Рис. 33. Величина теплопроводности для некоторых сухих грунтов относительно воды
В скальных грунтах: гранитах, базальтах, известняках, песчаниках и других — проводимость тепла оказывается более высокой. Так, в граните она примерно в 3 — 7 раз, а в базальте в 2 — 5 раз выше, чем в воде.
Пожалуй, «чемпион» по теплопроводности — плотные метаморфические породы. Так, кварцит, состоящий из мелкозернистых кристаллов кварца, может почти в 11 раз лучше проводить тепло, чем вода.
Положительным свойством грунтов является меньшая способность к проведению тепла сверху вниз (по вертикали) по сравнению с горизонтальным направлением (вдоль пласта), что имеет большое значение при различных природных процессах.
Прежде всего от этого свойства зависит глубина зимнего промерзания массивов. Она колеблется от десятков сантиметров на юге до 3 м на севере. Вместе с тем в одном климатическом районе величина зоны промерзания может значительно изменяться (в случае различной теплопроводности грунтов).
Способность к проведению тепла в некоторой мере определяет глубину проникновения выветривания и процессов образования почв, связанных с колебаниями температуры.
Наконец, от теплопроводности вечномерзлых грунтов в какой-то степени зависит взаимодействие их с фундаментами сооружений.
При использовании грунтов для теплоизоляционных целей важна еще одна характеристика — способность грунтов поглощать тепло. Иначе говоря, теплоемкость. Из физики известно, что вода при 20 °С обладает довольно высокой теплоемкостью. Если сравнить с этой величиной способность поглощать тепло различными грунтами, то окажется, что торф имеет в 2, гранит, глина и песок в 5, а гипс в 4 раза меньшую теплоемкость. При этом чем выше их влажность, тем больше и теплоемкость. Если в грунтах увеличивается количество воздуха, который поглощает тепло в 3 раза меньше воды, то теплоемкость грунтов уменьшается. Однако в связи с малым содержанием воздуха его влияние не учитывается.
Определение этого показателя имеет важное значение для практики.
Остановимся еще на одной необычной способности грунта — становиться при смачивании источником тепла.
Оказывается, если увлажнять сухой глинистый грунт, происходит выделение теплоты смачивания. Она появляется в результате перехода воды в грунте в связанное состояние (точнее, в прочносвя-занное).
В песках теплота смачивания не выше 4 Дж на 1 г грунта. Но зато в тяжелых глинах, богатых тонкими частицами, выделяется. 32 — 100 Дж из такого же количества образца.
Разница в количестве образующегося тепла связана с минеральным составом грунтов. Больше всего его выделяют монтмориллони-товые глины, а меньше всего — каолинитовые. Также значительна роль и обменных катионов. Если в породе содержится магний или кальций, то тепловыделение будет большим, чем при содержании калия и натрия.
Но вот обнаружилось, что в сухих лёссовых грунтах при увлажнении выделяется теплота, не только связанная со смачиванием, но и обусловленная разрушением структуры. Причем величина последней часто оказывается преобладающей.
Так грунт становится источником тепла.
Что может быть общего между песком и электричеством? Кажется, ничего. В грунтах как будто нет электрического тока. Однако вспомним блуждающие токи — ведь они движутся по грунтовым мас-. сивам. Значит, грунты имеют определенные электрические характеристики, которые можно использовать.
Гидрогеологи, например, при помощи измерения электропроводности массива могут установить глубину залегания грунтовых вод; опасность коррозионного разрушения газопровода определяется по величине электрического сопротивления грунтов.
Геофизики исследуют многие свойства и строение массива, используя данные об электрических особенностях грунтов. Электрическое сопротивление, электропроводность и другие характеристики пород необходимы им при расчетах заземлений радио- и электростанций, физических приборов и т. д.
Вот и получается, что все эти электрические показатели имеют большое практическое значение.
Среди электрических характеристик грунтов, пожалуй, самая важная — удельное электросопротивление.
Давайте вспомним, что грунт представляет собой сочетание трех составляющих: твердой (или минеральной), жидкой и газообразной. Не будем учитывать последнюю, так как электросопротивление воздуха крайне велико. Остаются минеральная и жидкая части.
Среди минералов есть такие, которые обладают очень высоким сопротивлением. Это слюды, кварц, полевые шпаты и др. Они являются хорошими изоляторами. Но есть и минералы — прекрасные проводники. К ним относятся золото, серебро, пирит и др. Остальные минералы занимают промежуточное место.
Таким образом, электросопротивление грунтов прежде всего зависит от состава минералов.
Не меньшее значение имеет и жидкая часть. Электросопротивление влажных и водонасыщенных грунтов всегда гораздо меньше, чем сухих. Известно, что в порах грунта находится не дистиллированная вода, а растворы, содержащие различные соли (ионы).
Состав и количество последних и определяют электросопротивление этих растворов. Если взять сухие глины, то их электросопротивление оказывается весьма значительным, а присутствие в естественных условиях в глинистых грунтах воды делает их более электропроводными.
Есть и другие факторы, от которых зависит эта физическая характеристика грунтов. К ним относятся пористость, температура, появление в грунтах льда и т. д.
Интересно, что после возведения зданий электросопротивление грунтов, лежащих под фундаментами, падает.
Все сказанное позволяет легко понять, что величина электросопротивления не является постоянной. Она максимальна у сухих скальных грунтов и минимальна у водонасыщенных песков.
Бурная р. Кубань. Стоит теплая, летняя погода. В горах усилилось таяние ледников. С каждым часом в реке прибывает вода. Уровень катастрофически растет. Мутный поток яростно лижет лёссовый берег. Время от времени в воду обрушиваются подпиленные блоки грунта. Струи с силой ударяют в берег, отрывая от него частицы, комки, целые блоки.
Но вот уровень реки начинает падать. За два-три дня неистовства потока высокий берег, сложенный лёссовыми грунтами, отступил на 10 м.
Другим классическим примером может служить р. Амударья, которая в течение года на отдельных участках «съедает» до 400 м берега.
Рис. 34. Скорость потоков воды и размываемые ими грунты
Еще более впечатляющим является образование оврагов. Неудачно проведенная борозда вниз по склону — и через год-два дождевые потоки образуют в этом месте глубокий овраг.
Разрушающую деятельность воды на каждом шагу можно видеть на берегах морей. Мощные удары штормовых волн разбивают и крошат грунты, слагающие береговые откосы.
Большие неприятности доставляет размыв берегов жителям Великобритании. Так, в графстве Суссекс в отдельные годы берега отступают в глубь острова до 6 м.
Давайте теперь взглянем «в корень» этого явления. Не вызывает сомнения, что здесь действуют два фактора: энергия движущейся воды и способность грунтовых массивов к размыву. Изучением этой способности грунтов ученые занимаются уже давно. В последнее время она оценивается двумя показателями. Первый показатель — это скорость, при которой начинается отрыв частиц от массива. Нетрудно догадаться, что наиболее размываемыми должны быть илы. Их разрушение начинается при скоростях потока от 0,2 до 0,5 м/с. Более устойчивы пески. Они размываются в зависимости от крупности составляющих их песчинок при скоростях движения воды от 0,25 до 0,9 м/с.
Глинистые грунты очень разнообразны по составу и структуре, поэтому они ведут себя по-разному. Например, лёссы начинают разрушаться при скоростях 0,3 — 0,9 м/с, а моренные суглинки (образованные ледниками) — от 0,6 — 1,1 м/с. Менее всего способны к размыву глины и обломочные грунты (гравий, галька). Их разрушение возникает при скоростях 1,0 — 2,5 м/с (рис. 34).
Оказалось, что чем влажнее глинистые грунты, тем медленнее они размываются. Эту особенность стали использовать гидротехники для борьбы с размывом. Каналы, которые строятся в глинистых грунтах, предварительно замачиваются. Этот процесс осуществляется пропуском через только что построенный канал воды с малой скоростью.
Скальные грунты практически не разрушаются водой (если они только не состоят из водорастворимых минералов).
Большую роль в возникновении размыва играет способность грунтов к размоканию. Ясно, чем быстрее грунт размокает, распадаясь при этом на мелкие частицы, тем при меньших скоростях будет начинаться размыв.
Вторым показателем, который применяет грунтовед для прогноза размываемости грунтов, служит их способность к разрушению водным потоком. Она представляет собой величину слоя образца, который размывается при данной скорости за определенное время. Показателем размываемости является толщина смываемого слоя в миллиметрах в течение минуты при определенной скорости потока. Легко понять, что чем больше интенсивность подобного размыва, тем быстрее такой грунт будет разрушаться рекой или морскими волнами.
Предрасположенность рыхлых грунтов к размыву доставляет много неприятностей строителям каналов оросительных систем. Действительно, с одной стороны, к орошаемым полям нужно подать как можно больше воды. Для этого требуются максимальные скорости ее движения. Но они ограничиваются величинами, при которых стенки и дно каналов начинают размываться. Превышение этих критических скоростей чревато крупными неприятностями. Как быть? Есть два выхода из этого положения: либо упрочнить стенки и дно канала, либо просто одеть их бетоном, который не поддается размыву водой.
С другой стороны, возникает вопрос: как практически определить размывающую скорость и способность к размыву?
Нужно сказать, что эта задача оказалась достаточно сложной. Самое лучшее ее решение — организация наблюдения за размывом грунтов на опытных участках каналов. Но это длительный и дорогостоящий путь. Поэтому чаще всего грунтовед судит о размывающих скоростях и интенсивности процесса по результатам испытаний образцов грунтов в специальных лотках. В эти лотки помещаются монолиты, которые подвергаются действию потока. Его скорость постепенно увеличивается до момента начала размыва.
Кроме того, накопился большой опыт наблюдений за размывом грунтов берегов рек, каналов и морских побережий. Он позволяет прогнозировать скорости разрушения пород.
Ц. Е. Мирцхулава, используя ЭВМ, предложил математический метод оценки размывающей скорости по целому комплексу других свойств грунтов. Однако этот метод пока имеет больше теоретическое, чем практическое, значение.
На улице идет дождь. Прохожие обходят большие и маленькие лужи. Детвора с криками носится босиком по воде. Но вот дождь закончился. Выглянуло солнце. Через пару часов, а то и раньше все следы дождя исчезли. Только в некоторых местах еще поблескивают жалкие остатки дождевой воды, накопившиеся в углублениях поверхности. Куда же исчезла основная масса воды? На этот вопрос ответить не так-то просто. Конечно, в городе устроена дождевая канализация, по которой вода устремляется в реки и моря. С асфальта она под жаркими лучами солнца также быстро испаряется.. Но, например, за городом нет канализации, да и асфальт только на автомагистралях, а вода во время дождя даже не успевает образовать лужи. Дождь идет и идет, а луж нет.
В чем же дело? Почему на одних участках луж нет, а на других есть?
Оказывается, все дело в водопроницаемости грунтов.
Вспомним морской песчаный пляж. Набежит лениво волна, ее поток взберется по уклону, а вместо того, чтобы откатиться обратно, большая часть воды на наших глазах буквально проваливается в песок.
Мы уже знаем, что пески имеют крупные поры (размером более 0,01 мм), а это превосходный путь для движения воды. Поэтому песок, подобно ситу, не может удержать жидкости. Сложными путями она проникает все глубже и глубже (ученые говорят «инфильт-руется»), пока не встретит другой грунт, не пропускающий воду, например глину. Дальше потоку пути нет. Глина почти не содержит крупных пор, а ее тонкая пористость не пропускает свободную воду.
Конечно, очень медленно вода просачивается и в глину, но это движение происходит совершенно по-иному.
Специалисты способность грунтов пропускать воду называют водопроницаемостью. Ее оценивают показателем, получившим название коэффициента фильтрации kф.
Водопроницаемость — очень важная характеристика грунтов. Она прежде всего зависит от содержания крупных пор. J Самый проницаемый для воды — крупноблочный грунт, состоящий из валунов, щебня, галечников и гравия. Вода течет по крупным трещинам скальных пород (граниты, гнейсы и др.), как по водопроводным трубам. Скорость ее движения, конечно, меньше, чем в поверхностных потоках. Но все же за сутки она может пробегать километровые расстояния.
Много больших пор и в крупнозернистых песках, содержащих зерна размером 0,5 — 2 мм, а иногда и гравийные частицы диаметром 2 — 40 мм. В таких грунтах водопроницаемость оказывается довольно большой. Их коэффициент фильтрации колеблется от 100 до 600 м/сут. Это означает, что при уклоне потока 45° вода может пробежать за сутки 100 — 600 м.
Рис, 35. За 100 с в разных грунтах вода просачивается на различную глубину
Чем меньше песчинка, тем тоньше становятся поры. Движение воды в грунтах замедляется. Так, в песках, состоящих из средних по размеру частиц (диаметром 0,25 — 0,5 мм), величина коэффициента фильтрации падает до 10 — 50 м/сут (при том же уклоне потока 45°). Если пески мелкие (диаметр частиц менее 0,25 мм), то вода движется совсем медленно — от 0,5 до 5 м/сут.
Рассмотрим глинистые грунты, состоящие в значительной степени из частиц размером менее 0,002 мм. Поры в таких глинах также очень малы (меньше 0,005 мм), поэтому движения свободной воды (или фильтрации) не происходит. Большая часть тонких пор глин заполнена в природе связанной водой. Когда в эти грунты поступают новые молекулы Н2О, то пленки, расположенные ближе к источнику, становятся толще. В этом случае начинается перемещение влаги от более крупных пленок к более тонким. Возникает так называемый пленочный ток воды.
Кроме того, в глинистых грунтах возможен осмотический ток влаги. Он возникает тогда, когда в различных участках глины присутствуют растворы с разной концентрацией солей. В этом случае ток влаги направлен к участкам с менее солоноватыми водами.
Наконец, на движение воды в подобных грунтах оказывает значительное влияние изменение температуры, особенно ее перепады в различных частях массива.
Несмотря на существование в глинах всех этих видов движения влаги, ее скорость оказывается в тысячи раз медленнее, чем фильтрация свободной воды.
В лёссовых грунтах, как мы уже знаем, содержится много крупных пор. Вот поэтому они обладают довольно хорошей водопроницаемостью, которая достигает 2 м/сут.
На рис. 35 показаны сравнительные скорости фильтрации воды в различных грунтах.
Теперь понятно, что когда идет дождь, то на хорошо фильтрующихся грунтах вода не накапливается, а на водонепроницаемых образуются лужи. Вода, инфильтруясь в песчаные пласты и достигая поверхности глин, дальше начинает двигаться вниз по ее уклону. Так возникает поток грунтовой воды.
Нетрудно понять, что водопроницаемость является важным свойством грунтов. Ее величину определяют либо в лаборатории на специальных фильтрационных приборах, либо в полевых условиях. В последнем случае о величине коэффициента фильтрации сухих грунтов судят по скорости впитывания воды, наливаемой в специальные стандартные кольца. При оценке водопроницаемости водонасыщен-ных грунтовых массивов используется метод откачки. Он заключается в определении коэффициента фильтрации по количеству извлекаемой воды при определенном понижении уровня — чем больше откачивается воды, тем значительнее водопроницаемость грунтов.
Знать величину водопроницаемости необходимо при создании водохранилищ, искусственных морей, плотин, каналов, оросительных систем и во многих других случаях. Она позволяет рассчитать водопо-тери из этих сооружений.
Когда говорят о скале, нам всегда представляется что-то очень прочное и массивное. Сказать, что этот человек «как скала», — значит охарактеризовать его как твердого и непоколебимого.
Действительно ли скальные грунты таковы?
На этот вопрос сразу и не ответишь. С одной стороны, нам привычны монолитность и высокая прочность гранита или базальта. Для того чтобы их раздавить, необходимо применить очень большое давление в 400 — 500 МП а.
А с другой стороны, существуют известняки, мергели и песчаники, прочность которых может опускаться до 1 МПа и даже менее.
Отчего же зависит прочность скалы?
Прежде всего она связана с особым минеральным составом пород. Например, тот же базальт состоит в основном из очень прочных минералов силикатов: полевых шпатов, оливина, пироксена. Все они отличаются высокой механической крепостью. Поэтому и базальт оказывается весьма прочным.
На качество скальных пород влияет также их строение. Базальты, например, в которых все минеральные зерна оказываются очень мелкими (диаметр частиц менее 1 мм), будут и наиболее прочными (400 — 500 МПа). Но встречаются и еилънопористые базальты с прочностью меньше 20 МПа и даже 15 МПа. Вот и получается, что мы имеем один и тот же скальный грунт, а его прочность отличается в 20 раз.
Было бы очень просто, если бы породы были массивными. Но это, к сожалению, не так. Все они разбиты трещинами разного происхождения, размера и направления. Порода в небольшом куске может быть очень прочная, но в массиве многочисленные трещины будут ее значительно ослаблять. Так, в базальтовом массиве встречаются трещины, ширина которых достигает 120 мм.
Возьмем еще другой пример — гранит. Фразеологизмы «твердый как гранит», «он как гранитная скала» заставляют представлять себе эту породу как нечто очень прочное. Действительно, гранит состоит из прочнейших минералов: полевого шпата, кварца и небольшого количества слюды или роговой обманки. При раздавливании кубиков этой породы на прессах приходится прилагать давление 150 — 250 МПа. Однако и в этом случае прочность гранита зависит от его структуры: чем он более мелкозернист, тем большее давление необходимо для его раздавливания.
Многие, наверно, слышали о граните «рапакиви». Этим гранитом облицованы здания, сложены набережные Невы в Ленинграде. В переводе с финского языка это слово означает «гнилой камень». Не правда ли, странно? Однако такое название не случайно и связано с тем, что эта порода состоит из крупных кристаллов слагающих ее минералов. Когда днем поверхность рапакнви нагревается солнцем, то кристаллы неравномерно расширяются в разные стороны. Поэтому в породе и возникают сильные напряжения. Затем ночью, когда воздух охлаждается, происходит обратный процесс уменьшения размеров зерен. И такие движения идут многие годы, десятилетия и столетия. В результате этих колебаний между кристаллами минералов постепенно появляются тонкие трещины. В них попадает вода. Замерзая в зимнее время, она еще более расширяет образовавшиеся трещины. Постепенно гранит превращается в трещиноватую породу, в которой связи между минералами либо совсем исчезают, либо становятся очень малыми.
Если ударить молотком по такому граниту, то он рассыпается на отдельные куски. Вот отсюда и произошло название «гнилой камень».
Минералы, слагающие скальные породы, постепенно разрушаются водой, температурными колебаниями, корнями растений, микроорганизмами. Мы уже раньше говорили о деятельности данных факторов выветривания. Это всеобщий процесс, охватывающий всю земную поверхность.
Проходят десятки, сотни тысяч лет. Граниты, базальты и другие, прочные скальные породы под действием выветривания превращаются в новые осадочные породы. Бывает и так, что превратившийся в глинистую массу гранит в какой-то степени сохраняет первоначальные черты.
Рис. 36. Трещины в массиве скальных грунтов
Как-то один геолог рассказал, что когда он стал отбивать от гранитного массива образец, то оказалось, что похожая по внешнему виду на гранит порода была не чем иным, как глиной, в которую были вкраплены кристаллы кварца. В глину превратился разрушенный временем гранит, сумевший сохранить первоначальную форму.
Конечно, чаще всего по мере перехода полевых шпатов в каолинит образующаяся глинистая масса уносится из массива атмосферными водами и сильными ветрами.
Процессы выветривания наиболее интенсивно идут на поверхности пород. Однако по трещинам они могут проникать в глубь массивов и, постепенно разрушая и изменяя породу, снижать ее прочность и создавать все время увеличивающуюся микротрещинова-тость.
Массивы скальных пород постоянно находятся под действием движений земной коры. Эти процессы в геологии носят название тектонических (от греч. tektonikos — созидательный). Они создают горные системы и сдвигают материки; под их грандиозным давлением трескаются скалы и дробятся минералы (рис. 36).
Кроме этих главных трещин (тектонических и выветривания) есть еще и другие, возникающие при образовании пород или при механических воздействиях (обвалы, землетрясения и т. д.).
Как бы то ни было, а с поверхности массивы скальных грунтов всегда имеют ту или иную трещиноватость, которая часто определяет и их прочность. Если без знания системы трещиноватости поставить на такой скальный массив сооружение, то отдельные блоки могут переместиться и произойдет катастрофа.
Нужно сказать, что число трещин в скальных массивах с глубиной резко уменьшается и человек использует это. Он строит внутри таких массивов склады. Их преимущество заключается прежде всего в постоянной температуре, сохраняющейся в течение круглого года. Кроме того, такие склады хорошо изолированы от различных внешних воздействий.
В г. Авесте (Швеция) построена котельная для сжигания бытовых отходов, которая нагревает воду для отопления и других нужд. Но отходы нужно сжигать круглый год, а горячая вода летом необходима в небольшом количестве. Для решения этой проблемы в скальном массиве была сооружена крупная подземная емкость объемом 100 млн. л. Летом туда нагнетают горячую воду, а зимой забирают ее для отопления. Емкость, созданная на глубине нескольких десятков метров в скальных породах, оказалась хорошим термосом.
Сейчас ученые думают о создании подобных, но еще более крупных водосборников в таких массивах. Тогда можно будет летом, используя солнечное тепло, получать горячую воду и сохранять ее в таком состоянии в этих каменных емкостях до зимы.
В скальных массивах могут устраиваться холодильники, нефтехранилища, склады продуктов и другие подземные сооружения. Это позволит экс::омить крайне ценную поверхность земли, создать высокоэкономичные складские помещения и решить ряд проблем, в которых одно из важных мест занимает аккумуляция солнечной энергии.
Мы знаем, что к скальным породам относятся некоторые из осадочных пород. Среди них большую роль играют известняки, гипсы, известковистые породы, мергели и др.
Объединяет эти породы то, что они состоят из водорастворимых минералов.
Прочность их зависит от процесса растворения и выноса кальцита, гипса и других минералов талыми, дождевыми и подземными водами. По мере развития этого процесса механические свойства осадочных пород ухудшаются.
Однако и эти массивы представляют возможности для промышленного использования. Так, в толщах каменной соли в разных странах строятся хранилища, в которых сохраняются нефтепродукты и некоторые химические вещества, не реагирующие с галитом (NaCl).
Вот так обстоит дело с прочностью скалы.
Редко можно встретить человека, ничего не слышавшего о падающей Пизанской башне. Эта башня, как магнит, притягивает тысячи любопытных туристов, давая большой доход магистрату и жителям г. Пизы. Вообще говоря, по архитектуре она весьма обычна для Италии. Таких башен в этой стране десятки, и многие из них более красивы и высоки. Славу она приобрела из-за того, что уже в период строительства стала наклоняться. Прошло 800 лет, но башня все еще продолжает опасное движение. В настоящее время южная часть фундамента ушла на 170 см глубже северной. Сейчас вершина башни отклонена от вертикальной оси более чем на 4 м. Когда смотришь на башню на фоне движущихся кучевых облаков, то кажется, что она вот-вот упадет.- Недавно инженер-геотехник Г. Камфорт произвел расчеты и сделал такой вывод: если башня не изменит скорость своего наклона, то она простоит до 2780 г.
В сущности, Пизанская башня — великолепный памятник, увековечивший строительную ошибку. Она заключается в том, что не были учтены грунтовые условия. Под одной из сторон башни оказалась слабая глина, что привело к неравномерной осадке фундамента и послужило причиной наклона.
Нужно сказать, что пизанское «чудо» — не уникальное явление. Такие падающие башни есть в ГДР, Великобритании, Румынии, КНР и в других странах. Всего таких башен насчитывается более 40. В Советском Союзе известны подобные наклонные сооружения в Таганроге, Москве, Казани и в других местах. Широкой известностью среди них пользуется дозорная башня в г. Невьянске. При высоте 60 м она отклонилась от вертикальной оси на 2 м.
К сожалению, в оценке свойств грунтов иногда ошибаются и современные строители. Так, в одном из городов было возведено пятиэтажное здание. Простояв месяц, дом рухнул. К счастью, никто не пострадал. Оказалось, что был неправильно запроектирован фундамент и не учтена неравномерность в распределении грунтов.
С одной стороны, строители имеют дело с прочными материалами, из которых возводятся здания, а с другой — с грунтами, которые часто оказываются малопрочными. Действительно, постройки возводятся из бетона, реже кирпича и дерева. Бетон способен выдерживать давление 30 — 50 МПа, в то время как грунты часто разрушаются при давлениях 0,2 — 0,5 МПа.
Соотношение явно не в пользу грунтов. Их прочность оказывается в 50 — 250 раз меньшей. Только скальные грунты (такие, как гранит, базальт, кварцит) в 2 — 10 раз прочнее бетона. Вот и получается в большинстве случаев, что конструкция здания гораздо прочнее, чем основания.
Для расчета и возведения наземных частей зданий строитель имеет точные формулы и уверен в прочности материалов. Сложнее положение с грунтовым основанием. Здесь не всегда ясны механические характеристики, степень однородности и ряд других особенностей грунтов. Решение этих вопросов и возлагается на грунтоведов и инженеров-геологов.
Восточные сказания повествуют, что когда-то народы, населяющие равнину в стране Сеннар, в бассейне рек Тигр и Евфрат, решили построить такую высокую башню, чтобы ее вершина достала до «самого неба». В этих местах камень весьма дорог, поэтому башня строилась из обожженных глиняных кирпичей. Как известно, башню так и не удалось построить.
Предание имеет определенные исторические основания. В те времена в этом районе находилась древняя столица шумеров — талантливого народа, создавшего высокую самобытную культуру. Они строили крупные города и совершенные системы орошения. Ими были также сооружены ступенчатые пирамиды со срезанной вершиной. Одна из таких пирамид была раскопана археологами. По сохранившимся описаниям и обнаруженным остаткам стен установлено, что она имела семь ярусов и достигала высоты около 90 м. Как видно, эти сооружения и нашли свое отражение в библейских сказаниях о Вавилонской башне.
Но нас интересует другой вопрос: какую по высоте башню могли бы построить в Вавилоне? Прежде всего следует учесть, что здесь местность сложена мощными толщами песка и глины. Для того чтобы определить, какой наибольшей высоты могла бы достигнуть башня, необходимо знать, какой вес может выдержать такая песча-но-глинистая толща. В таких случаях говорят, что необходимо установить прочность грунтов.
Достарыңызбен бөлісу: |