1. Основы бионики: история, предмет, принципы, задачи


Тема 11. Характер взаимодействия и принцип работы бионических систем. (2 часа)



бет5/7
Дата11.07.2016
өлшемі1.37 Mb.
#192613
1   2   3   4   5   6   7
Тема 11. Характер взаимодействия и принцип работы бионических систем. (2 часа) УЗ – 2.
Природа по своей сути нелинейна, поэтому для достижения гармонии «человек –архитектура – природа» необходимо использовать основные принципы синергетики:

1. Гомеостатичность – это поддержание программы функционирования системы в некоторых рамках, позволяющих ей следовать к своей цели.

2. Иерархичность. Основным способом структурной иерархии является составная природа вышестоящих уровней по отношению к нижестоящим. То, что для низшего уровня есть структура-порядок, для высшего есть бесструктурный элемент хаоса, строительный материал.

3. Нелинейность – есть нарушение принципа суперпозиции в некотором явлении: результат суммы воздействий на систему не равен сумме результатов этих воздействий. Результаты действующих причин нельзя складывать.

4. Незамкнутость (открытость). Невозможность пренебрежения взаимодействием системы со своим окружением.

5. Неустойчивость. Состояние, траектория или программа системы неустойчивы, если любые сколь угодно малые отклонения от них со временем увеличиваются. Если это справедливо лишь для некоторых типов отклонений, то говорят о частичной неустойчивости.

6. Динамическая иерархичность (эмерджентность). Это обобщение принципа подчинения на процессы становления. Порождение параметров порядка, когда приходится рассматривать взаимодействие более чем двух уровней, и сам процесс становления есть процесс исчезновения, а затем рождения одного из них в процессе взаимодействия минимум трех иерархических уровней системы.

7. Наблюдаемость. Это даст возможность выстроить некоторую структуру взаимодействия позиций в каждом из подходов к архитектуре и решать задачу сосуществования природы естественной и искусственной как систему уравнений, где синергетический метод будет являться «ситом», кристаллизующим решение поставленной задачи.

1. Органическая архитектура

Задача органической архитектуры это не только включение зеленых насаждений как элементов благоустройства, но и придание актуальности постройке. Органичность – это такой подход к проектированию, который выходит за рамки повседневности и обыденности, потому что в процессе проектирования решаются вопросы взаимодействия природы естественной с природой искусственной. Существуют две разные тенденции реализации задач органической архитектуры: одна – развивающаяся в сторону рационального, другая – в сторону эмоционального и органического восприятия окружающей среды. Но для современной архитектурной теории и практики решение задачи органической архитектуры можно представить следующим образом:



Рис.1. Схема органической архитектуры

Учитывая различные аспекты окружающей среды, с одной стороны, и являясь воплощением человеческой природы, с другой стороны, органическая архитектура выходит за рамки традиционных представлений и рассматривает постройку не только как нечто дающее кров, но и как искусственную среду нового порядка, органично вписанную в нашу искусственную жизнь.

Хотя органическая архитектура говорит о значимости социальной составляющей природы человека, большой акцент делается на необходимости связи человека с природой. Если при постройке здания или создании проекта за отправную точку берется Природа, то, как здание, так и проект должны развиваться согласно законам Природы.

Большинство архитектурно-проектных решений – это скорлупа, содержащая внутри большой потенциал к развитию. Все живое в природе развивается, подобно семени, в тесной связи с окружающей средой. Проектируемое здание должно быть сродни организму и отражать всю полноту и многогранность природы.

Потому каждый «организм» проектируется исходя из его предполагаемого местоположения в соответствии с законами о взаимосвязанности каждой детали с целым, и наоборот. При этом внутренние пространственные отношения получают иную форму и обретают связь с биологией посредством изменяющихся функциональных требований сегодняшнего социума.

Человек (заказчик) является неотъемлемой частью проекта, так как именно он и становится соавтором собственного дома. Одной из составляющих процесса проектирования является то, что человек «создает свою автобиографию». В результате появляются уникальные и оригинальные формы, как отражение личности и потребностей человека, как проявление заботы об окружающей среде.

С одной стороны, решение задачи органической архитектуры носит рациональный характер. В связи с использованием природных форм и материалов сооружения часто имеют сходство с живыми организмами или растениями, но они являются полностью новаторскими. Сейчас архитекторы все чаше обращаются к нерациональным и неординарным структурам, обладающим собственной уникальностью, как и любой «живой организм». Следствием такого созидательного подхода в органической архитектуре явилась возможность создания человеческой «биографии», сосуществующей в гармонии с окружением и природной средой.

Форма и функция едины — этот тезис является стержнем органической архитектуры. Эта позиция Ф.Л.Райта направляет действия архитектора по единому пути с природой и дает возможность сознательно работать.

Взаимодействие органической архитектуры с системой окружающей среды развивается по принципам синергетики, которые в большей или меньшей степени преобладают в каждом отдельном случае:

1. Слияние с окружением. Гомеостатичность

Осмысление возможностей системы окружающей среды – ключ к жизнеспособности проектного решения. Оно включает в себя:

систему конструктивных решений, основанную на гомеостазе;

использование местных материалов, современных достижений науки и техники, в соответствии с иерархическим принципом синергетики;

существующую систему природного окружения, развивающуюся по принципу нелинейности.

Учитывая законы слияния с окружением и проектируя в гармонии со всеми элементами этих систем, становится возможным сохранение и сотрудничество с окружающей средой. Таким образом, слияние с окружающей средой по представленным принципам происходит до того, как будет виден результат.

2. Природа – вдохновение. Принцип нелинейности

При появлении нового элемента окружающей среды другие системы начнут взаимодействовать и преобразовываться. Осознание места человека в природе, а также его возможностей и ответственности позволит сделать качественный скачок, поскольку сама природа стимулирует работу и дает руководство к действию. Таким образом, вся система приобретает новые свойства и имеет возможность перейти на новый этап развития.

3. Сотрудничество с природой. Самоподобие, частный случай принципа нелинейности

В стремлении возродить природу, т.е. истощенные ресурсы, человек берет на себя ответственность за дальнейшее существование. Человечество оживает, подобно тому, как окружение возвращается к жизни. Потому жизнеспособны те проектные разработки, которые способны расти и развиваться вместе с природой по ее законам, а именно: по принципам нелинейности, иерархичности, гомеостатичности.

4. Учиться на своих ошибках. Точки бифуркации

Предвидение и осознание последствий взаимодействия с окружающей средой расширит проектные возможности, поскольку возникновение кризисных ситуаций (точек бифуркации) позволяет системе эволюционировать и приобретать новые свойства.

5. Созидание есть творчество. Неустойчивость

В архитектуре новая идея рождается, когда архитектор находится в неустойчивом состоянии хаоса сомнений и выбора на высоком мотивационном фоне пересечения информационных потоков: диалог с коллегами; изучение литературы и т. д. В этом состоит суть генерации ценной информации.

2. Бионическая архитектура

Задача бионической архитектуры – установить глубокие связи между законами развития живой природы и архитектуры. Свойства и характеристики форм живой природы отбираются по принципу соответствия функции того или иного организма, аналогичным функциональным сторонам архитектуры.

От функции к форме и к закономерностям формообразования – таков основной путь архитектурной бионики.

Рис.2. Схема бионической архитектуры

Бионическое исследование живой природы

В бионическом исследовании живой природы удовлетворяются потребности архитектуры за счет технических возможностей принципов построения живых форм. Основным методом на данном этапе является метод функциональных аналогий, т. е. сопоставление принципов и средств формообразования архитектуры и живой природы, основываясь на принципах гомеостатичности, иерархичности, нелинейности. Архитектор отбирает необходимые и полезные функции и формы живой природы для решения задачи создания того или иного архитектурного объекта.

Бионическое исследование живой природы можно разделить на два этапа:

1. Функциональный

2. Конструкционный

Рассмотрим каждый этап с позиции синергетичекого подхода:

1. Функциональный этап

На данном этапе рассматриваются свойства живого организма с позиции его функциональных возможностей:

функциональные системы (связи). Отбор ведется в соответствии с принципом иерархичности, поскольку существует четкое понимание главных и второстепенных связей;

механическая функция. Принцип гомеостатичности – поддержание функционирования системы в определенных рамках;

физиологическая функция (изоляция). Принцип иерархичности;

функция саморегуляции. Внутри системы есть подсистемы и, чтобы нормально функционировать, система должна быть гомеостатична;

функции цвета, света, акустики. Принцип гомеостаза – система должна уметь приспосабливаться к предлагаемым условиям, не теряя целостности.

2. Конструкционный этап

Конструкционный этап основан на принципе самоподобия, т.е. нелинейности в синергетике. Задача этого этапа заключается в адаптации функций живого организма посредством конструктивных возможностей архитектуры и осуществляется на следующих уровнях:

материальный уровень;

уровень конструкций(технология);

уровень объекта;

уровень группы;

уровень взаимодействия с системой.

Таким образом, бионический подход позволяет говорить о создании биологической среды для человека с точки зрения соответствующего искусственного микроклимата, поскольку архитектурная бионика определяет цель архитектуры как сохранение постоянства требуемых метеорологических условий для жизни и развития организма.

Взаимодействие бионической архитектуры, как незамкнутой системы, с окружением идет по следующим принципам:

1. Заимствование и адаптация. Самоподобие и гомеостаз

Природная форма извлекается из среды по ее функциональным особенностям и по признакам микроклиматической устойчивости. В дальнейшем она адаптируется под функцию сооружения, оставаясь природным механизмом.

2. Внедрение. Нелинейность

Человек вынужден осваивать предложенное бионическое пространство. Искусственные сооружения должны быть когерентны с окружающей средой и человеком, в частности.

3.Созидание есть творчество. Неустойчивость

3. Ландшафт и архитектура

Недостаточно приспособить окружение к человеку. Природа – это вечный, живой, громадный и естественный фон и основа для каждого проектного решения. А все, что проектируется для человека, должно соответствовать его масштабу, удовлетворять его естественной и социальной природе. Удачными проектами будут те, которые раскрывают системы единства, влияют на объединение всех искусственных и естественных сил и создают тем самым ландшафт нового порядка (Рис.3).

Рис.3. Схема взаимодействия ландшафта и архитектуры

В решении задачи ландшафта и архитектуры, несомненно, высокий потенциал имеет личность архитектора, т. к. он проектирует взаимосвязи, создающие переживания. Если ощущаемые взаимосвязи соответственны, если они удобны и упорядочены, переживание становится позитивным, а степень комфорта зависит от степени соответствия удобства и порядка.

Развитие ландшафта и архитектуры, как открытой системы, идет по следующим архитектурно-синергетическим принципам:

1. Соответствие (гомеостатичность и когерентность) подразумевает применение правильной формы, правильного размера и правильного материала.

2. Удобство (гомеостатичность) подразумевает свободу движения, отсутствие затруднений, комфорт.

3. Порядок (иерархичность) подразумевает логичную последовательность и рациональное размещение частей.

4. Созидание есть творчество (неустойчивость). Данный пункт присутствует в каждом из приведенных подходов, что говорит о важности творческого мышления и потенциале архитектора-творца при создании гармоничной среды. Поскольку сущностью природы является изменчивость (нелинейность), то процесс проектирования будет бесконечным.

1. Органическая архитектура

Проведенное исследование позволяет сделать вывод о том, что органическая архитектура – это вид когерентной связи, которая проходит сквозь весь процесс проектирования и является связующим элементом между человеком и природой (Рис.4), а также множеством связей, объединяющих уровни природного и социального в проектировании, и создает новую комфортную среду (Рис.5).



Рис.4. Взаимодействие природы, человека, архитектуры в органическом подходе

Рис.5. Схема кофейного зерна в органической архитектуре

2. Бионическая архитектура

Задачи, решаемые архитектурной бионикой, имеют большое значение для поиска новой выразительности форм зданий и сооружений. Стоит отметить, что предлагаемую среду человек вынужден обживать, она не является органичным элементом его существования (Рис.6). Поскольку архитектурная бионика занимается только вопросами архитектуры, решением проблем функции и конструкций, заимствованием и адаптацией, то человек рассматривается как потребитель, а не главный участник процесса проектирования.


Рис.6. Схема взаимодействия человека, природы, архитектуры в бионическом подходе

3. Ландшафт и архитектура

Данный подход позволил определить место человека как созидателя, который создает среду для людей. Задача его – найти те взаимосвязи, которые позволят гармонично сбалансировать среду на уровне ландшафт (природа) – архитектура. Результатом будет красота – явление, которое возникает в данный момент или в данном месте тогда, когда гармоничны все взаимосвязи (Рис.7).



Рис.7. Схема взаимодействия человека, природы, архитектуры в ландшафтном подходе к проектированию.

4. Синергетические принципы

Принципы синергетики в данном исследовании сыграли роль «сита», они позволили четко выстроить иерархию и провести взаимосвязи в архитектурных процессах разных уровней. Они позволили дать оценку подходам к сосуществованию природы естественной и искусственной. На основе полученных результатов стало возможным создание схемы динамической иерархии сосуществования архитектуры, человека и природы на микро-, макро- и мегауровнях (Рис.8).


Рис.8. Схема динамической иерархичности

Предложенная методика показывает, что рано или поздно возникает кризис взаимодействия в рассматриваемой системе. На фоне эволюции человека в проектном процессе, а также преуменьшении роли природы возникает антигуманная архитектурная среда, точка бифуркации – переломный момент, создающий неустойчивое состояние на макроуровне, признак того, что существующая система зашла в тупик. Потому необходимо пересмотреть ранее предложенные подходы, выделить новые свойства и их взаимосвязи между уровнями. Очевидным становится то, что осознание места человека и природы в современном архитектурном процессе позволит качественно изменить среду. Так как жизненные процессы цикличны и развиваются по спирали, можно предположить, что нас ждет постепенный переход от человека-потребителя к человеку-созидателю, что, в свою очередь, разовьет и закрепит позиции природы в архитектурном процессе.

Представленные подходы несут в себе несомненный потенциал для дальнейшего развития архитектуры. Поскольку искусство жизни кроется в постоянно изучаемом приспособлении к природе и окружению, в искусстве самопонимания, искусстве «бытия в мире».
Основные задачи адаптивного распознавания образов
Распознавание представляет собой информационный процесс, реализуемый некоторым преобразователем информации (интеллектуальным информационным каналом, системой распознавания), имеющим вход и выход. На вход системы подается информация о том, какими признаками обладают предъявляемые объекты. На выходе системы отображается информация о том, к каким классам (обобщенным образам) отнесены распознаваемые объекты.

При создании и эксплуатации автоматизированной системы распознавания образов решается ряд задач. Рассмотрим кратко и упрощенно эти задачи. Отметим, что у различных авторов формулировки этих задач, да и сам набор не совпадают, так как он в определенной степени зависит от конкретной математической модели, на которой основана та или иная система распознавания. Кроме того, некоторые задачи в определенных моделях распознавания не имеют решения и, соответственно, не ставятся.

Задача формализации предметной области

По сути это задача является задачей кодирования. Составляется список обобщенных классов, к которым могут относиться конкретные реализации объектов, а также список признаков, которыми эти объекты в принципе могут обладать.

Задача формирования обучающей выборки

Обучающая выборка представляет собой базу данных, содержащую описания конкретных реализаций объектов на языке признаков, дополненную информацией о принадлежности этих объектов к определенным классам распознавания.

Задача обучения системы распознавания

Обучающая выборка используется для формирования обобщенных образов классов распознавания на основе обобщения информации о том, какими признаками обладают объекты обучающей выборки, относящиеся к этому классу и другим классам.

Задача снижения размерности пространства признаков

После обучения системы распознавания (получения статистики распределения частот признаков по классам) становится возможным определить для каждого признака его ценность для решения задачи распознавания. После этого наименее ценные признаки могут быть удалены из системы признаков. Затем система распознавания должна быть обучена заново, так как в результате удаления некоторых признаков статистика распределения оставшихся признаков по классам изменяется. Этот процесс может повторяться, т.е. быть итерационным.

Задача распознавания

Распознаются объекты распознаваемой выборки, которая, в частности, может состоять и из одного объекта. Распознаваемая выборка формируется аналогично обучающей, но не содержит информации о принадлежности объектов к классам, так как именно это и определяется в процессе распознавания. Результатом распознавания каждого объекта является распределение или список всех классов распознавания в порядке убывания степени сходства распознаваемого объекта с ними.

Задача контроля качества распознавания

После распознавания может быть установлена его адекватность. Для объектов обучающей выборки это может быть сделано сразу, так как для них просто известно, к каким классам они относятся. Для других объектов эта информация может быть получена позже. В любом случае может быть определена фактическая средняя вероятность ошибки по всем классам распознавания, а также вероятность ошибки при отнесении распознаваемого объекта к определенному классу.

Результаты распознавания должны интерпретироваться с учетом имеющейся информации о качестве распознавания.

Задача адаптации

Если в результате выполнения процедуры контроля качества установлено, что оно неудовлетворительное, то описания неправильно распознанных объектов могут быть скопированы из распознаваемой выборки в обучающую, дополнены адекватной классификационной информацией и использованы для переформирования решающих правил, т.е. учтены. Более того, если эти объекты не относятся к уже имеющимся классам распознавания, что и могло быть причиной их неверного распознавания, то этот список может быть расширен. В результате система распознавания адаптируется и начинает адекватно классифицировать эти объекты.

Обратная задача распознавания

Задача распознавания состоит в том, что для данного объекта по его известным признакам системой устанавливается его принадлежность к некоторому ранее неизвестному классу. В обратной задаче распознавания, наоборот, для данного класса распознавания системой устанавливается, какие признаки наиболее характерны для объектов данного класса, а какие нет (или какие объекты обучающей выборки относятся к данному классу).

Задачи кластерного и конструктивного анализа

Кластерами называются такие группы объектов, классов или признаков, что внутри каждого кластера они максимально сходны, а между разными кластерами – максимально различны.

Конструктом (в контексте, рассматриваемом в данном разделе) называется система противоположных кластеров. Таким образом, в определенном смысле конструкты есть результат кластерного анализа кластеров.

В кластерном анализе количественно измеряется степень сходства и различия объектов (классов, признаков), и эта информация используется для классификации. Результатом кластерного анализа является сама классификация объектов по кластерам. Эта классификация может быть представлена в форме семантических сетей.

Задача когнитивного анализа

В когнитивном анализе информация о сходстве и различии классов или признаков интересует исследователя сама по себе, а не для того, чтобы использовать ее для классификации, как в кластерном и конструктивном анализе.

Если для двух классов распознавания является характерным один и тот же признак, то это вносит вклад в сходство этих двух классов. Если же для одного из классов этот признак является нехарактерным, то это вносит вклад в различие.

Если два признака коррелируют друг с другом, то в определенном смысле их можно рассматривать как один признак, а если антикоррелируют, то как различные. С учетом этого обстоятельства наличие различных признаков у разных классов также вносит определенный вклад в их сходство и различие.
Результаты когнитивного анализа могут быть представлены в форме когнитивных диаграмм.

Методы распознавания образов и их характеристики

Принципы классификации методов распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о «распознавании с учителем» [118]. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или «распознавании без учителя». Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш [32], В.И. Васильев [86], А.Л. Горелик , В.А. Скрипкин [104], Р. Дуда, П. Харт [115], Л.Т. Кузин [169], Ф.И. Перегудов, Ф.П. Тарасенко [273], Ф.Е. Темников [351], Дж. Ту, Р. Гонсалес [357], П. Уинстон [359], К. Фу [372], Я.З. Цыпкин [383] и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие — выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области. Например, в работе [118], в которой дан академический обзор методов распознавания, используется следующая типология методов распознавания образов:

методы, основанные на принципе разделения;

статистические методы;

методы, построенные на основе «потенциальных функций»;

методы вычисления оценок (голосования);

методы, основанные на исчислении высказываний, в частности на аппарате алгебры логики.

В основе данной классификации лежит различие в формальных методах распознавания образов и поэтому опущено рассмотрение эвристического подхода к распознаванию, получившего полное и адекватное развитие в экспертных системах. Эвристический подход основан на трудно формализуемых знаниях и интуиции исследователя. При этом исследователь сам определяет, какую информацию и каким образом система должна использовать для достижения требуемого эффекта распознавания.

Подобная типология методов распознавания с той или иной степенью детализации встречается во многих работах по распознаванию. В то же время известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов.

Д.А.Поспелов (1990) выделяет два основных способа представления знаний [282]:

интенсиональное, в виде схемы связей между атрибутами (признаками).

экстенсиональное, с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности и связи, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над атрибутами (признаками) объектов, приводящих к требуемому диагностическому результату. Интенсиональные представления реализуются посредством операций над значениями атрибутов и не предполагают произведения операций над конкретными информационными фактами (объектами).

В свою очередь, экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как целостные системы.

Можно провести аналогию между интенсиональными и экстенсиональными представлениями знаний и механизмами, лежащими в основе деятельности левого и правого полушарий головного мозга человека. Если для правого полушария характерна целостная прототипная репрезентация окружающего мира, то левое полушарие оперирует закономерностями, отражающими связи атрибутов этого мира [282].

Описанные выше два фундаментальных способа представления знаний позволяют предложить следующую классификацию методов распознавания образов:

интенсиональные методы, основанные на операциях с признаками.

экстенсиональные методы, основанные на операциях с объектами.

Необходимо особо подчеркнуть, что существование именно этих двух (и только двух) групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. По мнению авторов, между этими методами существует отношение дополнительности в смысле Н.Бора [71], поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого-либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д. А. Поспеловым, положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер.

Методы, основанные на оценках плотностей распределения значений признаков

Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций

В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят наилучшее приближение решающей функции [118]. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами.

Достаточно высокое качество решающего правила может быть достигнуто с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму. К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции. Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА) [118]. В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции.

Однако достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций.

Логические методы

Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события [104].

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм «Кора» и др.

Алгоритм «Кора», как и другие логические методы распознавания образов, является достаточно трудоемким в вычислительном отношении, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (структурные) методы

Лингвистические методы распознавания образов основаны на использовании специальных грамматик, порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов [372].

Для различных классов объектов выделяются непроизводные (атомарные) элементы (подобразы, признаки) и возможные отношения между ними. Грамматикой называют правила построения объектов из этих непроизводных элементов.

Таким образом, каждый объект представляет собой совокупность непроизводных элементов, «соединенных» между собой теми или иными способами или, другими словами, «предложением» некоторого «языка». Хотелось бы особо подчеркнуть очень значительную мировоззренческую ценность этой мысли [236].

Путем синтаксического анализа (грамматического разбора) «предложения» определяется его синтаксическая «правильность» или, что эквивалентно, может ли некоторая фиксированная грамматика, описывающая класс, породить имеющееся описание объекта.

Однако задача восстановления (определения) грамматик по некоторому множеству высказываний (предложений — описаний объектов), порождающих данный язык, является трудно формализуемой.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность [118]. Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы.

Метод сравнения с прототипом

Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, в том случае, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки — прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом, который фактически эквивалентен линейной диагностической модели.

На практике, безусловно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы.

Во-первых, это выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. Во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k ближайших соседей

Метод k ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году [357]. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

При использовании метода k ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Необходимость уменьшения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как уменьшает представительность обучающей выборки.

Алгоритмы вычисления оценок (»голосования»)

Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритетов (оценок сходства), характеризующих «близость» распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов [118].

Используемые сочетания признаков (подпространства) авторы называют опорными множествами или множествами частичных описаний объектов. Вводится понятие обобщенной близости между распознаваемым объектом и объектами обучающей выборки (с известной классификацией), которые называют эталонными объектами. Эта близость представляется комбинацией близостей распознаваемого объекта с эталонными объектами, вычисленных на множествах частичных описаний. Таким образом, АВО является расширением метода k ближайших соседей, в котором близость объектов рассматривается только в одном заданном пространстве признаков.

Еще одним расширением АВО является то, что в данных алгоритмах задача определения сходства и различия объектов формулируется как параметрическая и выделен этап настройки АВО по обучающей выборке, на котором подбираются оптимальные значения введенных параметров. Критерием качества служит ошибка распознавания, а параметризуется буквально все:

правила вычисления близости объектов по отдельным признакам;

правила вычисления близости объектов в подпространствах признаков;

степень важности того или иного эталонного объекта как диагностического прецедента;

значимость вклада каждого опорного множества признаков в итоговую оценку сходства распознаваемого объекта с каким-либо диагностическим классом.

Параметры АВО задаются в виде значений порогов и (или) как веса указанных составляющих.

Теоретические возможности АВО по крайней мере не ниже возможностей любого другого алгоритма распознавания образов, так как с помощью АВО могут быть реализованы все мыслимые операции с исследуемыми объектами.

Но, как это обычно бывает, расширение потенциальных возможностей наталкивается на большие трудности при их практическом воплощении, особенно на этапе построения (настройки) алгоритмов данного типа.

Отдельные трудности отмечались ранее при обсуждении метода k ближайших соседей, который можно было интерпретировать как усеченный вариант АВО. Его тоже можно рассматривать в параметрическом виде и свести задачу к поиску взвешенной метрики выбранного типа. В то же время уже здесь для высокоразмерных задач возникают сложные теоретические вопросы и проблемы, связанные с организацией эффективного вычислительного процесса.

Для АВО, если попытаться использовать возможности данных алгоритмов в полном объеме, указанные трудности возрастают многократно.

Отмеченные проблемы объясняют то, что на практике применение АВО для решения высокоразмерных задач сопровождается введением каких-либо эвристических ограничений и допущений. В частности, известен пример использования АВО в психодиагностике, в котором апробирована разновидность АВО, фактически эквивалентная методу k ближайших соседей.

Коллективы решающих правил

В завершение обзора методов распознавания образов остановимся еще на одном подходе. Это так называемые коллективы решающих правил (КРП) [32].

Так как различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке объектов, то закономерно встает вопрос о синтетическом решающем правиле, адаптивно использующем сильные стороны этих алгоритмов. В синтетическом решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа «Кора» и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов [118].

Сравнительный анализ методов распознавания образов

Сравним описанные выше методы распознавания образов и оценим степень их адекватности сформулированным в разделе 3.3.3 требованиям к моделям СОУ для адаптивных АСУ сложными системами.

Для решения реальных задач из группы методов интенсионального направления практическую ценность представляют параметрические методы и методы, основанные на предложениях о виде решающих функций. Параметрические методы составляют основу традиционной методологии конструирования показателей. Применение этих методов в реальных задачах связано с наложением сильных ограничений на структуру данных, которые приводят к линейным диагностическим моделям с очень приблизительными оценками их параметров. При использовании методов, основанных на предположениях о виде решающих функций, исследователь также вынужден обращаться к линейным моделям. Это обусловлено высокой размерностью пространства признаков, характерной для реальных задач, которая при повышении степени полиноминальной решающей функции дает огромный рост числа ее членов при проблематичном сопутствующем повышении качества распознавания. Таким образом, спроецировав область потенциального применения интенсиональных методов распознавания на реальную проблематику, получим картину, соответствующую хорошо отработанной традиционной методологии линейных диагностических моделей.

Свойства линейных диагностических моделей, в которых диагностический показатель представлен взвешенной суммой исходных признаков, хорошо изучены. Результаты этих моделей (при соответствующем нормировании) интерпретируются как расстояния от исследуемых объектов до некоторой гиперплоскости в пространстве признаков или, что эквивалентно, как проекции объектов на некоторую прямую линию в данном пространстве. Поэтому линейные модели адекватны только простым геометрическим конфигурациям областей пространства признаков, в которые отображаются объекты разных диагностических классов. При более сложных распределениях эти модели принципиально не могут отражать многие особенности структуры экспериментальных данных. В то же время такие особенности способны нести ценную диагностическую информацию.

Вместе с тем появление в какой-либо реальной задаче простых многомерных структур (в частности, многомерных нормальных распределений) следует скорее расценивать как исключение, чем как правило. Часто диагностические классы формируются на основе сложносоставных внешних критериев, что автоматически влечет за собой геометрическую неоднородность данных классов в пространстве признаков. Это особенно касается «жизненных», наиболее часто встречающихся на практике критериев. В таких условиях применение линейных моделей фиксирует только самые «грубые» закономерности экспериментальной информации.

Применение экстенсиональных методов не связано с каким-либо предположениями о структуре экспериментальной информации, кроме того, что внутри распознаваемых классов должны существовать одна или несколько групп чем-то похожих объектов, а объекты разных классов должны чем-то отличаться друг от друга. Очевидно, что при любой конечной размерности обучающей выборки (а другой она быть и не может) это требование выполняется всегда просто по той причине, что существуют случайные различия между объектами. В качестве мер сходства применяются различные меры близости (расстояния) объектов в пространстве признаков. Поэтому эффективное использование экстенсиональных методов распознавания образов зависит от того, насколько удачно определены указанные меры близости, а также от того, какие объекты обучающей выборки (объекты с известной классификацией) выполняют роль диагностических прецедентов. Успешное решение данных задач дает результат, приближающийся к теоретически достижимым пределам эффективности распознавания.

Достоинствам экстенсиональных методов распознавания образов противопоставлена, в первую очередь, высокая техническая сложность их практического воплощения. Для высокоразмерных пространств признаков внешне простая задача нахождения пар ближайших точек превращается в серьезную проблему. Также многие авторы отмечают в качестве проблемы необходимость запоминания достаточно большого количества объектов, представляющих распознаваемые классы.

Само по себе это не является проблемой, однако воспринимается как проблема (например, в методе k ближайших соседей) по той причине, что при распознавании каждого объекта происходит полный перебор всех объектов обучающей выборки.

Поэтому целесообразно применить модель системы распознавания, в которой проблема полного перебора объектов обучающей выборки при распознавании снимается, так как он осуществляется лишь один раз при формировании обобщенных образов классов распознавания. При самом же распознавании осуществляется сравнение идентифицируемого объекта лишь с обобщенными образами классов распознавания, количество которых фиксировано и совершенно не зависит от размерности обучающей выборки. Данный подход позволяет увеличивать размерность обучающей выборки до тех пор, пока не будет достигнуто требуемое высокое качество обобщенных образов, совершенно при этом не опасаясь, что это может привести к неприемлемому увеличению времени распознавания (так как время распознавания в данной модели вообще не зависит от размерности обучающей выборки).

Теоретические проблемы применения экстенсиональных методов распознавания связаны с проблемами поиска информативных групп признаков, нахождения оптимальных метрик для измерения сходства и различия объектов и анализа структуры экспериментальной информации. В то же время успешное решение перечисленных проблем позволяет не только конструировать эффективные распознающие алгоритмы, но и осуществлять переход от экстенсионального знания эмпирических фактов к интенсиональному знанию о закономерностях их структуры.

Переход от экстенсионального знания к интенсиональному происходит на той стадии, когда формальный алгоритм распознавания уже сконструирован и его эффективность продемонстрирована. Тогда производится изучение механизмов, за счет которых достигается полученная эффективность. Такое изучение, связанное с анализом геометрической структуры данных, может, например, привести к выводу о том, что достаточно заменить объекты, представляющие тот или иной диагностический класс, одним типичным представителем (прототипом). Это эквивалентно, как отмечалось выше, заданию традиционной линейной диагностической шкалы. Также возможно, что каждый диагностический класс достаточно заменить несколькими объектами, осмысленными как типичные представители некоторых подклассов, что эквивалентно построению веера линейных шкал. Возможны и другие варианты, которые будут рассмотрены ниже.

Таким образом, обзор методов распознавания показывает, что в настоящее время теоретически разработан целый ряд различных методов распознавания образов. В литературе приводится развернутая их классификация. Однако для большинства этих методов их программная реализация отсутствует, и это глубоко закономерно, можно даже сказать «предопределено» характеристиками самих методов распознавания. Об этом можно судить по тому, что такие системы мало упоминаются в специальной литературе и других источниках информации.

Следовательно, остается недостаточно разработанным вопрос о практической применимости тех или иных теоретических методов распознавания для решения практических задач при реальных (т.е. довольно значительных) размерностях данных и на реальных современных компьютерах.

Вышеупомянутое обстоятельство может быть понято, если напомнить, что сложность математической модели экспоненциально увеличивает трудоемкость программной реализации системы и в такой же степени уменьшает шансы на то, что эта система будет практически работать. Это означает, что реально на рынке можно реализовать только такие программные системы, в основе которых лежат достаточно простые и «прозрачные» математические модели. Поэтому разработчик, заинтересованный в тиражировании своего программного продукта, подходит к вопросу о выборе математической модели не с чисто научной точки зрения, а как прагматик, с учетом возможностей программной реализации. Он считает, что модель должна быть как можно более простой, а значит реализоваться с меньшими затратами и более качественно, а также должна обязательно работать (быть практически эффективной).

В этой связи особенно актуальной представляется задача реализации в системах распознавания механизма обобщения описаний объектов, относящихся к одному классу, т.е. механизма формирования компактных обобщенных образов. Очевидно, что такой механизм обобщения позволит «сжать» любую по размерности обучающую выборку к заранее известной по размерности базе обобщенных образов. Это позволит также поставить и решить ряд задач, которые даже не могут быть сформулированы в таких методах распознавания, как метод сравнения с прототипом, метод k ближайших соседей и АВО.

Это задачи:

определения информационного вклада признаков в информационный портрет обобщенного образа;

кластерно-конструктивный анализ обобщенных образов;

определение семантической нагрузки признака;

семантический кластерно-конструктивный анализ признаков;

содержательное сравнение обобщенных образов классов друг с другом и признаков друг с другом (когнитивные диаграммы, в т.ч. диаграммы Мерлина [190, 220, 355]).

Метод, который позволил достичь решения этих задач, также отличает основанную на нем перспективную систему от других систем, как компиляторы отличаются от интерпретаторов, так как благодаря формированию обобщенных образов в этой перспективной системе достигается независимость времени распознавания от объемов обучающей выборки. Известно, что именно существование этой зависимости приводит к практически неприемлемым затратам машинного времени на распознавание в таких методах, как метод k ближайших соседей, АВО и КРП при таких размерностях обучающей выборки, когда можно говорить о достаточной статистике.

В заключение краткого обзора методов распознавания представим суть вышеизложенного в сводной таблице (табл. 3.1), содержащей краткую характеристику различных методов распознавания образов по следующим параметрам:

классификация методов распознавания;

области применения методов распознавания;

классификация ограничений методов распознавания.




Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания



Методы, основанные на оценках плотностей распределения значений признаков (или сходства и различия объектов)

Задачи с известным распределением, как правило, нормальным, необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к непредставительности обучающей выборки и артефактам

Методы, основанные на предположениях о классе решающих функций

Классы должны быть хорошо разделяемыми, система признаков — ортонормированной

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности пространства признаков

При отборе логических решающих правил (коньюнкций) необходим полный перебор. Высокая вычислительная трудоемкость

Лингвистические (структурные) методы

Задачи небольшой размерности пространства признаков

Задача восстановления (определения) грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем



Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от меры расстояния (метрики). Неизвестность оптимальной метрики

Метод k ближайших соседей

Задачи небольшой размерности по количеству классов и признаков

Высокая зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (голосования) АВО

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП)

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

Таблица 3.1 — Сводная таблица классификации методов распознавания, сравнения их областей применения и ограничений

Роль и место распознавания образов в автоматизации управления сложными системами

Автоматизированная система управления состоит из двух основных частей: объекта управления и управляющей системы.

Управляющая система осуществляет следующие функции:

идентификация состояния объекта управления;

выработка управляющего воздействия исходя из целей управления с учетом состояния объекта управления и среды;

оказание управляющего воздействия на объект управления.

Распознавание образов есть не что иное, как идентификация состояния некоторого объекта.

Следовательно, возможность применения системы распознавания образов на этапе идентификации состояния объекта управления представляется вполне очевидной и естественной. Однако в этом может не быть необходимости. Поэтому возникает вопрос, в каких случаях целесообразно применять систему распознавания в АСУ, а в каких нет.

По литературным данным [230, 241, 279, 334] во многих ранее разработанных и современных АСУ в подсистемах идентификации состояния объекта управления и выработки управляющих воздействий используются детерминистские математические модели «прямого счета», которые однозначно и достаточно просто определяют, что делать с объектом управления, если у него наблюдаются определенные внешние параметры.

При этом не ставится и не решается вопрос о том, как связаны эти параметры с теми или иными состояниями объекта управления. Эта позиция соответствует точке зрения, состоящей в том, что «по умолчанию» принимается их взаимно-однозначная связь. Поэтому термины: «параметры объекта управления» и «состояния объекта управления» рассматриваются как синонимы, а понятие «состояние объекта управления» в явном виде вообще не вводится. Однако очевидно, что в общем случае связь между наблюдаемыми параметрами объекта управления и его состоянием имеет динамичный и вероятностный характер.

Таким образом, традиционные АСУ по сути дела являются системами параметрического управления, т.е. системами, которые управляют не состояниями объекта управления, а лишь его наблюдаемыми параметрами. Решение об управляющем воздействии принимается в таких системах как бы «вслепую», т.е. без формирования целостного образа объекта управления и окружающей среды в их текущем состоянии, а также без прогнозирования развития среды и реакции объекта управления на те или иные управляющие воздействия на него, действующие одновременно с прогнозируемым влиянием среды.

С позиций, развиваемых в данной работе, термин «принятие решений» в современном понимании едва ли вообще в полной мере применим к традиционным АСУ. Дело в том, что «принятие решений», как минимум, предполагает целостное видение объекта в окружающей среде, причем не только в их актуальном состоянии, но и в динамике, и во взаимодействии как друг с другом, так и с системой управления, предполагает рассмотрение различных альтернативных вариантов развития всей этой системы, а также сужение многообразия (редукцию) этих альтернатив на основе определенных целевых критериев. Ничего этого, очевидно, нет в традиционных АСУ, или есть, но в упрощенном виде.

Конечно, традиционный метод является адекватным и его применение вполне корректно и оправдано в тех случаях, когда объект управления действительно является стабильной и жестко детерминированной системой, а влиянием окружающей среды на него можно пренебречь.

Однако в других случаях этот метод малоэффективен.

Если объект управления динамичен, то модели, лежащие в основе алгоритмов управления им, быстро становятся неадекватными, так как изменяются отношения между входными и выходными параметрами, а также сам набор существенных параметров. По сути дела это означает, что традиционные АСУ способны управлять состоянием объекта управления лишь вблизи точки равновесия путем слабых управляющих воздействий на него, т.е. методом малых возмущений. Вдали же от состояния равновесия с традиционной точки зрения поведение объекта управления выглядит непредсказуемым и неуправляемым.

Если нет однозначной связи между входными и выходными параметрами объекта управления (т.е. между входными параметрами и состоянием объекта), иначе говоря, если эта связь имеет выраженный вероятностный характер, то детерминистские модели, в которых предполагается, что результатом измерения некоторого параметра является просто число, изначально неприменимы. Кроме того, вид этой связи просто может быть неизвестным, и тогда необходимо исходить из самого общего предположения: что она вероятностная, либо не определена совсем.

Автоматизированная система управления, построенная на традиционных принципах, может работать только на основе параметров, закономерности связей которых уже известны, изучены и отражены в математической модели, в данном же исследовании поставлена задача разработки таких методов проектирования АСУ, которые позволят создать системы, способные выявлять и набор наиболее значимых параметров, и определять характер связей между ними и состояниями объекта управления.

В этом случае необходимо применять более развитые и адекватные реальной ситуации методы измерений:

классификация или распознавание образов (обучение на основе обучающей выборки, адаптивность алгоритмов распознавания, адаптивность наборов классов и исследуемых параметров, выделение наиболее существенных параметров и снижение размерности описания при сохранении заданной избыточности и т.д.);

статистические измерения, когда результатом измерения некоторого параметра является не отдельное число, а вероятностное распределение: изменение статистической переменной означает не изменение ее значения самого по себе, а изменение характеристик вероятностного распределения ее значений.

В итоге АСУ, основанные на традиционном детерминистском подходе, практически не работают со сложными динамическими многопараметрическими слабодетерминированными объектами управления, такими, например, как макро- и микросоциально-экономические системы в условиях динамичной экономики «переходного периода», иерархические элитные и этнические группы, социум и электорат, физиология и психика человека, природные и искусственные экосистемы и многие другие.

Весьма знаменательно, что в середине 80-х годов школа И.Пригожина развивает подход [282], согласно которому в развитии любой системы (в том числе и человека) чередуются периоды, в течение которых система ведет себя то как «в основном детерминированная», то как «в основном случайная». Естественно, реальная система управления должна устойчиво управлять объектом управления не только на «детерминистских» участках его истории, но и в точках, когда его дальнейшее поведение становится в высокой степени неопределенным. Уже одно это означает, что необходимо разрабатывать подходы к управлению системами, в поведении которых есть большой элемент случайности (или того, что в настоящее время математически описывается как «случайность»).

Поэтому, в состав перспективных АСУ, обеспечивающих управление сложными динамическими многопараметрическими слабодетерминированными системами, в качестве существенных функциональных звеньев, по-видимому, войдут подсистемы идентификации и прогнозирования состояний среды и объекта управления, основанные на методах искусственного интеллекта (прежде всего распознавания образов), методах поддержки принятия решений и теории информации.

Кратко рассмотрим вопрос о применении систем распознавания образов для принятия решения об управляющем воздействии (подробнее этот вопрос будет рассмотрен далее, так как он является ключевым для данной работы). Если в качестве классов распознавания взять целевые и иные состояния объекта управления, а в качестве признаков — факторы, влияющие на него, то в модели распознавания образов может быть сформирована мера связи факторов и состояний. Это позволяет по заданному состоянию объекта управления получить информацию о факторах, которые способствуют или препятствуют его переходу в это состояние, и, на этой основе, выработать решение об управляющем воздействии.

Факторы могут быть разделены на следующие группы:

характеризующие предысторию объекта управления;

характеризующие актуальное состояние объекта управления;

факторы окружающей среды;

технологические (управляемые) факторы.

Таким образом, системы распознавания образов могут быть применены в составе АСУ: в подсистемах идентификации состояния объекта управления и выработки управляющих воздействий.

Это целесообразно в случае, когда объект управления представляет собой сложную систему.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет