный тканью, абсорбировался спиртовым раствором в колбе. Кислород не замещался углекислым газом, и поэтому в колбе образовывался частичный вакуум и окрашенная жидкость в трубке поднималась в колбу. По изменению уровня окрашенной жидкости, тщательно измеренному, можно было подсчитать расход кислорода.

Влияние различных компонентов по расходу ими кислорода оценивалось как участие в промежуточных продуктах метаболизма. После того как было выяснено, что фосфорные эфиры являются промежуточными продуктами распада углеводов, английский биохимик Ханс Адольф Кребс (рис.4.1.22) предложил в 1937 г. схему довольно сложного цикла превращений органических кислот, объясняющую все основные моменты их постепенного окисления и образования АТФ на узловых этапах этого процесса (Нобелевская премия, 1953).



Рис. 4.1.22. Ханс Адольф Кребс (1900—1981)
Таким образом, этот цикл, получивший название цикла трикарбоновых кислот (или цикла Кребса), связал процессы поэтапного окисления органических веществ и постепенного выделения энергии в организме. Наиболее важным в цикле Кребса был этап, связывающий процессы аэробного и анаэробного распада углеводов — декарбоксилирование пировиноградной кислоты и перенос ацетильной группы на щавелево-уксусную кислоту, являющуюся конечным продуктом окисления первого компонента цикла — лимонной кислоты (рис.4.1.23). Разработанный Кребсом цикл в дальнейшем был уточнен и подвергся гораздо большей детализации, но его основные звенья сохранили свое значение. Кребс также установил этапы образования мочи из аминокислот.


Рис. 4.1.23. Схема цикла Кребса и дыхательной цепи
На период 30—40-х годов приходится формирование основных представлений о дыхательной цепи (рис.4.1.23). После открытия Д. Кейлиным цитохромов (1925) возникла реальная возможность построения единой схемы включения кислорода в окислительные процессы. Эта схема предусматривала как активирование водорода, идею которого отстаивали еще В. И. Палладии и Г. Виланд, так и активирование кислорода, после работ А. Н. Баха развиваемое О. Варбургом. Изучение ферментов дыхательной цепи и введение понятия о переносе электронов и окислительно-восстановительном потенциале закончилось в 40-х годах построением схемы дыхательной цепи, лежащей в основе современных представлений.

В передаче водорода (электрона) от молекулы дыхательного субстрата к кислороду воздуха и в активации обоих элементов основную роль играют отдельные ферменты и ферментативные системы. В изучении дегидрогеназ и оксидаз получено много новых данных. Например, использование тяжелого изотопа кислорода 18О позволило X. Хайами и его сотрудникам в 50-х годах подтвердить опытным путем достоверность гипотезы А. Н. Баха о возможности в про­цессе дыхания прямого присоединения кислорода к дыхательному суб­страту. При этом было доказано и существование оксидаз, активирующих молекулярный кислород и делающих его способным реагировать с органическими соединениями. Хайами назвал их фенольными оксидазами, а Г. Мезон предложил эту группу ферментов называть трансферазами кислорода.

Не менее успешно шла в последние годы также разработка проблемы энергетики дыхания. В 50-х годах были получены данные, позволившие разработать основы современных представлений по данному вопросу, согласно которым процесс окисления или восстановления можно трактовать как отнятие от дыхательного субстрата и присоединение к нему электрона.

Наравне с этими знаниями по метаболизму клетки накапливались знания о тонкой структуре клетки. Были разработаны новые методики исследований. В 1930-х годах был сконструирован первый электронный микроскоп. Он давал несравнимо большую разрешающую способность, чем самые мощные обычные микроскопы.

Американский ученый Владимир Зворыкин (1888 — 1982) приспособил электронный микроскоп к исследованиям цитологии. Можно было рассматривать частицы размером с большую молекулу; в протоплазме клетки был найден комплекс малых, но высокоорганизованных структур, названных органеллами. В 1940-х годах были разработаны методики выделения органелл разного размера. Среди крупных — митохондрии. Типичная клетка печени содержит около тысячи митохондрий, каждая около пятитысячной миллиметра длиной. Их детально исследовал американский биохимик Дэвид Эзра Грин. Он выяснил, что именно в них идут реакции цикла Кребса. Итак, крошечные митохондрии и есть «электрические станции клетки».



Достарыңызбен бөлісу:
1   ...   35   36   37   38   39   40   41   42   ...   57




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет