Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землей. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.
Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.сера довольно широко распространена в природе. В земной коре ее содержание оценивается в 0,05% по массе. В природе часто встречаются значительные залежи самородной серы (обычно вблизи вулканов);
В 1890 г. Герман Фраш, предложил плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.
Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.
Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.
Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов серы. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество желтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета. Формулу пластической серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде.сера образует несколько десятков как кристаллических, так и аморфных модификаций
При нормальном давлении и температурах до 98,38°C стабильна a-модификация серы (иначе эту модификацию называют ромбической), образующая лимонно-желтые кристаллы. Выше 95,39°C стабильна b-модификация серы (так называемая моноклинная сера).При длительном выдерживании при температурах 20-95°C все модификации серы превращаются в a-серу.
Температура плавления ромбической a-серы 112,8°С, а моноклинной b-серы 119,3°С. И в том, и в другом случае образуется легкоподвижная желтая жидкость, которая при температуре около 160°С темнеет; ее вязкость повышается, и при температуре выше 200°С расплавленная сера становится темно-коричневой и вязкой, как смола. Это объясняется тем, что сначала в расплаве разрушаются кольцевые молекулы S8. Возникающие фрагменты объединяются друг с другом с образованием длинных цепей S из нескольких сотен тысяч атомов. Дальнейшее нагревание расплавленной серы (выше температуры 250°C) ведет к частичному разрыву цепей, и жидкость снова становится более подвижной. Около 190°C ее вязкость примерно в 9000 раз больше, чем при 160°C.
При температуре 444,6°C расплавленная сера закипает.
Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.
В воде сера практически нерастворима. Некоторые ее модификации растворяются в органических жидкостях (толуоле, бензоле) и особенно хорошо — в сероуглероде CS2 и жидком аммиаке NH3.
При комнатной температуре сера реагирует со фтором и хлором, проявляя восстановительные свойства:
S + 3F2 = SF6
S + Cl2 = SCl2
С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:
S + 6HNO3(конц.) = H2SO4 + 6NO2 ^ + 2H2O
S + 2H2SO4(конц.) = 3SO2 ^ + 2H2O
На воздухе сера горит, образуя сернистый ангидрид — бесцветный газ с резким запахом:
S + O2 = SO2
С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO[2].
При взаимодействии с металлами образует сульфиды. 2Na + S = Na2S
При добавлении к этим сульфидам серы образуются полисульфиды: Na2S + S = Na2S2
При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом:
C + 2S = CS2 (сероуглерод)
Сера при нагревании растворяется в щёлочах — реакция диспропорционирования
3S + 6KOH = K2SO3 + 2K2S + 3H2O
Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углем, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.
около половины производимой серы используется на производство серной кислоты, около 25% расходуется для получения сульфитов, 10-15% — для борьбы с вредителями сельскохозяйственных культур (главным образом винограда и хлопчатника) (наибольшее значение здесь имеет раствор медного купороса CuSO4·5H2O), около 10% используется резиновой промышленностью для вулканизации резины. Серу применяют при производстве красителей и пигментов, взрывчатых веществ (она до сих пор входит в состав пороха), искусственных волокон, люминофоров. Серу используют при производстве спичек, так как она входит в состав, из которого изготовляют головки спичек. Серу до сих пор содержат некоторые мази, которыми лечат заболевания кожи.
13//13. Оксиды серы. Получение и свойства. Описание геометрического строения
молекул оксидов методом Гиллеспи. Взаимодействие оксидов серы с во-
дой. Свойства сернистой и серной кислот. Сульфиты, сульфаты.
Оксид серы IV
SO2 (сернистый ангидрид; сернистый газ)
Физические свойства
Бесцветный газ с резким запахом; хорошо растворим в воде (в 1V H2O растворяется 40V SO2 при н.у.); t°пл. = -75,5°C; t°кип. = -10°С.
Обесцвечивает многие красители, убивает микроорганизмы.
Получение
При сжигании серы в кислороде:
S + O2 ® SO2
Окислением сульфидов:
4FeS2 + 11O2 ® 2Fe2O3 + 8SO2
Обработкой солей сернистой кислоты минеральными кислотами:
Na2SO3 + 2HCl ® 2NaCl + SO2 + H2O
При окислении металлов концентрированной серной кислотой:
Cu + 2H2SO4(конц) ® CuSO4 + SO2 + 2H2O
Химические свойства
Сернистый ангидрид - кислотный оксид. При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)
SO2 + H2O « H2SO3 ¬K1® H+ + HSO3- ¬K2® 2H+ + SO32-
H2SO3 образует два ряда солей - средние (сульфиты) и кислые (бисульфиты, гидросульфиты).
Ba(OH)2 + SO2 ® BaSO3?(сульфит бария) + H2O
Ba(OH)2 + 2SO2 ® Ba(HSO3)2(гидросульфит бария)
Реакции окисления (S+4 – 2e ® S+6)
SO2 + Br2 + 2H2O ® H2SO4 + 2HBr
5SO2 + 2KMnO4 + 2H2O ® K2SO4 + 2MnSO4 + 2H2SO4
Водные растворы сульфитов щелочных металлов окисляются на воздухе:
2Na2SO3 + O2 ® 2Na2SO4; 2SO32- + O2 ® 2SO42-
Реакции восстановления (S+4 + 4e ® S0)
SO2 + С –t°® S + СO2
SO2 + 2H2S ® 3S + 2H2O
Оксид серы VI
SO3 (серный ангидрид)
Физические свойства
Бесцветная летучая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе "дымит", сильно поглощает влагу (хранят в запаянных сосудах).
SO3 + H2O ® H2SO4
Твердый SO3 существует в трех модификациях. SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом.
Получение
1)2SO2 + O2 ¬кат;450°C® 2SO3
2) Fe2(SO4)3 –t°® Fe2O3 + 3SO3
Химические свойства
Серный ангидрид - кислотный оксид. При растворении в воде дает сильную двухосновную серную кислоту:
SO3 + H2O ® H2SO4 « H+ + HSO4- « 2H+ + SO42-
H2SO4 образует два ряда солей - средние (сульфаты) и кислые (гидросульфаты):
2NaOH + SO3 ® Na2SO4 + H2O
NaOH + SO3 ® NaHSO4
SO3 - сильный окислитель.
Н2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха.Серная кислота — довольно сильный окислитель, особенно при нагревании и в концентрированном виде; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, S — до SO2, окисляет многие металлы (Cu, Hg и др.). При этом серная кислота восстанавливается до SO?, а наиболее сильными восстановителями — до S и H?S. Концентрированная H?SO? частично восстанавливается H?. Из-за чего не может применяться для его сушки. Разбавленная H?SO? взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H?SO? нехарактерны. Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.
H2SO3 — неустойчивая двухосновная кислота средней силы, существует лишь в разбавленных водных растворах (в свободном состоянии не выделена):
SO2 + H2O ? H2SO3 ? H+ + HSO3- ? 2H+ + SO32-.
Кислота средней силы:
H2SO3 <=> H+ + HSO3-, KI = 2·10-2
HSO3- <=> H+ + SO32-, KII = 6·10-8
Растворы H2SO3 всегда имеют резкий специфический запах (похожий на запах зажигающейся спички), обусловленный наличием химически не связанного водой SO2.
Двухосновная кислота, образует два ряда солей: кислые — гидросульфиты (в недостатке щёлочи):
H2SO3 + NaOH = NaHSO3 + H2O
и средние — сульфиты (в избытке щёлочи):
H2SO3+2NaOH=Na2SO3+2H2O
Как и сернистый газ, сернистая кислота и её соли являются сильными восстановителями:
H2SO3+Br2+H2O=H2SO4+2HBr
При взаимодействии с ещё более сильными восстановителями может играть роль окислителя:
H2SO3+2H2S=3S+3H2O
Качественная реакция на сульфит-ионы — обесцвечивание раствора перманганата калия:
5SO3 + 6H+2MnO4=5SO4+2Mn+3H2O
Сульфиты — соли сернистой кислоты H2SO3.Существует два ряда сульфитов: средние (нормальные) общей формулы M2SO3 и кислые (гидросульфиты) общей формулы MHSO3 (М — одновалентный металл).
Средние, за исключением сульфитов щелочных металлов и аммония, малорастворимы в воде, растворяются в присутствии SO2. Из кислых в свободном состоянии выделены лишь гидросульфиты щелочных металлов. Для сульфитов в водном растворе характерны окисление до сульфатов и восстановление до тиосульфатов M2S2O3.
Реакции с повышением степени окисления серы от +4 до +6, например:
Na2SО3 + Сl2 + Н2О = Nа2SО4 + 2 НСl.
Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами. Так, при кипячении раствора с мелкоизмельченной серой образуется тиосульфат (иногда называют гипосульфит) натрия:
Na2SO3 + S > Na2S2O3.
Таким образом, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства
Получают взаимодействием SO2 с гидроокисями или карбонатами соответствующих металлов в водной среде.
Применяются главным образом гидросульфиты — в текстильной промышленности при крашении и печатании (KHSO3, NaHSO3), в бумажной промышленности при получении целлюлозы из древесины [Ca(HSO3)2], в фотографии, в органическом синтезе.
Сульфаты — сернокислые соли, соли серной кислоты H2SO4. Имеются два ряда С.— средние (нормальные) общей формулы Mg2SO4 и кислые (Гидросульфаты) — MHSO4, где М — одновалентный металл.
С. — кристаллические вещества, бесцветные (если катион бесцветен), в большинстве случаев хорошо растворимые в воде. Малорастворимые С. встречаются в виде минералов: гипса CaSO4?2H2O, целестина SrSO4, англезита PbSO4 и др. Практически нерастворимы барит BaSO4 и RaSO4. Кислые С. выделены в твёрдом состоянии лишь для наиболее активных металлов — Na, К и др. Они хорошо растворимы в воде, легко плавятся. Нормальные С. можно получить растворением металлов в H2SO4, действием H2SO4 на окиси, гидроокиси, карбонаты металлов и др. Гидросульфаты получают нагреванием нормальных С. с концентрированной H2SO4:
K2SO4 + H2SO4 = 2KHSO4.
Кристаллогидраты С. некоторых тяжёлых металлов называются купоросами .
Широкое применение во многих отраслях промышленности находят сульфаты природные.
14//14. Сероводород. Получение и свойства сероводорода. Сульфиды металлов.
Растворимость сульфидов в воде и кислотах. Полисульфиды.
H2S — бесцветный газ с неприятным запахом и сладковатым вкусом. Плохо растворим в воде, хорошо — в этаноле. При больших концентрациях разъедает металл. Взрывчатая смесь с воздухом 4,5 - 45%.
Термически неустойчив (при температурах больше 400 °C разлагается на простые вещества — S и H2), ядовитый (вдыхание воздуха с его примесью вызывает головокружение, головную боль, тошноту, а со значительным содержанием приводит к коме, судорогам, отёку лёгких и даже к летальному исходу), газ, тяжелее воздуха с неприятным запахом тухлых яиц. Молекула сероводорода имеет угловую форму, поэтому она полярна (? = 0,34·10-29 Кл·м). В отличие от молекул воды, молекулы сероводорода не образуют прочных водородных связей, поэтому H2S — газ. Насыщенный водный раствор (сероводородная вода) H2S является очень слабой сероводородной кислотой.Собственная ионизация жидкого сероводорода ничтожно мала.
В воде сероводород мало растворим, водный раствор H2S является очень слабой кислотой:
H2S > HS? + H+
Ka = 6.9?10?7 моль/л; pKa = 6.89.
С основаниями реагирует:
H2S + 2NaOH = Na2S + 2H2O (обычная соль, при избытке NaOH)
H2S + NaOH = NaHS + H2O (кислая соль, при отношении 1:1)
Сероводород — сильный восстановитель. На воздухе он горит синим пламенем:
2H2S + ЗО2 = 2Н2О + 2SO2
при недостатке кислорода:
2H2S + O2 = 2S + 2H2O
(на этой реакции основан промышленный способ получения серы).
Сероводород реагирует также со многими другими окислителями, при его окислении в растворах образуется свободная сера или SO42-, например:
3H2S + 4HClO3 = 3H2SO4 + 4HCl
2H2S + SO2 = 2Н2О + 3S
H2S + I2 = 2HI + Ы
Полученире
Взаимодействие разбавленных кислот на сульфиды:
FeS + 2HCl = FeCl2+H2S
Взаимодействие сульфида алюминия с водой (эта реакция отличается чистотой полученного сероводорода):
Al2SO3+H2O=2Al(OH)3+H2S
Соли сероводородной кислоты называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, бария и аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок при введении в растворы солей металлов раствора сульфида аммония (NH4)2S. Многие сульфиды ярко окрашены.
Для щелочных и щелочноземельных металлов известны также гидросульфиды M+HS и M2+(HS)?. Гидросульфиды Са?+ и Sr2+ очень нестойки. Являясь солями слабой кислоты, растворимые сульфиды подвергаются гидролизу. Гидролиз сульфидов, содержащих металлы в высоких степенях окисления (Al?S3, Cr2S3 и др.) часто проходит необратимо.
Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь).
Полисульфиды — многосернистые соединения общей формулы Me2Sn, например, полисульфид аммония (NH4)2Sn. В структуре этих соединений имеются цепи атомов —S—S(n)—S.
Известны многочисленные полисульфиды водорода, общей формулы H2Sn, где n меняется от 2 до 23. Это желтые маслянистые жидкости, по мере увеличения содержания серы, окраска изменяется от желтой до красной.
Полисульфиды щелочных металлов образуются при взаимодействии элементарной серы с соответствующим сульфидом (при сплавлении или в концентрированном растворе):
Na2S + 2 S(pомб.) > Na2S3
Na2S + 4 S > Na2S5
Na2S + 5 S > Na2S6
Na2S + 6 S > Na2S7
Na2S + 7 S > Na2S8
Обычно в молекулах полисульфидов число атомов серы изменяется от 2 до 8, известно лишь одно соединение с n = 9, это (NH4)2S9. Наиболее распространены полисульфиды с двумя атомами серы. Эти полисульфиды можно рассматривать как аналоги соответствующих пероксидов. Для полисульфидов характерны окислительные и восстановительные свойства:
(NH4)2S2 + Sn+2S > (NH4)2Sn+4S3
4FeS2 +11O2 > 2Fе2O3 + 8SO2
При взаимодействии с кислотами разлагаются с выделением серы и H2S.
Полисульфиды используют в аналитической химии для разделения элементов, в производстве некоторых каучуков и др. Смесь полисульфидов натрия (в старину ее называли «серная печень») с давних времен применяли в кожевенной промышленности для удаления волоса.
15//15. Общая характеристика элементов 15 группы. Строение, физические и хи-
мические свойства простых веществ. Полиморфные модификации фосфо-
ра. Выбор стандартного состояния фосфора.
N P As Sb Bi
По пять электронов на s р орбиталях внешнего энерг. уровня.
Радиусы атома от азота к висмуту возрастают, что приводит к паднию прочности в соеднениях. Энергия ионизации и электроотрицатльнбость в ряду N P As Sb Bi уменьшается,
усидиваются металлические свойства. Степени окисления (-3) - (+5)
N -3,0,1,2,3,4,5
P As Sb -3 0 3 5
Bi 0 3 5
Св-ва Азота
При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде
В жидком состоянии (темп. кипения -195,8 °C) – бесцветная, подвижная, как вода, жидкость. При контакте с воздухом поглощает из него кислород.
При -209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.
Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой, фосфором, мышьяком и с рядом металлов, например, со ртутью.
Вследствие большой прочности молекулы азота многие его соединения эндотермичны, энтальпия их образования отрицательна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.
Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:
6Li + N2 > 2Li3N,
при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:
3Mg + N2 > Mg3N2,
2B + N2 >2BN,
Св-ва фосфора
Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества — белую, красную, черную и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений — также металлическая форма. Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств
Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.
Св-ва Мышьяка
Представляет собой хрупкий полуметалл стального цвета.
Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.
Св-ва сурьмы
Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плостность 6,68 г/см?. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью
Св-ва Висмута
В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90% всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.
про станд сост. не нашла(
16//16. Водородные соединения элементов 15 группы. Закономерность изменения
физических и химических свойств. Электронное (МО) и геометрическое
строение молекул.
В водородных соединениях - (-3)/ Обычно газообразные вещества с резким запахом.
Температуры кипения и плавления растут от фосфина к стиину. Аммиак - эксклюзивный, сука. Высокие температуры кипения и плавления, легко сжижается.
Эти свойства объясняются повышенной энергией взаимодействия между его молекулами вследствие образования водородных связей.
По мере увеличения размера атома элемента прочность сязи убывает, что приводит к понижению термической устойчивости.
Процесс разложения - с обр. простых вв
2NH3=N2+3H2
Температура разложения падает с уменьшением устойчивости водородных молекул.
Аммиак вз со многими слабыми кислотами, фосфин - только с самыми сильными. Арсин осноные свойства не проявляют при нормальных условиях, а у стибина не онаружены
Являются сильными восстановителями, восст. активность растёт от аммиака к стибину
ну тут та же хня^_^
17. Получение, применение, физические и химические свойства аммиака. Опи-
сание химической связи в молекуле аммиака методом молекулярных орби-
талей. Протолитические равновесия в водном растворе аммиака. Соли ам-
мония.
NH3, нитрид водорода, при нормальных условиях — бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. Растворимость NH3 в воде чрезвычайно велика — около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды.
Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине. Три неспаренных p-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N-H), четвёртая пара внешних электронов является неподелённой, она может образовать донорно-акцепторную связь с ионом водорода, образуя ион аммония NH4. Благодаря тому, что не связывающее двухэлектронное облако строго ориентировано в пространстве, молекула аммиака обладает высокой полярностью, что приводит к его хорошей растворимости в воде.
В жидком аммиаке молекулы связаны между собой водородными связями. Сравнение физических свойств жидкого аммиака с водой показывает, что аммиак имеет более низкие температуры кипения(tкип. —33,35°С) и плавления(tпл. —77,70°С), а также более низкую плотность, вязкость (вязкость жидкого аммиака в 7 раз меньше вязкости воды), проводимость и диэлектрическую проницаемость. Это в некоторой степени объясняется тем, что прочность этих связей в жидком аммиаке существенно ниже, чем у воды, а так же тем, что в молекуле аммиака имеется лишь одна пара неподелённых электронов, в отличие от двух пар в молекуле воды, что не дает возможность образовывать разветвлённую сеть водородных связей между несколькими молекулами.
Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как нуклеофил или комплексообразователь. Так, он присоединяет протон, образуя ион аммония:
Достарыңызбен бөлісу: |