Лекция для студентов биологических специальностей сельскохозяйственных вузов. Горки: уо «Белорусская государственная сельскохозяйственная академия»



бет3/4
Дата20.07.2016
өлшемі259 Kb.
#211659
түріЛекция
1   2   3   4

5. ОСНОВНЫЕ ТКАНИ



5.1. Значение и разнообразие основных тканей
Основные ткани составляют большую часть тела растений по массе и объёму. Благодаря форме клеток они называются также паренхимными. Основные ткани располагаются во всех вегетативных и репродуктивных органах покрытосеменных: в корнях, стеблях, листьях и их видоизменениях, а также в цветках, плодах и семенах. Кроме того, паренхимы хорошо развиты у высших споровых растений и у голосеменных. В клетках основных тканей происходит фотосинтез и газообмен, образование и запасание питательных веществ, некоторые другие физиологические процессы. Разнообразие функций определяет разнообразие особенностей их клеточного строения. По происхождению основные ткани могут быть первичными и вторичными. Первичные возникают из меристем зародыша семени, конуса нарастания побега и кончика корня. Вторичные паренхимы появляются благодаря образованию и жизнедеятельности камбия. В зависимости от выполняемых функций паренхимные ткани подразделяются на основные, ассимиляционные, запасающие, водозапасающие и воздухоносные.
5.2. Основная паренхима

Основная паренхима располагается в органах растений обширными участками. Клетки этой паренхимы крупные, тонкостенные, округлой, кубической и призматической формы, могут иметь как плотное, так и рыхлое сложение. В них отсутствуют пластиды, но хорошо развиты вакуоли. Из клеток основной паренхимы образуются различные анатомические комплексы:



  • сердцевина стебля, способная запасать питательные вещества;

  • сердцевинные лучи древесины, по которым осуществляется радиальный транспорт веществ;

  • горизонтальная паренхима, или сердцевинные лучи вторичной коры, расположенные между участками флоэмы и связанные с радиальным транспортом веществ;

  • вертикальная паренхима, входящая в состав вторичной флоэмы, где она может запасать питательные веществ;

  • основная паренхима в составе коры корня первичного анатомического строения, а также проводящих пучков у двудольных покрытосеменных.

Помимо транспорта воды и растворенных в ней веществ, а также их запасания, основную паренхиму отличает способность к дифференциации и формированию вторичных образовательных тканей – камбия и пробкового камбия. В естественных условиях это обеспечивает переход к вторичному анатомическому строению корня и стебля, образование перидермы и корки, а также раневой меристемы и раневой перидермы. В сельскохозяйственной биотехнологии эта особенность основной паренхимы используется для микроклонального размножения растений.
5.3. Ассимилляционная паренхима
Наличие ассимиляционной паренхимы является важным отличительным признаком высших автотрофных растений. Благодаря наличию хлоропластов она имеет зелёный цвет в нативном состоянии и часто называется хлоренхимой. В клетках хлоренхимы протекают реакции фотосинтеза и связанные с ними биохимические процессы (синтез АТФ, фотодыхание и др.), а также газообмен и транспирация.

Для клеток хлоренхимы характерны тонкие оболочки, хорошо развитые вакуоли, многочисленные хлоропласты, которые занимают до 80% объема протоплазмы. Хлоренхима располагается во всех зелёных частях растений. Лучше всего она развита в мезофилле листа. В дорсивентральных листьях растений с С3-типом фотосинтеза, например, у яблони или свеклы, клетки хлоренхимы верхней части мезофилла имеют призматическую форму и плотное сложение и образуют столбчатую ткань. С нижней стороны листа клетки хлоренхимы более округлые, располагаются рыхло, образуя губчатую ткань.

У некоторых растений влажных тропиков (фикус и др.) столбчатая паренхима развивается и в верхнем, и нижнем слоях мезофилла, между которыми находится губчатая хлоренхима. В листьях изолатерального типа, как у ириса и кукурузы, клетки мезофилла имеют более или менее одинаковые размеры и форму и сложены рыхло. Кроме того, у растений тропического происхождения с С4-типом фотосинтеза (кукуруза, сорго и др.) клетки хлоренхимы располагаются кольцом вокруг проводящих пучков листа, образуя специальную обкладку, необходимую для прохождения реакций фотосинтеза.

Для листьев хвойных пород характерен складчатый мезофилл, клетки которого имеют большую поверхность и содержат много хлоропластов.

В стеблях травянистых растений и побегах деревьев и кустарников хлоренхима входит в состав первичной коры, где может располагаться либо сплошным слоем, как, например, у бобовых или пасленовых, либо обособленными продольными тяжами, как у мятликовых.

Ассимиляционная паренхима хорошо развита в зелёных частях цветка и в незрелых плодах. В меньшем количестве она встречается в корнях у водных растений (ряска и др.) и в воздушных корнях эпифитов (орхидеи и др.).

Образование ассимиляционной паренхимы генетически детерминировано. Вместе с тем её развитие и интенсивность жизнедеятельности в значительной мере зависит от факторов окружающей среды: температуры воздуха и почвы, обеспеченности водой и элементами минерального питания, освещенности и длины светового дня.
5.4. Запасающая паренхима
В ходе реакций ассимиляции у растений образуются разнообразные органические соединения, часть из которых выводится из процесса метаболизма и резервируется в корнях, стеблях, листьях, плодах и семенах в запасающей паренхиме. В первую очередь это запасные питательные вещества – углеводы, белки, жиры, а также вторичные продукты обмена – алколоиды, гликозиды, дубильные вещества и др. Для клеток этой ткани функция запасания является главной.

Запасающая паренхима образована, как правило, крупными тонкостенными живыми клетками с хорошо развитыми лейкопластами, комплексом Гольджи, вакуолями. По мере созревания запасающих органов плотность сложения клеток может уменьшаться и ткань приобретает рыхлое сложение, как у плодов некоторых позднеспелых сортов яблони.

Запасание может происходить в разных частях клеток. Например, водорастворимые моно- и дисахариды могут накапливаться в клеточном соке плодов (виноград, груша) и корней (сахарная свекла); крахмал – в амилопластах клубней (картофель), преобразуемых при этом в крахмальные зерна; капли жира встречаются в цитоплазме семян (подсолнечник) и плодов (маслины); белки могут запасаться в вакуолях и при обезвоживании клетки образовывать сферокристаллы алейроновых зерен (пшеница). Гемицеллюлоза откладывается в клеточных оболочках, при этом они утолщаются, как, например, в семенах финиковой пальмы.

Степень развития запасающих тканей и количество запасаемых веществ зависит от генотипа растения и условий их произрастания. Так, при правильном подборе сортов и улучшении агротехники у картофеля увеличивается выход товарной продукции, формируются более крупные клубни с большим содержанием крахмала.


5.5. Водозапасающая паренхима
Особым случаем запасающей паренхимы является водозапасающая ткань. Она характерна для листовых (алоэ, очиток) и стеблевых (кактус) суккулентов и других растений, возникших в условиях дефицита влаги.

Водозапасающая ткань располагается в глубине вегетативного органа под ассимилляционной паренхимой и обкладочными клетками. Клетки этой паренхимы крупные, тонкостенные, с хорошо развитыми вакуолями. В клеточном соке содержится водоудерживающая слизь, которая уменьшает потери воды при испарении.


5.6. Воздухоносная паренхима
Воздухоносная паренхима, или аэренхима, характерна для водно-болотных растений, у которых корни и корневища располагаются в толще грунта под водой и испытывают постоянный недостаток кислорода (белокрыльник болотный, камыш озерный, кубышка желтая и др.). Она формируется из небольших округлых клеток, как у кубышки и рдеста, или звездчатых, как у ситника. Эти клетки располагаются в стеблях и корневищах в виде цепочек, которые окружают крупные межклетники, по которым перемещается воздух. В местах, где цепочки клеток соприкасаются, часто располагается мелкоклеточная склеренхима, придающая прочность стеблю.

Аэренхима выполняет вентиляционную функцию, а также обеспечивает плавучесть водных растений.


5.7. Ткани, связанные с гетеротрофным питанием растений
Важным отличительным признаком растений является преобладание у них автотрофного способа питания над гетеротрофным. При автотрофном питании растения синтезируют органические вещества из неорганических, а при гетеротрофном – используют готовые органические соединения.

Среди растений гетеротрофов встречаются сапрофиты (гидиофитум и др.), паразиты (повилика, заразиха, омела, петров крест и др.) и насекомоядные растения (альдрованда, росянка, венерина мухоловка и др.). Сапрофиты питаются органическим веществом отмерших растений и животных. Паразиты поглощают с помощью присосок гаусторий воду, органические и минеральные вещества из растений-хозяев. Насекомоядные растения используют продукты разложения насекомых как дополнительный источник питания, преимущественно при произрастании на бедных азотом болотных почвах.

Питание растений гетеротрофов обеспечивается деятельностью специальных паренхимных клеток, которые способны синтезировать пищеварительные ферменты и всасывать переваренные вещества. Эти клетки располагаются, как правило, на видоизмененных листьях и корнях.

У преобладающего большинства растений распространено гетеротрофное питание за счет запасных питательных веществ. Так, например, питаются клетки прорастающего семени зерновых культур. В них запас питательных веществ сосредоточен главным образом в эндосперме, а структурой, способной всасывать и передавать эти вещества развивающемуся зародышу, является щиток, т.е. развитая семядоля. Небольшие паренхимные тонкостенные плотносложенные клетки щитка выделяют в эндосперм органические кислоты и гидролитические ферменты, которые совместно с выделениями клеток алейронового слоя расщепляют запасные белки и углеводы до водорастворимого состояния. Затем растворенные питательные вещества всасываются клетками щитка и передаются клеткам зародыша. Зародыш, таким образом, питается гетеротрофно. Гетеротрофно питаться могут и другие незеленые части растений.



6. ПРОВОДЯЩИЕ ТКАНИ



6.1. Значение и разнообразие проводящих тканей
Проводящие ткани являются важнейшей составной частью большинства высших растений. Они являются обязательным структурным компонентом вегетативных и репродуктивных органов споровых и семенных растений. Проводящие ткани в совокупности с клеточными стенками и межклетниками, некоторыми клетками основной паренхимы и специализированными передаточными клетками образуют проводящую систему, которая обеспечивает дальний и радиальный транспорт веществ. Благодаря особой конструкции клеток и их расположению в теле растений проводящая система выполняет многочисленные, но взаимосвязанные функции:

1) передвижение воды и минеральных веществ, поглощенных корнями из почвы, а также органических веществ, образуемых в корнях, в стебель, листья, репродуктивные органы;

2) передвижение продуктов фотосинтеза из зелёных частей растения в места их использования и запасания: в корни, стебли, плоды и семена;

3) передвижение фитогормонов по растению, что создает определённый их баланс, который определяет темпы роста и развития вегетативных и репродуктивных органов растений;

4) радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других тканей, например, в ассимилирующие клетки мезофилла листа и делящиеся клетки меристем. В нем могут также принимать участие паренхимные клетки сердцевинных лучей древесины и коры. Большое значение в радиальном транспорте имеют передаточные клетки с многочисленными выпячиваниями клеточной оболочки, находящиеся между проводящими и паренхимными тканями;

5) проводящие ткани повышают устойчивость органов растений к деформирующим нагрузкам;

6) проводящие ткани образуют непрерывную разветвленную систему, связывающую органы растений в единое целое;

Возникновение проводящих тканей является результатом эволюционных структурных преобразований, связанных с выходом растений на сушу и разделением их воздушного и почвенного питания. Наиболее древние проводящие ткани – трахеиды обнаружены у ископаемых риниофитов. Наивысшего развития они достигли у современных покрытосеменных.

В процессе индивидуального развития первичные проводящие ткани образуются из прокамбия в точках роста зародыша семени и почек возобновления. Вторичные проводящие ткани, характерные для двудольных покрытосеменных, порождаются камбием.

В зависимости от выполняемых функций проводящие ткани подразделяются на ткани восходящего тока и ткани нисходящего тока. Основным назначением тканей восходящего тока является транспорт воды и растворенных в ней минеральных веществ от корня к выше расположенным надземным органам. Кроме того, по ним перемещаются органические вещества, образуемые в корне и стебле, например, органические кислоты, углеводы и фитогормоны. Однако термин «восходящий ток» не следует воспринимать однозначно как передвижение снизу – вверх. Ткани восходящего тока обеспечивают поток веществ по направлению от зоны всасывания к апексу побега. При этом транспортируемые вещества используются как самим корнем, так и стеблем, ветвями, листьями, репродуктивными органами, независимо от того, выше или ниже уровня корней они находятся. Например, у картофеля вода и элементы минерального питания поступают по тканям восходящего тока в столоны и клубни, образуемые в почве, а также в надземные органы.

Ткани нисходящего тока обеспечивают отток продуктов фотосинтеза в растущие части растений и в запасающие органы. При этом пространственное положение фотосинтезирующих органов не имеет никакого значения. Например, у пшеницы органические вещества поступают в развивающиеся зерновки из листьев разных ярусов. Поэтому к названиям «восходящие» и «нисходящие» ткани следует относиться не более как к сложившейся традиции.
6.2. Проводящие ткани восходящего тока
К тканям восходящего тока относятся трахеиды и сосуды (трахеи), которые располагаются в древесинной (ксилемной) части органов растений. В этих тканях передвижение воды и растворенных в ней веществ происходит пассивно под действием корневого давления и испарением воды с поверхности растения.

Трахеиды имеют более древнее происхождение. Они встречаются у высших споровых растений, голосеменных и реже – у покрытосеменных. У покрытосеменных они типичны для мельчайших разветвлений жилок листа. Клетки трахеид мертвые. Они имеют вытянутую, часто веретеновидную форму. Их длина составляет 1 – 4 мм. Однако у голосеменных, например у араукарии, она достигает 10 мм. Стенки клеток толстые, целлюлозные, часто пропитываются лигнином. В клеточных оболочках имеются многочисленные окаймленные поры.

Сосуды сформировались на более поздних этапах эволюции. Они характерны для покрытосеменных, хотя встречаются и у некоторых современных представителей отделов Плауны (род Селлагинелла), Хвощи, Папоротники и Голосеменные (род Гнетум).

Сосуды состоят из удлиненных мертвых клеток, расположенных одна над другой и называемых члениками сосуда. В торцевых стенках члеников сосуда имеются крупные сквозные отверстия – перфорации, через которые осуществляется дальний транспорт веществ. Перфорации возникли в ходе эволюции из окаймленных пор трахеид. В составе сосудов они бывают лестничными и простыми. Многочисленные лестничные перфорации образуются на торцевых стенках члеников сосуда при их косом заложении. Отверстия таких перфораций имеют удлиненную форму, а разделяющие их перегородки располагаются параллельно друг другу, напоминая ступеньки лестницы. Сосуды с лестничной перфорацией характерны для растений семейств Лютиковые, Лимонниковые, Березовые, Пальмовые, Частуховые.

Простые перфорации известны у эволюционно более молодых семейств, таких как Паслёновые, Тыквенные, Астровые, Мятликовые. Они представляют собой одно крупное отверстие в торцевой стенке членика, расположенной перпендикулярно оси сосуда. В ряде семейств, например, у Магнолиевых, Розовых, Ирисовых, Астровых, в сосудах встречаются как простые, так и лестничные перфорации.

Боковые стенки имеют неравномерные целлюлозные утолщения, которые предохраняют сосуды от избыточного давления, создаваемого рядом расположенными живыми клетками других тканей. В боковых стенках могут находиться многочисленные поры, обеспечивающие выход воды за пределы сосуда.

В зависимости от характера утолщений, типов и характера расположения пор сосуды подразделяются на кольчатые, спиральные, биспиральные, сетчатые, лестничные и точечно-поровые. У кольчатых и спиральных сосудов целлюлозные утолщения располагаются в виде колец или спиралей. Через неутолщенные участки осуществляется диффузия транспортируемых растворов в окружающие ткани. Диаметр этих сосудов сравнительно невелик. У сетчатых, лестничных и точечно-поровых сосудов вся боковая стенка, за исключением мест расположения простых пор, утолщена и часто пропитана лигнином. Поэтому радиальный транспорт веществ у них осуществляется через многочисленные удлиненные и точечные поры.

Сосуды имеют ограниченный срок деятельности. Они могут разрушаться в результате закупорки тиллами – выростами соседних паренхимных клеток, а также под действием центростремительных сил давления новых клеток древесины, образуемых камбием. В ходе эволюции сосуды подвергаются изменениям. Членики сосудов становятся короче и толще, косые поперечные перегородки сменяются прямыми, а лестничные перфорации – простыми.


6.3. Проводящие ткани нисходящего тока
К тканям нисходящего тока относятся ситовидные клетки и ситовидные трубки с клетками-спутницами. Ситовидные клетки имеют более древнее происхождение. Они встречаются у высших споровых растений и голосеменных. Это живые, удлиненные клетки с заостренными концами. В зрелом состоянии они содержат ядра в составе протопласта. В их боковых стенках, в местах соприкосновения смежных клеток, имеются мелкие сквозные перфорации, которые собраны группами и образуют ситовидные поля, через которые осуществляется передвижение веществ.

Ситовидные трубки состоят из вертикального ряда удлиненных клеток, разделенных между собой поперечными стенками и называемыми ситовидными пластинками, в которых расположены ситовидные поля. Если ситовидная пластинка обладает одним ситовидным полем, она считается простой, а если несколькими – то сложной. Ситовидные поля образуются многочисленными сквозными отверстиями – ситовидными перфорациями небольшого диаметра. Через эти перфорации из одной клетки в другую проходят плазмодесмы. На стенках перфораций размещается полисахарид каллоза, которая уменьшает просвет перфораций. По мере старения ситовидной трубки каллоза полностью закупоривает перфорации и трубка прекращает работу.

При формировании ситовидной трубки в образующих их клетках синтезируется специальный флоэмный белок (Ф-белок) и развивается крупная вакуоль. Она оттесняет цитоплазму и ядро к стенке клетки. Затем мембрана вакуоли разрушается и внутреннее пространство клетки заполняется смесью цитоплазмы и клеточного сока. Тельца Ф-белка теряют отчетливые очертания, сливаются, образуя тяжи около ситовидных пластинок. Их фибриллы проходят через перфорации из одного членика ситовидной трубки в другой. К членикам ситовидной трубки плотно прилегают одна или две клетки-спутницы, которые имеют удлиненную форму, тонкие стенки и живую цитоплазму с ядром и многочисленными митохондриями. В митохондриях синтезируется АТФ, необходимая для транспорта веществ по ситовидным трубкам. В стенках клеток-спутниц имеется большое количество пор с плазмадесмами, которое почти в 10 раз превышает их количество в других клетках мезофилла листа. Поверхность протопласта этих клеток значительно увеличена за счет многочисленных складок, образуемых плазмалеммой.

Скорость передвижения ассимилятов по ситовидным трубкам значительно превышает скорость свободной диффузии веществ и достигает 50 – 150 см/час, что указывает на активный транспорт веществ с использованием энергии АТФ.

Продолжительность работы ситовидных трубок у многолетних двудольных составляет 1 – 2 года. На смену им камбий постоянно образует новые проводящие элементы. У однодольных, лишенных камбия, ситовидные трубки существуют гораздо дольше.
6.4. Проводящие пучки
Проводящие ткани располагаются в органах растений в виде продольных тяжей, образуя проводящие пучки. Различают четыре типа проводящих пучков: простые, общие, сложные и сосудисто-волокнистые.

Простые пучки состоят из одного типа проводящих тканей. Например, в краевых частях листовых пластинок многих растений встречаются небольшие по диаметру пучки из сосудов и трахеид, а в цветоносных побегах у лилейных – из одних лишь ситовидных трубок.

Общие пучки образуются трахеидами, сосудами и ситовидными трубками. Иногда этот термин используется для обозначения пучков метамера, которые проходят в междоузлии и являются листовыми следами. В состав сложных пучков входят проводящие и паренхимные ткани. Наиболее совершенными, многообразными по строению и местоположению являются сосудисто-волокнистые пучки.

Сосудисто-волокнистые пучки характерны для многих высших споровых растений и голосеменных. Однако они наиболее типичны для покрытосеменных. В таких пучках выделяются функционально разные части – флоэма и ксилема. Флоэма обеспечивает отток ассимилятов из листа и передвижение их в места использования или запасания. По ксилеме вода и растворенные в ней вещества передвигаются из корневой системы в лист и другие органы. Объем ксилемной части в несколько раз превосходит объем флоэмной, поскольку объем поступающей в растение воды превышает объем образуемых ассимилятов, так как значительная часть воды испаряется растением.

Разнообразие сосудисто-волокнистых пучков определяется их происхождением, гистологическим составом и местонахождением в растении. Если пучки образуются из прокамбия и завершают своё развитие по мере использования запаса клеток образовательной ткани, как у однодольных, они называются закрытыми для роста. В отличие от них, у двудольных открытые пучки не ограничены в росте, поскольку они формируются камбием и увеличиваются в диаметре на протяжении всей жизни растения. В состав сосудисто-волокнистых пучков кроме проводящих могут входить основные и механические ткани. Например, у двудольных флоэма образуется ситовидными трубками (проводящая ткань восходящего тока), лубяной паренхимой (основная ткань) и лубяными волокнами (механическая ткань). В состав ксилемы входят сосуды и трахеиды (проводящая ткань нисходящего тока), древесинная паренхима (основная ткань) и древесинные волокна (механическая ткань). Гистологический состав ксилемы и флоэмы генетически детерминирован и может быть использован в систематике растений для диагностики разных таксонов. Кроме того, степень развития составных частей пучков может изменяться под влиянием условий произрастания растений.

Известно несколько видов сосудисто-волокнистых пучков.



Закрытые коллатеральные проводящие пучки характерны для листьев и стеблей однодольных покрытосеменных. В них отсутствует камбий. Флоэма и ксилема располагаются бок-о-бок. Для них характерны некоторые конструктивные особенности. Так, у пшеницы, отличающейся С3-путём фотосинтеза, пучки образуются из прокамбия и имеют первичную флоэму и первичную ксилему. Во флоэме выделяют более раннюю протофлоэму и более позднюю по времени образования, но более крупноклеточную метафлоэму. Во флоэмной части отсутствуют лубяная паренхима и лубяные волокна. В ксилеме первоначально образуются более мелкие сосуды протоксилемы, расположенные в одну линию перпендикулярно к внутренней границе флоэмы. Метаксилема представлена двумя крупными сосудами, расположенными рядом с метафлоэмой перпендикулярно цепочке сосудов протоксилемы. В этом случае сосуды располагаются Т-образно. Известно также V-, Y- и -образное расположение сосудов. Между сосудами метаксилемы в 1 – 2 ряда расположена мелкоклеточная склеренхима с утолщенными стенками, которые по мере развития стебля пропитываются лигнином. Эта склеренхима отделяет зону ксилемы от флоэмы. По обе стороны от сосудов протоксилемы располагаются клетки древесинной паренхимы, которые, вероятно, выполняют трансфузионную роль, поскольку при переходе пучка из междоузлия в листовую подушку стеблевого узла они участвуют в образовании передаточных клеток. Вокруг проводящего пучка стебля пшеницы располагается склеренхимная обкладка, лучше развитая со стороны протоксилемы и протофлоэмы, около боковых сторон пучка клетки обкладки располагаются в один ряд.

У растений с С4-типом фотосинтеза (кукуруза, просо и др.) в листьях вокруг закрытых проводящих пучков располагается обкладка из крупных клеток хлоренхимы.



Открытые коллатеральные пучки характерны для стеблей двудольных. Наличие слоя камбия между флоэмой и ксилемой, а также отсутствие склеренхимной обкладки вокруг пучков обеспечивает их длительный рост в толщину. В ксилемной и флоэмной частях таких пучков имеются клетки основной и механической тканей.

Открытые коллатеральные пучки могут быть образованы двумя путями. Во-первых, это пучки, первично образуемые прокамбием. Затем в них из клеток основной паренхимы развивается камбий, производящий вторичные элементы флоэмы и ксилемы. В результате пучки будут сочетать гистологические элементы первичного и вторичного происхождения. Такие пучки характерны для многих травянистых цветковых растений класса Двудольные, имеющих пучковый тип строения стебля (бобовые, розоцветные и др.).

Во-вторых, открытые коллатеральные пучки могут быть образованы только камбием и состоять из ксилемы и флоэмы вторичного происхождения. Они типичны для травянистых двудольных с переходным типом анатомического строения стебля (астровые и др.), а также для корнеплодов типа свёклы.

В стеблях растений ряда семейств (Тыквенные, Пасленовые, Колокольчиковые и др.) встречаются открытые биколлатеральные пучки, где ксилема с двух сторон окружена флоэмой. При этом наружный участок флоэмы, обращенный к поверхности стебля, развит лучше внутреннего, а полоска камбия, как правило, располагается между ксилемой и наружным участком флоэмы.



Концентрические пучки бывают двух типов. В амфикрибральных пучках, характерных для корневищ папоротников, флоэма окружает ксилему, в амфивазальных – ксилема кольцом расположена вокруг флоэмы (корневища ириса, ландыша и др.). Реже концентрические пучки встречаются у двудольных (клещевина).

Закрытые радиальные проводящие пучки образуются в участках корней, имеющих первичное анатомическое строение. Радиальный пучок входит в состав центрального цилиндра и проходит через середину корня. Его ксилема имеет вид многолучевой звезды. Между лучами ксилемы располагаются клетки флоэмы. Число лучей ксилемы в значительной мере зависит от генетической природы растений. Например, у моркови, свеклы, капусты и других двудольных ксилема радиального пучка имеет только два луча. У яблони и груши их может быть 3 – 5, у тыквы и бобов – ксилема четырехлучевая, а у однодольных – многолучевая. Радиальное расположение лучей ксилемы имеет приспособительное значение. Оно сокращает путь воды от всасывающей поверхности корня к сосудам центрального цилиндра.

У многолетних древесных растений и некоторых травянистых однолетников, например у льна, проводящие ткани располагаются в стебле, не образуя четко выраженных проводящих пучков. Тогда говорят о непучковом типе строения стебля.


6.5. Ткани, регулирующие радиальный транспорт веществ
К специфическим тканям, регулирующим радиальный транспорт веществ относятся экзодерма и эндодерма.

Экзодерма является наружным слоем первичной коры корня. Она образуется непосредственно под первичной покровной тканью эпиблемой в зоне корневых волосков и состоит из одного или нескольких слоёв плотно сомкнутых клеток с утолщенными целлюлозными оболочками. В экзодерме вода, поступившая в корень по корневым волоскам, испытывает сопротивление вязкой цитоплазмы и перемещается в целлюлозные оболочки клеток экзодермы, а затем выходит из них в межклетники среднего слоя первичной коры, или мезодермы. Это обеспечивает эффективное поступление воды в более глубокие слои корня.

В зоне проведения в корне однодольных, где клетки эпиблемы отмирают и слущиваются, экзодерма оказывается на поверхности корня. Её клеточные стенки пропитываются суберином и препятствуют поступлению воды из почвы в корень. У двудольных экзодерма в составе первичной коры слущивается при линьке корня и замещается перидермой.



Эндодерма, или внутренний слой первичной коры корня, располагается вокруг центрального цилиндра. Она образуется одним слоем плотно сомкнутых клеток неодинакового строения. Одни из них, именуемые пропускными, имеют тонкие оболочки и легко проницаемы для воды. По ним вода из первичной коры поступает в радиальный проводящий пучок корня. Другие клетки имеют специфические целлюлозные утолщения радиальных и внутренних тангентальных стенок. Эти утолщения, пропитанные суберином, называются поясками Каспари. Они непроницаемы для воды. Поэтому вода поступает в центральный цилиндр только через пропускные клетки. А поскольку поглощающая поверхность корня значительно превосходит суммарную площадь сечения пропускных клеток эндодермы, то при этом возникает корневое давление, которое является одним из механизмов поступления воды в стебель, лист и репродуктивные органы.

Эндодерма входит также в состав коры молодого стебля. У некоторых травянистых покрытосеменных она как и в корне может иметь пояски Каспари. Кроме того, в молодых стеблях эндодерма может быть представлена крахмалоносным влагалищем. Таким образом, эндодерма может регулировать транспорт воды в растении и запасать питательные вещества.


6.6. Понятие о стеле и её эволюции
Возникновению, развитию в онтогенезе и эволюционным структурным преобразованиям проводящей системы уделяется большое внимание, поскольку она обеспечивает взаимосвязь органов растений и с ней связана эволюция крупных таксонов.

По предложению французских ботаников Ф. Ван Тигема и А. Дулио (1886) совокупность первичных проводящих тканей вместе с расположенными между ними другими тканями и перициклом, прилегающим к коре, была названа стелой. В состав стелы может также входить сердцевина и образуемая на её месте полость, как, например, у мятликовых. Понятие «стела» соответствует понятию «центральный цилиндр». Стела корня и стебля функционально едина. Изучение стелы у представителей разных отделов высших растений привело к формированию стелярной теории.

Различают два основных типа стелы: протостелу и эустелу. Наиболее древней является протостела. Её проводящие ткани располагаются в середине осевых органов, причём в центре находится ксилема, окруженная сплошным слоем флоэмы. Сердцевина или полость в стебле отсутствуют.

Существует несколько эволюционно связанных между собой видов протостелы: гаплостела, актиностела и плектостела.

Исходным, примитивным видом является гаплостела. У неё ксилема имеет округлую форму поперечного сечения и окружена ровным непрерывным слоем флоэмы. Вокруг проводящих тканей одним – двумя слоями располагается перицикл [К. Эсау, 1969]. Гаплостела была известна у ископаемых риниофитов и сохранилась у некоторых псилотофитов (тмезиптер).

Более развитым видом протостелы является актиностела, в которой ксилема на поперечном сечении приобретает форму многолучевой звезды. Она обнаружена у ископаемого астероксилона и некоторых примитивных плауновидных.

Дальнейшее разобщение ксилемы на отдельные участки, расположенные радиально или параллельно друг к другу, привело к образованию плектостелы, характерной для стеблей плауновидных. У актиностелы и плектостелы флоэма по-прежнему окружает ксилему со всех сторон.

В ходе эволюции из протостелы возникла сифоностела, отличительной особенностью которой является трубчатое строение. В центре такой стелы располагается сердцевина или полость. В проводящей части сифоностелы появляются листовые щели, благодаря которым возникает непрерывная связь сердцевины с корой. В зависимости от способа взаимного расположения ксилемы и флоэмы сифоностела бывает эктофлойной и амфифлойной. В первом случае флоэма с одной, наружной, стороны окружает ксилему. Во втором – флоэма окружает ксилему с двух сторон, с наружной и внутренней.

При разделении амфифлойной сифоностелы на сеть или ряды продольных тяжей возникает рассеченная стела, или диктиостела, характерная для многих папоротниковидных. Её проводящая часть представлена многочисленными концентрическими проводящими пучками.

У хвощей из эктофлойной сифоностелы возникла артростела, которая имеет членистое строение. Она отличается наличием одной крупной центральной полости и обособленных проводящих пучков с протоксилемными полостями (каринальными каналами).

У цветковых растений на основе эктофлойной сифоностелы образовалась эустела, характерная для двудольных, и атактостела, типичная для однодольных. В эустеле проводящая часть состоит из обособленных коллатеральных пучков, имеющих круговое расположение. В центре стелы в стебле располагается сердцевина, которая с помощью сердцевинных лучей соединяется с корой. В атактостеле проводящие пучки имеют рассеянное расположение, между ними находятся паренхимные клетки центрального цилиндра. Такое расположение пучков скрывает трубчатую конструкцию сифоностелы.

Возникновение различных вариантов сифоностелы является важным приспособлением высших растений к увеличению диаметра осевых органов – корня и стебля.


7. МЕХАНИЧЕСКИЕ ТКАНИ
7.1. Значение и свойства механических тканей
Механические ткани возникли в связи с выходом растений на сушу в условиях более сильного воздействия сил гравитации. В сочетании с другими тканями они обеспечивают поддержание размеров и формы тела растений при отсутствии внутреннего скелета. В.Ф. Раздорский сравнивал роль механических тканей с ролью стальной арматуры в железобетонных конструкциях.

Механические ткани обеспечивают устойчивость растений к статическим и динамическим нагрузкам благодаря упругости и жесткости.



Упругость – это способность структуры возвращаться в исходное положение после снятия деформирующей нагрузки. В механике упругость выражается в значениях модуля Юнга, физический смысл которого состоит в том, что он показывает, какую силу следует приложить к стержню единичного сечения, чтобы его длина увеличилась в два раза. Величина модуля прямо пропорциональна деформирующей силе и длине деформируемого участка и обратно пропорциональна площади поперечного сечения испытуемого материала. Упругость может быть также оценена ультразвуковым методом и методом голографической интерферометрии. Упругость механических тканей достаточно высока. У подсолнечника предел упругости достигает 27,4 кг/мм2, у девясила – 37,4 кг/мм2, у строительной стали – 20 кг/мм2. Упругость растительного материала зависит от генотипа и условий выращивания растений, возраста и места отбора проб. Например, у пшеницы в период цветения и налива зерна упругость средней части подколосового междоузлия в 2 – 4 раза выше, чем непосредственно под колосом, что приводит у некоторых сортов к пониканию колоса.

Жесткость – это способность противостоять деформирующим нагрузкам. Она обратно пропорциональна упругости. Жесткость механических тканей увеличивается с возрастом растений по мере утолщения клеточных оболочек. Изучению показателей прочности органов растений уделяется большое внимание как в селекции устойчивых к полеганию сортов, так и в практическом растениеводстве. Применение синтетических регуляторов роста широко используется в агрономии для повышения прочности стебля и снижения полегаемости посевов.

Механические ткани образуются во всех органах растений: в корнях, стеблях, листьях, плодах и семенах. Они располагаются как правило ближе к поверхности органов, где возникают более высокие деформационные нагрузки на сжатие и растяжение. По происхождению механические ткани бывают первичными и вторичными. Первичные образуются первичными меристемами – прокамбием и перициклом, а вторичные – вторичной меристемой, т.е. камбием.

Среди механических тканей выделяют колленхиму, склеренхиму и склереиды.
7.2. Колленхима
Колленхима – это первичная механическая ткань, которая может располагаться под эпидермисом в составе первичной коры стебля (подсолнечник), в черешках листьев (тыква), в листовых подушках (злаки), реже в корнях (капуста). Субэпидермальное развитие колленхимы способствует формированию ребристости стебля, как у тыквенных, яснотковых, мареновых. Упругие свойства колленхимы проявляются при тургорном состоянии клеток.

Колленхима образуется живыми, многогранными прозенхимными клетками длиной до 2 мм, с тупыми или скошенными концами, с неравномерно утолщенными клеточными оболочками, которые содержат много целлюлозы, гемицеллюлозы, пектина и воды. Эта неравномерность обеспечивает хорошую упругость клетки и не препятствует её росту. В зависимости от характера утолщения колленхима бывает уголковой, пластинчатой и рыхлой.

В клетках уголковой колленхимы вторичные утолщения, как в черешках листа свеклы, располагаются в уголках клетки и проходят вдоль неё в виде продольных тяжей. У пластинчатой колленхимы, характерной для стеблей и черешков листьев астровых, целлюлоза равномерно откладывается на всей поверхности противоположных клеточных оболочек, расположенных тангентально к поверхности органа. Другие оболочки остаются относительно тонкими. Рыхлая колленхима отличается хорошим развитием межклетников, к которым обращены утолщенные оболочки клеток. Эта ткань встречается в стебле ваточника, черешке листа лопуха.
7.3. Склеренхима
Склеренхима является наиболее распространенной механической тканью и встречается во всех органах растений. Её прочность выше, чем у колленхимы, и близка к прочности инструментальной стали. По происхождению склеренхима бывает первичной, если образуется из перицикла или прокамбия, и вторичной, если образуется из камбия. Клетки сформировавшейся склеренхимы мертвые, длинные, узкие, имеют толстую вторичную оболочку и плотное сложение и называются волокнами.

В зависимости от клеточного строения и местонахождения склеренхима подразделяется на лубяные и древесинные волокна.



Лубяные волокна могут иметь перициклическое или камбиальное происхождение. Лубяные волокна перициклического происхождения располагаются в стебле либо сплошным кольцом непосредственно под эпидермисом (кукуруза и другие злаки), либо под первичной корой (купена), либо отдельными тяжами в коре (лен), либо в виде блоков над проводящими пучками (бобовые и другие травянистые двудольные). Лубяные волокна камбиального происхождения входят в состав вторичной коры и хорошо развиты у древесных растений (яблоня, липа и др.).

Клетки лубяных волокон тонкие, с утолщенными целлюлозными оболочками. Их длина достигает у конопли – 40 мм, крапивы – 55, льна – 60 и у рами – 350 мм. При этом коэффициент прозенхимности (отношение длины к ширине клетки) составляет у конопли – 750, у льна – 1000, у рами – более 2000. Клетки лубяных волокон собраны в тяжи цилиндрической формы, именуемые техническими волокнами. Они характеризуются высокой прочностью, гигроскопичностью и низкой теплопроводностью. Используются для изготовления тканей (лен), канатов (новозеландский лен), веревок (манильская пенька), рогож, мочал.

Технические качества лубяных волокон зависят от сорта, уровня применяемых технологий выращивания растений и переработки сырья.

Древесинные волокна входят в состав древесины и, как правило, образуются камбием. Их мертвые клетки короче и толще лубяных, имеют плотное сложение. Целлюлозные оболочки клеток толстые, пропитаны лигнином, отличаются большой прочностью и твердостью. В частности твердой древесиной выделяются граб, дуб, железное дерево, ясень. Благодаря высокой прочности древесинных волокон стебли многих растений имеют многостороннее техническое использование.


    1. Склереиды

В отличие от волокон клетки склереид имеют паренхимную форму и первичное происхождение. Для склереид характерно мощное развитие клеточных оболочек, пропитанных лигнином, наличие в них простых пор. По мере развития оболочек клетки отмирают. Среди склереид выделяют каменистые клетки, или брахисклереиды, и ветвистые клетки, или астеросклереиды.

Каменистые клетки округлые, имеют плотное сложение. Они могут располагаться группами в мякоти плодов груши, айвы, в корнях хрена. Кроме того, каменистые клетки могут образовывать сплошной слой как в косточке (эндокарпе) у сливы и других косточковых пород.

Ветвистые клетки имеют разветвленную, звездчатую форму. Они располагаются поодиночке в листьях чая, маслины, камелии, в воздухоносной паренхиме стеблей водных растений, где выполняют опорную функцию.

Развитие механических тканей зависит от многих эндогенных и экзогенных факторов. Под влиянием разных наборов генов формируется число и размеры клеток, фитогормоны участвуют в регулировании инкрустации оболочек лигнином. Погодные и почвенные условия, а также условия питания растений имеют большое значение в развитии механических тканей, что должно учитываться в агрономической практике.



Достарыңызбен бөлісу:
1   2   3   4




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет