Лекция план Экология и другие области научного знания, историческое развитие экологии; структура экологии и общей экологии



бет1/3
Дата27.06.2016
өлшемі0.55 Mb.
#159974
түріЛекция
  1   2   3
Лекция №1 ВВОДНАЯ ЛЕКЦИЯ
План
1.Экология и другие области научного знания, историческое развитие экологии; структура экологии и общей экологии

2. Среда обитания; факторы среды и их классификация; закономерности действия факторов среды на организм; среды жизни и адаптации к ним организмов; взаимосвязи и взаимоотношения организмов;

4. Строение и происхождение биосферы; основные свойства биосферы; учение В.И.Вернадского о биосфере и ноосфере

5. Понятие экосистемы и биогеоценоза



1. Экология и другие области научного знания
Экологию рассматривают как науку и учебную дисциплину, которая призвана изучать взаимоотношения организмов и среды во всем их разнообразии. При этом под средой понимается не только мир неживой природы, а и воздействие одних организмов или их сообществ на другие организмы и сообщества.

Термин «экология» был введен в употребление немецким естествоиспытателем Э. Геккелем в 1866 году и в дословном переводе с греческого обозначает науку о доме (ойкос - дом, жилище; логос - учение).



Современную экологию можно рассматривать как науку, занимающуюся изучением взаимоотношений организмов, в том числе и человека, со средой, определением масштабов и допустимых пределов воздействия человеческого общества на среду, возможностей уменьшения этих воздействий или их полной нейтрализации. В стратегическом плане - это наука о выживании человечества и выходе из экологического кризиса, который приобрел (или приобретает) глобальные масштабы - в пределах всей планеты Земля.

Становится все более ясным, что человек очень мало знает о среде, в которой он живет, особенно о механизмах, которые формируют и сохраняют среду. Раскрытие этих механизмов (закономерностей) - одна из важнейших задач современной экологии и экологического образования. Ясно, что она может решаться лишь при условии изучения не только «Дома», но и его обитателей, их образа жизни.



Содержание термина «экология», таким образом, приобрело социально-политический, философский аспект. Она стала проникать практически во все отрасли знаний, с ней связывается гуманизация естественных и технических наук, она активно внедряется в гуманитарные области знаний. Экология при этом рассматривается не только как самостоятельная дисциплина, а как мировоззрение, призванное пронизывать все науки, технологические процессы и сферы деятельности людей.

Экология как наука должна решать следующие задачи:



  • Изучить законы и закономерности взаимодействия организмов со средой их обитания;

  • Изучить формирование, структуру и функционирование надорганизменных биологических систем (популяция, биоценоз (сообщество), биогеоценоз (экосистема), биом, биосфера).

  • Изучить законы и закономерности взаимодействия надорганизменных биологических систем (популяция, биоценоз (сообщество), биогеоценоз (экосистема), биом, биосфера) с окружающей средой.

Цели экологии можно сформулировать следующим образом.

  • Разработка оптимальных путей взаимодействия общества и природы с учетом законов существования природы;

  • Прогнозирование последствий воздействия общества на природу с целью предотвращения негативных результатов.

Для решения задач, стоящих перед экологией, она использует как свои собственные методы, так и методы других наук. Собственные методы экологии можно разделить на три группы.

Полевые методы - это методы, позволяющие изучить влияние комплекса факторов естественной среды на естественные биологические системы и установить общую картину существования и развития системы.

Лабораторные методы - это методы, позволяющие изучить влияние комплекса факторов моделированной в лабораторных условиях среды на естественные или моделированные биологические системы. Эти методы дают возможность получить приблизительные результаты, которые требуют дальнейшею подтверждения в полевых условиях.

Экспериментальные методы - это методы, позволяющие изучить влияние отдельных факторов естественной или моделированной среды на естественные или моделированные биологические системы. Они применяются в сочетании как с полевыми, так и с лабораторными методами.

Кроме собственных методов экология широко использует методы таких наук, как биохимия, физиология, микробио­логия, генетика, цитология, гистология, физика, химия, математика и др.

Экология как биологическая дисциплина возникла в се­редине XIX века, а в самостоятельную науку она превратилась только в первой половине XX века. Однако появлению экологии предшествовала длительная предыстория. Накопление экологических сведений началось с момента появления человека на Земле. Всю историю развития экологии можно разделить на пять этапов:

I. Этап накопления экологических сведений о взаимодействии растений и животных со средой в рамках ботаники и зоологии. Этот этап продолжался с глубокой древности до конца XVIII века.

II. Этап формирования экологических направлений в рамках ботанической и зоологической географии. Он продолжался с конца XVIII века до середины XIX века.

III.Этап формирования экологии растений и экологии животных как наук об адаптациях организмов к среде обитания. Данный этап продолжался с середины XIX века до 20-х годов XX века.

IV Этап становления экологии как общебиологической науки, являющейся теоретической базой охраны природы.Продолжался этот этап с 20-х по 60-е годы XX века.

V Этап развития глобальной экологии с выделением в ее рамках антропоэкологии (экологии человека). Начался данный этап с 60-х годов XX века и продолжается в настоящее время.

«Общая экология» изучает наиболее общие закономерности взаимоотношений организмов и их сообществ со средой в естественных условиях.

В «Общей экологии» обычно выделяют несколько взаимосвязанных разделов, которые иногда рассматривают как отдельные дисциплины. Это: учение о факторах среды и закономерностях их действия на организмы (факториальная экология); экология на уровне взаимоотношения отдельных организмов и среды (экология организмов, или аутэкология); экология взаимосвязанных и относительно обособленных групп организмов одних и тех же видов (популяционная, или демографическая, экология), экология взаимосвязанных популяций различных видов между собой (учение о биоценозах). Если биоценозы рассматриваются во взаимосвязи со средой обитания (как единая система), то этот раздел выделяется в учение об экосистемах или биогеоценозах. Основополагающим и высшим рангом экологии является учение о биосфере как наиболее крупной (глобальной) экосистеме


.Среда обитания

Среда это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие. Из среды организмы получают все необходимое для жизни и в нее же выделяют продукты обмена веществ. Среда каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком и его производственной деятельностью. При этом одни элементы могут быть частично или полностью безразличны организму, другие необходимы, а третьи оказывают отрицательное воздействие.

Экологические факторы и их классификация

Под экологичес­кими факторами понимается любой элемент или условие среды, на которые организмы реагируют приспособительными реакция­ми, или адаптациями. За пределами приспособительных реакций лежат летальные (гибельные для организмов) значения факторов.

Условия жизни, или условия существования, — это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может.

Чаще всего факторы делят на три группы.

1. Факторы неживой природы (абиотические, или физико-хими­ческие). К ним относятся климатические, атмосферные, почвен­ные (эдафические), геоморфологические (орографические), гидро­логические и другие.

2. Факторы живой природы (биотические) - влияние одних орга­низмов или их сообществ на другие. Эти влияния могут быть со стороны растений (фитогенные), животных (зоогенные), микроор­ганизмов, грибов и т. п.

3. Факторы человеческой деятельности (антропогенные). В их чис­ле различают прямое влияние на организмы (например, промысел) и косвенное - влияние на местообитание (например, загрязнение среды, уничтожение кормовых угодий, строительство плотин на реках и т. п.).

Различные подходы к классификации экологических факторов


ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

АБИОТИЧЕСКИЕ

БИОТИЧЕСКИЕ

Свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д.

Механический состав почвы, ее проницаемость, влагоемкость

Содержание в почве или воде элементов питания, газовый состав, соленость воды


Влияние растений на других членов биоценоза

Влияние животных на других членов биоценоза

Антропогенные факторы, возникающие в результате деятельности человека


ПО ВРЕМЕНИ

ПО ПЕРИОДИЧНОСТИ

ПО ОЧЕРЕДНОСТИ

Эволюционный

Исторический



Периодический

Непериодический



Первичный

Вторичный



ПО ПРОИСХОЖДЕНИЮ

ПО СРЕДЕ ВОЗНИКНОВЕНИЯ

Космический

Абиотический (абиогенный)

Биогенный

Биотический

Биологический

Природно-антропогенный

Антропогенный (в том числе техногенный, загрязнение среды, в том числе беспокойстве


Атмосферный

Водный (влажности)

Геоморфологический

Эдафический

Физиологический

Генетический

Популяционный

Биоценотический

Экосистемный

Биосферный



Интересна классификация факторов по периодичности и направлен­ности действия, степени адаптации к ним организмов. В этом отноше­нии выделяют факторы, действующие строго периодически (сме­ны времени суток, сезонов года, приливно-отливные явления и т. п.), действующие без строгой периодичности, но повторяющиеся вре­мя от времени. Сюда относятся погодные явления, наводнения, урага­ны, землетрясения и т. п. Следующая группа - факторы направ­ленного действия, они обычно изменяются в одном направлении (потепление или похолодание климата, зарастание водоемов, забола­чивание территорий и т. п.). И последняя группа - факторы неопре­деленного действия. Сюда относятся антропогенные факторы, наи­более опасные для организмов и их сообществ.

Закономерности действия факторов среды на организм. Классификация организмов по отношению к экологическим факторам

Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие морфологические и анатомические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды. Экологические факторы могут выступать то в виде прямодействующего, то в виде косвенного. Каждый экологический фактор характеризуется определенными количественными показателями, например силой и диапазоном действия. Для разных видов растений и животных условия, в которых они особенно хорошо себя чувствуют, неодинаковы.

В комплексе действия факторов можно выделить некоторые закономерности, которые являются в значительной мере универсаль­ными (общими) по отношению к организмам. К таким закономер­ностям относятся правило оптимума, правило взаимодействия фак­торов, правило лимитирующих факторов и некоторые другие.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом, а дающая наихудший эффект — пессимумом, т. е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений при различных температурах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, поэтому лучше здесь говорить о зоне оптимума. Весь интервал температур, от минимальной до максимальной, при которых еще возможен рост, называют диапазоном устойчивости (выносливости) или толерантности (экологической валентности). Точки, ограничивающие его, т. е. максимальная и минимальная, пригодные для жизни температуры, — это пределы устойчивости (критические точки). Между зоной оптимума и пределами устойчивости по мере приближения к последним растение испытывает все нарастающий стресс, т. е. речь идет о стрессовых зонах или зонах угнетения в рамках диапазона устойчивости (рис. 4.1). По мере удаления от оптимума вниз и вверх по шкале не только усиливается стресс, а в конечном итоге по достижении пределов устойчивости организма происходит его гибель.


Рис. 4.1. Зависимость действия экологического фактора


Правило оптимума: «Для экосистемы, организма или определенной стадии его раз­вития имеется диапазон наиболее благоприятного (опти­мального) значения фактора». К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов (греч. эури - широкий; биос - жизнь). Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос - узкий). Важно подчеркнуть, что зоны опти­мума по отношению к различным факторам различаются, и поэто­му организмы полностью проявляют свои потенциальные возмож­ности в том случае, если весь спектр факторов имеет для них оп­тимальные значения.

Эти характеристи­ки зависят в значительной мере от среды, в которой обитают орга­низмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стенобионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты.

Отношение организмов к колебаниям того или иного определенного фактора выражается прибавлением приставки «эври-» или «стено-» к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей — эвристеногалинные, к свету — эври- и стенофотные, к давлению – эврибатные и стенобатные и др. По отношению ко всем факторам среды эврибионтные организмы встречаются редко. Чаще всего эври- или стенобионтность проявляется по отношению к одному фактору. Так, пресноводные и морские рыбы будут стеногалинными, трехиглая колюшка — типичный эвригалинный представитель. Растение, являясь эвритермным, одновременно может относиться к стеногигробионтам, т. е. быть менее стойким относительно колебаний влажности.

Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы. В то же время, нередко благодаря высокой специализированности, стенобионтам принадлежат обширные территории. Например, рыбоядная птица скопа (Pandion haliaetus) — типичный стенофаг, а по отношению же к другим факторам является эврибионтом, обладает способностью в поисках пищи передвигаться на большие расстояния и занимает значительный ареал.

Кроме того, по отношению к температуре организмы делят на криофилов (обитающих в условиях низких температур) и термофилов (обитаю­щих в условиях высоких температур) и т.п. по отношению к другим факторам.



Правило Вант-Гоффа — при оптимальных температурах у всех организмов физиологические процессы протекают наиболее интенсивно, что способствует увеличению темпов их роста.

Правило взаимодействия факторов: «Одни факторы могут усиливать или смягчать силу действия других факторов». Например, избыток тепла мо­жет в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений - компенсироваться повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Закон минимума (Ю. Либих) — жизненность организма определяется самым слабым звеном в цепи его экологических потребностей. Ю. Либих формулировал данный закон следующим образом: "Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени" или «биотический потенциал (жизнеспособность, продуктивность организма, популяции, вида) лимитируется тем из факторов среды, который находится в минимуме, даже если все остальные условия благоприятны».

Впоследствии в закон Либиха были внесены уточнения. Важной поправкой и дополнением служит закон неоднозначного (селективного) действия фактора на различные функции организма:

«Любой экологический фактор неодинаково влияет на функции организма, оптимум для одних процессов, например дыхания, не есть оптимум для других, например пищеварения, и наоборот».

Э. Рюбелем в 1930 г. был установлен закон (эффект) компенсации (взаимозаменяемости) факторов:

«Отсутствие или недостаток некоторых экологических факторов может быть компенсировано другим близким (аналогичным) фактором».

Например, недостаток света может быть компенсирован для растения обилием диоксида углерода, а при построении раковин моллюсками недостающий кальций может заменяться на стронций.

Однако подобные возможности чрезвычайно ограничены. В 1949 г. В. Р. Вильямс сформулировал закон незаменимости фундаментальных факторов:

«Полное отсутствие в среде фундаментальных экологических факторов (света, воды, биогенов и т. д.) не может быть заменено другими факторами».

К этой группе уточнений закона Либиха относится несколько отличное от других правило фазовых реакций «польза — вред»:

«Малые концентрации токсиканта действуют на организм в направлении усиления его функций (их стимулирования), тогда как более высокие концентрации угнетают или даже приводят к его смерти».

Фактор среды ощущается организмом не только при его недостатке. Впервые предположение о лимитирующем (ограничивающем) влиянии максимального значения фактора наравне с минимальным значением было высказано в 1913 г. американским зоологом В. Шелфордом, установившим фундаментальный биологический закон толерантности:

«Любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивости (толерантности) к любому экологическому фактору».

Другая формулировка закона В. Шелфорда поясняет, почему закон толерантности одновременно называют законом лимитирующих факторов.

Фактор, уровень которого в качественном или количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма, называется ограничивающим, или лимитирующим.

Правило лимитирующих факторов: «Фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность прояв­ления силы действия других факторов, в том числе и нахо­дящихся в оптимуме». Например, если в почве имеются в достат­ке все, кроме одного, необходимые для растения химические эле­менты, то рост и развитие растения будет обусловливаться тем из них, который находится в недостатке. Все другие элементы при этом не проявляют своего действия. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их аре­алы. От них зависит продуктивность организмов и сообществ. По­этому крайне важно своевременно выявлять факторы минимально­го и избыточного значения, исключать возможности их проявления (например, для растений - сбалансированным внесением удобрений).

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания расте­ний и т.п.).

Закон толерантности дополняют положения американского эколога Ю. Одума:


  1. организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

  2. организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

  3. диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

  4. многие факторы среды становятся ограничивающими (лимитирующими) в особо важные (критические) периоды жизни организмов, особенно в период размножения.

К этим положениям также примыкает закон Митчерлиха-Бауле, названный А. Тинеманом законом совокупного действия:

«Совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наименьшую пластичность — минимальную способность к приспособлению».



Фотопериодизм. Под фотопериодизмом понимают реакцию организма на длину дня (светлого времени суток). При этом длина светового дня выступает и как условие роста и развития, и как фактор-сигнал для наступления каких-то фаз развития или поведе­ния организмов. Сигнальное свойство фотопериодизма выражается в том, что растительные и животные организмы обычно реагируют на длину дня своим поведением, физиологическими процес­сами. Например, сокращение продолжительности дня является сиг­налом для подготовки организмов к зиме. Дня растений это повыше­ние концентрации клеточного сока и т. п. Для животных - накопление жиров, смена накожных покровов, подготовка птиц к перелетам и т. п.

Другие факторы обычно в меньшей мере используются как сиг­нал (например, температура), поскольку они изменяются не с такой строгой закономерностью, как фотопериод, и могут провоцировать наступление у организмов каких-то фаз или явлений преждевре­менно или с запозданием. Хотя определенную корректировку в дей­ствие фотопериодизма они вносят.



Адаптации

Адаптации к ритмичности природных явлений. Наряду с длиной дня организмы эволюционно адаптировались к другим видам периодических явлений в природе. Прежде всего это относится к суточной и сезонной ритмике, приливно-отливным явлениям, ритмам, обусловливаемым солнечной активностью, лунными фазами и дру­гими явлениями, повторяющимися со строгой периодичностью. Че­ловек может нарушать эту ритмику через изменение среды, пере­мещением организмов в новые условия и другими действиями.

Ритмичность действия факторов среды, подверженная строгой пе­риодичности, стала физиологически и наследственно обусловленной для многих организмов. Например, к суточной ритмике адаптирована активность многих животных организмов (интенсивность дыхания, частота сердцебиений, деятельность желез внутренней секреции и т п.). Одни организмы очень стойко сохраняют эту ритмику, другие более пластичны.

Наряду с понятиями «среда», «местообитание», «природная среда», «окружающая среда» широко используется термин «среда жизни». Все разнообразие условий на Земле объединяют в четыре среды жизни: водную, наземно-воздушную, почвенную и организменную (в последнем случае одни организмы являются средой для других).

Водная среда.

Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в наземно-воздушной среде - до 100°С). Среде присуща высокая плот­ность. Для океанических вод она равна 1,3 г/см3, для пресных - близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.



Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1% от объема. При повышении темпе­ратуры, обогащении органическим веществом и слабом переме­шивании содержание кислорода в воде уменьшается. Малая дос­тупность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Вто­рой лимитирующий фактор - свет. Освещенность быстро умень­шается с глубиной. В идеально чистых водах свет может прони­кать до глубины 50-60 м, в сильно загрязненных - только на не­сколько сантиметров.

Организмы обитающие в водной жизненной среде называют гидробионтами. В воде мало теплокровных, или гомойотермных (греч. хомой -одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адап­тационный механизм гомойотермии - противостояние неблагопри­ятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Под­держание постоянной температуры тела обязательно связано с ин­тенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские ко­тики и др.) - это бывшие обитатели суши. Их существование невоз­можно без периодической связи с воздушной средой.

Типичные обитатели водной среды имеют переменную темпе­ратуру тела и относятся к группе пойкилотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с во­дой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды ост­рого недостатка кислорода способны резко замедлять жизнедея­тельность, вплоть до состояния анабиоза (почти полное прекраще­ние обмена веществ).

К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состо­янии свободного парения. Плотность (удельный вес) таких орга­низмов обычно мало отличается от плотности воды. Этому спо­собствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

Активно передвигающиеся организмы (пловцы) – группа нектон- адаптируются к преодолению высокой плотности воды. Для них характерна продол­говатая форма тела, хорошо развитая мускулатура, наличие струк­тур, уменьшающих трение (слизь, чешуя). В целом же высокая плот­ность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами.

В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущают­ся намного лучше, чем в воздухе). В глубинах вод многие организ­мы обладают свойством самосвечения (биолюминесценции).

Растения, обитающие в толще воды, используют в процессе фотосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвига­ющиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

Воздействие человека на водную среду проявляется в уменьше­нии прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воз­действий является обеднение кислородом, снижение продуктивнос­ти, смены видового состава и другие отклонения от нормы. Подроб­нее эти вопросы рассматриваются в ч. II работы.



Наземно-воздушная среда.

Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, на­пример под пологом леса, недостаток света.

Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повы­шенными энергетическими тратами.

Обитатели данной среды называются – аэробионтами. Аэробиосфера — область атмосферы, населенная аэробионтами, субстратом жизни которых служит влага воздуха. Аэропланктон — организмы, пассивно переносимые потоками воздуха.

Для организмов наземно-воздушной среды типичны три меха­низма адаптации к температурному фактору: физический, хи­мический, поведенческий.

Физический осуществляется ре­гулированием теплоотдачи. Факторами ее являются кожные покро­вы, жировые отложения, испарение воды (потовыделение у живот­ных, транспирация у растений). Этот путь характерен для пойкилотермных и гомойотермных организмов.

Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойствен­ны гомойотермным и лишь частично пойкилотермным организмам.

Поведенческий путь осуществляется посредством выбора орга­низмами предпочтительных положений (открытые солнцу или за­тененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкилотермным в большей степени. Рас­тения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенчески (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

Адаптации к температуре осуществляются также через разме­ры и форму тела организмов. Для уменьшения теплоотдачи выгод­нее крупные размеры (чем крупнее тело, тем меньше его по­верхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана: «При продвижении на север средние размеры тела в популяциях эндотермных животных увеличиваются». Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечно­сти, органы обоняния). В холодных районах они, как правило, мень­ше по размерам, чем в более теплых (правило Алена: « У видов, живущих в более холодном климате, выступающие части тела (хвост, уши и др.) меньше, чем у родственных видов из более теплых мест»).




Достарыңызбен бөлісу:
  1   2   3




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет