М. А. Черный, В. И. Кораблин самолетовождение



бет22/24
Дата30.06.2016
өлшемі9.73 Mb.
#167578
түріКнига
1   ...   16   17   18   19   20   21   22   23   24

Пример. Долгота опорного меридиана λо.м =77°; долгота точки коррекции λм.с. = +71°; магнитное склонение в точке коррекции Δм.м.с = +8°; магнитное склонение в точке линии пути на опорном меридиане Δм.о.м = + 11°; широта средняя φср=54°. С момента предыдущей коррекции прошло 45 мин. ОК = 303°; по стрелке «Г» МК=298°. Определить угловую скорость ухода ги­роскопа и устранить уход гироскопа широтным потенциометром.

Решение. 1. Определяем поправку на угол схождения меридианов:

σ= (λо.м — λм.с) sinφср = (77° — 71°)·0,8 = + 5°.

2. Рассчитываем фактический ортодромический курс по показанию стрел­ки «Г»:

ОМКф = МК + (± Δм.м.с) + (±σ) — (± Δм.о.м) = 298° + (+ 8°) + (+5°) — (+ 11°) = 300°.

3. Сравниваем фактический ортодромический курс с ортодромическим кур­сом, отсчитываемым по указателю штурмана:

σ = ОМКф — ОК = 300° — 303° = — 3°.

4. Производим корректировку показаний КС.

5. Определяем угловую скорость ухода гироскопа:

ωс = (α·60)/t = ((— 3·60)/45 = —180/45 = —4 град /ч.

6. Находим для широты 54° величину смещения шкалы широт для устра­нения ухода гироскопа: 6·4=24°.

7. Устанавливаем на пульте управления широту на 24° меньше установ­ленной средней широты, т. е. 30°.

В случае значительных уходов гироскопа необходима регули­ровка КС в лабораторных условиях.

Использование режима «МК». В этом режиме на все указате­ли курсовой системы выдается магнитный курс. В связи с этим при использовании КС в режиме «МК» руководствуются общими правилами самолетовождения по магнитному компасу.
10. Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

ОМЛС отсчитывается на УШ против тупого конца стрелки радиокомпаса по внутренней шкале или опре­деляется по формуле: ОМПС= ОМК+КУР±180°. Если ОМПС = ОЗМПУ, то, самолет находится на ЛЗП. При уклонении самолета вправо ОМПС>ОЗМПУ, а при уклонении влево — меньше.

При полете по ортодро­мии на радиостанцию кон­троль пути по направлению ведется сравнением ОМПР с ОЗМПУ (см. рис. 23.10). ОМПР отсчитывается на УШ против острого конца стрелки радиокомпаса по внутренней шкале или оп­ределяется по формуле: ОМПР = ОМК+КУР. Если ОМПР = ОЗМПУ, то само­лет находится на ЛЗП. При уклонении самолета влево ОМПР больше, а при уклонении вправо меньше ОЗМПУ.
11. Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле:

ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α),

где σ = (λо.м — λр) sin φcp.

Как видно из формулы, в этом случае не нужно знать долготу места самолета, что позволяет заранее, при подготовке к полету, рассчитать поправки на угол схождения меридианов для радио­станций, намеченных к использованию. Рассчитанные поправки за­писываются у соответствующих меридианов, на которых располо­жены радиостанции. Такая предварительная подготовка значи­тельно упрощает расчет ИПС.



Пример. ОМК = 260°; КУР = 60°; λо.м = 50°; λр = 40°; Δм.о.м = + 5°; φcp = 55°. Определить ИПС.

Решение. I. Определяем поправку на угол схождения меридианов:

σ = (λо.м — λр)sin φcp = (50° — 40°)·0,8;= + 8°.

2. Рассчитываем ИПС:

ИПС = ОМК + (±Δм.о.м) + КУР ± 180° — (± σ) = 260°+ (+5°) + 60° —180°—( + 8°) = 137°.
12. Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:

ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp — (± Δ м.а),

где ОМКа — ортодромический магнитный курс, отсчитываемый от­носительно магнитного меридиана аэродрома посадки: МКг — магнитный курс по стрелке «Г» указателя УГА-1У; Δ м.а. — магнитное склонение аэродрома посадки; λа — долго­та аэродрома посадки; λм.с — долгота места самолета.
13. Использование курсовых приборов самолета Ан-24
Самолет Ан-24 оборудован гироскопическим индукционным ком­пасом ГИК-1 и гирополукомпасом ГПК-52, которые позволяют вы­полнять полет по заданному маршруту как по локсодромии, так и по ортодромии.

При подготовке к полету штурман обязан решить, какой вид по­лета будет применяться, и в зависимости от этого подготовить и нанести на карту необходимые данные.



Полеты по локсодромии рекомендуется осуществлять в тропи­ческом и умеренном поясах, если отрезки линии заданного пути перекрывают не более 3° по долготе.

Для выполнения полета по локсодромии необходимо:

1. Определить и нанести на карту для каждого участка маршрута средние ЗМПУ.

2. Выдерживать в полете по ГИК-1 магнитные курсы, рассчитанные для средних ЗМПУ с учетом углов сноса.

3. Одновременно для дублирования использовать ГПК-52, ус­танавливая его показания по показаниям ГИК-1 не реже чем че­рез каждые 15 мин полета.

Полеты по ортодромии осуществляются в районах полюсов, а также в умеренном и тропическом поясах, когда отрезки заданной линии пути перекрывают более 3° ПО долготе.

Для выполнения полета по ортодромии необходимо:

1. Определить по карте для каждого участка маршрута магнит­ные путевые углы относительно магнитных опорных меридианов.

2. Нанести на карту для каждого участка маршрута значения ортодромических заданных магнитных путевых углов (ОЗМПУ) справа от ЛЗП и вдоль нее.

3. На исполнительном старте и при пролете ППМ устанавливать на ГПК-52 ортодромический магнитный курс (ОМК), равный МК самолета в данный момент, т. е. отсчету по ГИК-1.

4. Выдерживать в полете по ГПК-52 рассчитанные для ОЗМПУ ОМК с учетом угла сноса.

5. Вследствие схождения меридианов и изменения магнитного склонения по маршруту при полете по ортодромии между показа­ниями ГПК-52 и ГИК-1 будет наблюдаться разница, называемая азимутальной поправкой Δ, которая при правильном показании ГПК-52 определяется по формуле

Δ =ОМК —МК = (±Δм.м.с) — (±Δм.о.м) + (λо.м —λм.c)sin φср,

где ОМК — ортодромический магнитный курс по ГПК-52 относи­тельно магнитного опорного меридиана; МК — магнитный курс по ГИК-1 в момент сличения показаний ГПК-52 и ГИК-1; Δм.м.с — магнитное склонение в точке линии пути на меридиане места самолета; Δм.о.м — магнитное склонение в точке линии пути на опорном меридиане пройденного ППМ; λо.м — долгота опорного меридиана ППМ; λм.c — долгота места самолета; φср — средняя широта листа карты.

6. Для удобства азимутальные поправки рассчитать заранее и нанести на карту в красных кружках через 1—2° долготы справа от ЛЗП.

7. Проверять не реже чем через каждые 30 мин полета соот­ветствие фактической разницы между показаниями ГПК-52 и ГИК-1 значению азимутальной поправки, указанной на карте для меридиана места самолета.

8. Если разница между показаниями ГПК-52 и ГИК-1 отли­чается от азимутальной поправки более чем на 2°, провести кор­ректировку показаний ГПК-52, т. е. установить его на отсчет, рав­ный значению МК по ГИК-1 плюс азимутальная поправка. Этим самым устраняется уход оси гироскопа за время полета. Гироскоп с уходом на 2° за 30 мин полета в дальнейшем подлежит регули­ровке.

При полетах в районе полюсов необходимо иметь в виду, что остаточная девиация магнитных компасов увеличивается по мере уменьшения горизонтальной составляющей напряженности геомаг­нитного поля, а при напряженности 0,06 эрстеда и менее показа­ния гиромагнитных (магнитных) компасов становятся неверными. Поэтому в полярных районах применение курсовых приборов самолета Ан-24 имеет некоторые особенности.

При вылете с аэродрома, где горизонтальная составляющая геомагнитного поля нормальная, ГПК-52 устанавливают на курс перед

взлетом в обычном порядке по показанию ГИК-1. Если же вылет производится с аэродрома, где горизонтальная составляю­щая геомагнитного поля слишком мала, то для установки ортодромического курса на ГПК-52 необходимо:

1. Вырулить на ВПП и установить самолет строго по ее оси.

2. Установить на ГПК-52 ортодромический курс, равный ПМПУ данного аэродрома.

3. В дальнейшем ГПК-52 будет указывать ОМК относительно меридиана аэродрома вылета. В полете переводить ГПК-52 вруч­ную недопустимо, так как система отсчета будет нарушена.

4. При подлете к аэродрому посадки, где горизонтальная со­ставляющая геомагнитного поля также мала, рассчитать азиму­тальную поправку, приняв меридиан этого аэродрома за меридиан места самолета, затем с помощью задатчика курса довернуть шка­лу ГПК-52 на величину рассчитанной поправки, взятой с обратным знаком.

5. Подход к аэродрому и заход на посадку выполнять по ГПК-52, принимая его показания за магнитный курс, определяемый относительно магнитного меридиана данного аэродрома.



Г л а в а 24
ВЫБОР РЕЖИМА ПОЛЕТА НА САМОЛЕТАХ С ГТД И РАСЧЕТ РУБЕЖА ВОЗВРАТА
1. Особенности самолетовождения высотно-скоростных самолетов
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

1. Трудность ведения визуальной ориентировки вследствие ухудшения видимости ориентиров мелких и средних размеров и невозможности их детального распознавания. При дымке ведение визуальной ориентировки еще больше затрудняется. Кроме того, полет на большой высоте проходит в большинстве случаев за обла­ками, что вообще исключает ведение визуальной ориентировки.

В ясную погоду при отсутствии дымки ведение визуальной ориентировки с больших высот облегчается большой дальностью видимости крупных ориентиров, контуры которых хорошо про­сматриваются до дальностей, равных десятикратной высоте. Зимой в ясную погоду с высоты 10000 м дальность видимости крупных городов достигает 100— 120км, а летом — 70—80 км. Но при незначительном ухудшении условий видимости контуры крупных ориен­тиров различаются на удалении, равном семи высотам полета, а характерные отличительные признаки этих ориентиров распозна­ются в зоне с радиусом, равным только двум высотам полета.

Вследствие того что ведение визуальной ориентировки на боль­шой высоте затруднено, экипаж должен уметь осуществлять само­летовождение с помощью технических средств. Эта особенность вы­зывает необходимость оснащения высотных самолетов более совер­шенным навигационным оборудованием, а летный состав застав­ляет знать это оборудование и уметь грамотно его применять.

2. Снижение точности визуального определения места самоле­та. Если при полете на средних высотах незначительные угловые ошибки при глазомерном определении вертикали не вызывают больших отклонений в определении места самолета, то эти же угловые ошибки, допущенные в полете на больших высотах, влекут за собой большие линейные отклонения и снижают точность опреде­ления места самолета. Неточность отметок места самолета на карте приводит к ошибкам в расчете путевой скорости и снижает точность определения угла сноса и фактического путевого угла.

Ввиду трудности самолетовождения на больших высотах; эки­пажу предусмотрена помощь службой движения, которая ведет радиолокационный контроль за полетом самолетов и по требова­нию экипажа сообщает фактические координаты МС, обеспечивает необходимой информацией о воздушной обстановке и метеорологи­ческих условиях полета.

Для достижения достаточной точности самолетовождения необ­ходимо, чтобы экипаж использовал в комплексе все технические средства.

3. Увеличение влияния ветра. На больших высотах скорость ветра составляет в среднем 100 км/ч, а максимальное значение ветра может достигать 300 км/ч. Нередко в зоне струйных течений скорость ветра превышает 600—800 км/ч. Вследствие этого Даже при больших скоростях полета угол сноса может достигать 10°—15° и неучет ветра может привести к значительным уклонениям от ЛЗП.

Большая скорость ветра вызывает значительное расхождение путевой скорости с воздушной, и поэтому точное счисление пути возможно лишь при знании путевой скорости самолета. Эта осо­бенность самолетовождения также приводит к необходимости обя­зательного учета ветра.

4. Увеличение дальности действия радиотехнических средств. При полетах на больших высотах увеличивается дальность дейст­вия наземных радиолокационных станций, средств связи и радио­технических систем самолетовождения. Поэтому имеется более ши­рокая возможность использования их для контроля пути и сохра­нения ориентировки.

Однако надо учитывать, что при полете на больших скоростях, особенно при полетах в облаках и осадках, возникают сильные электростатические помехи, уменьшающие точность пеленгования радиостанций с помощью радиокомпаса. В облаках и осадках даль­ность действия радиокомпаса по приводным радиостанциям может сократиться до 30—50 км. Подстройку и перестройку радиокомпа­са необходимо производить до входа самолета в облачность.

На больших высотах возрастают ошибки в определении момен­та пролета радиостанции с помощью радиокомпаса. Величина за­паздывания момента пролета радиостанции может достигать рас­стояния, равного одной — трем высотам полета. Наибольшая точность пеленгации радиостанций с помощью радиокомпаса полу­чается на расстоянии до радиостанции не ближе трехкратной высо­ты полета и не далее прямой геометрической видимости.

5. Большие ошибки в определении высоты барометрическим высотомером. С увеличением высоты полета возрастают не только инструментальные ошибки барометрических высотомеров. Большие погрешности в показании высоты на скоростных самолетах возни­кают также вследствие того, что к высотомеру трудно подвести фактическое атмосферное давление. Давление воздуха, поступаю­щего в высотомер, несколько отличается от фактического давления, что приводит к появлению так называемых аэродинамических оши­бок.

Значительные суммарные ошибки в определении высоты по ба­рометрическим высотомерам вызывают необходимость эшелони­ровать полеты на больших высотах через больший безопасный ин­тервал по сравнению с безопасным интервалом, установленным для средних высот.

6. Уменьшение часового расхода топлива по мере увеличения высоты при полете на одном и том же режиме. Часовой расход топ­лива на самолетах с ГТД при полете на одном и том же режиме зависит от высоты полета. Чем меньше высота полета, тем больше часовой расход топлива. В связи с этим дальность полета самолета с ГТД на больших высотах значительно больше, чем при полетах на средних и особенно малых высотах. Поэтому определение наи­выгоднейшей высоты полета и места начала снижения на самоле­тах с ГТД приобретает особо важное значение.

7. Выполнение полета на больших высотах связано с большими истинными воздушными скоростями. Вследствие уменьшения плот­ности воздуха с подъемом на высоту при постоянной скорости по прибору истинная скорость будет увеличиваться. Если на высоте полета 2000 м истинная скорость отличается от приборной на 10%, то на высоте 8000 м это отличие достигает 50%.

При полетах на скоростях более 300 км/ч в показаниях указате­ля скорости возникает ошибка за счет сжимаемости воздуха. Эта ошибка в зависимости от скорости и высоты полета может дости­гать больших значений и должна учитываться при расчете скорости полета. Все это требует обязательного расчета для целей самоле­товождения истинной воздушной скорости.

Полеты на больших скоростях усложняют работу всего экипажа и особенно штурмана. Сама обстановка полета требует быстрых действий

при навигационных расчетах и установке данных на аппаратуре. Все это требует от штурмана лучшей подготовки и четкости в работе.

8. Необходимость учета по­правки в показания термометра наружного воздуха. На самолетах с ГТД для измерения темпе­ратуры наружного воздуха уста­навливается термометр ТНВ-15. Вследствие нагревания его чув­ствительного элемента в затор­моженном потоке показания термометра становятся завышенны­ми. Поэтому для определения фактической температуры наружного воздуха необходимо в пока­зания термометра вводить поправки, которые определяются по шкале, составленной специально для термометра ТНВ-15 (см. рис. 6.2). Для пользования шкалой поправок истинную воздушную скорость полета отсчитывают по узкой стрелке КУС.

9. Увеличение радиуса и времени разворота. Большие скорости полета значительно увеличивают радиус и время разворота. Обыч­но эти величины рассчитывают на НЛ-10М, как это показано в гл. 22. Однако некоторые расчеты, например, времени разворота на 360°, можно произвести в уме. Для этого следует помнить, что вре­мя разворота t360, измеренное в секундах, численно равно при кре­не 10° истинной скорости Vи км/ч, при крене 20° — примерно 1/2 Vи км/ч и при крене 15° — 2/3Vи км/ч.

Пример. Vи = 600 км/ч. Определить продолжительность разворота на 360° при кренах самолета 10, 20 и 15°.

Решение. Применяя указанное выше правило, находим:

при крене 10° t360 ≈ 600 сек = 10 мин;

при крене 20° t360 ≈ 600/2 = 300 сек = 5 мин;

при крене 15° t360 ≈ 600 — 600/3 = 400 сек = 6 мин 40 сек.

10. Необходимость учета радиуса разворота при выходе на но­вое направление, что достигается началом разворота с упрежде­нием (рис. 24.1).

Величина линейного упреждения разворота

ЛУР = R tgУР/2

Для расчета ЛУР на НЛ-10М необходимо треугольный индекс шкалы 4 установить на величину радиуса разворота, взятого по шкале 5. Затем против половинного значения угла разворота, взятого по шкале 4, прочитать по шкале 5 величину ЛУР.

Выход в точку начала разворота определяют визуально, с по­мощью радиотехнических средств или по времени.



Пример. Vи=600 км/ч; крен 15°; УР=116°; W = 510 км/ч; Тприб на ППМ 14.20. Определить элементы разворота, время его начала и окончания.

Решение. 1. Определяем на НЛ-10М значения R, ЛУР и время пролета ЛУР: R=10600 м; ЛУР=17000м; tЛУР —2 мин.



2. Рассчитываем время начала разворота:

Тнач.разв = ТприбtЛУР = 14.20 — 0.02 = 14.18.

3. Определяем на НЛ-10М время разворота на 360° и на заданный угол разворота: t360 = 6 мин 35 сек; tур = 2 мин 07 сек.

4. Рассчитываем время окончания разворота:

Ток.разв = Тнач.разв+ tур = 14.18 + 02,07 = 14.20,07.

11. Полеты высотно-скоростных самолетов осуществляются в основном с ортодромическими путевыми углами (курсами). Ортодромическая система счисления пути имеет некоторые особенности в подготовке к полету и в его выполнении. Она требует определен­ной теоретической и практической подготовки пилотов и штурма­нов.


2. Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для самолета Ан-24 и реко­мендации по их применению.

A. Режим наибольшей продолжительности полета. Скорость на этом режиме наименьшая из крейсерских и равна скорости, реко­мендованной для набора высоты с максимальной скороподъемно­стью, часовой расход топлива минимальный. Этот режим рекомен­дуется для полетов в зоне ожидания и при восстановлении ориен­тировки.

Б. Режим наибольшей дальности полета. На этом режиме кило­метровый расход топлива наименьший. Рекомендуется для мар­шрутных полетов с ограниченным запасом топлива и для полетов по расписанию при попутном ветре.

B. Режим наибольшей крейсерской мощности (0,85 от номина­ла, 52° по УПРТ). Этот крейсерский режим применяется для поле­та по расписанию при встречном ветре и в штиль. Продолжитель­ность работы двигателей на этом режиме неограниченна.

Г. Номинальный режим работы двигателей (65° по УПРТ). Этот режим используется при наборе высоты и в особых случаях поле­та (полет в условиях обледенения, при отказе одного из двигателей, высоких температурах наружного воздуха, обходе грозы) в течение не более одного часа непрерывной работы.

Таблица 24. 1


Крейсерские режимы горизонтального полета самолета Ан-24


Полетный вес, т


А

Б

В

Г

Режим

наибо­льшей продол­жительности полета



Высо­та, км

Режим

наибо­льшей дально­сти полета



Режим

наибо­льшей крейсер­ской мощности (52±2° по УПРТ)



Высо­та, км

Номинальный режим работы двигателей (65° по УПРТ)

Vпр

км/ч

Vи

км/ч



Vпр

км/ч

Vи

км/ч

Vпр

км/ч

Vи

км/ч



Vпр

км/ч

Vи

км/ч

21,0



260

353

7

339

459

308

423

7

345

471

270

347

6

345

440

349

445

6

373

475

280

340

5

349

424

381

462

5

412

498

290

334

4

355

409

405

465

4

423

487

20,5



260

353

7

334

455

318

430

7

355

476

270

347

6

337

432

353

449

6

376

479

280

340

5

346

420

384

465

5

405

499

290

334

4

350

406

406

467

4

424

489

20,0



255

348

7

333

450

320

438

7

338

481

265

341

6

338

433

356

453

6

379

482

275

335

5

344

417

385

468

5

417

502

285

329

4

349

403

409

469

4

429

491

19,5



255

348

7

331

446

330

445

7

359

485

265

341

6

332

429

357

457

6

380

485

275

335

5

340

412

389

472

5

415

504

285

329

4

345

401

407

470

4

427

493

19,0



250

341

7

325

441

330

451

7

360

490

260

335

6

333

426

362

462

6

384

488

270

329

5

337

409

392

475

5

421

507

280

323

4

344

399

411

472

4

430

494

Режим полета выбирается в зависимости от условий полета. Наивыгоднейшая скорость полета для нужного режима находится по табл. 24.1 с учетом полетного веса самолета и высоты полета. Рассмотрим на примере порядок пользования таблицей крейсер­ских режимов.



Пример. Полетный вес самолета 0 = 19000 км; по маршруту полета прог­нозируется встречно-боковой ветер; высота полета H=6000 м; температура воздуха на земле t0= + 15°. Определить наивыгоднейший режим полета и наивы­годнейшую скорость.

Решение. 1. Выбираем наивыгоднейший режим полета. Так как по мар­шруту полета прогнозируется встречно-боковой ветер, то для полета по распи­санию необходимо использовать режим наибольшей крейсерской мощности.

2. Находим по табл. 24.1 наивыгоднейшую скорость полета. По данным о долетном весе самолета и высоте полета получаем: Vи = 462 км/ч, Vпр =362 км/ч.

Все данные таблицы режимов соответствуют условиям полета при стандартной температуре наружного воздуха и нормальной регулировке двигателей. При увеличении или уменьшении темпера­туры наружного воздуха на каждые 5°С от стандартной расход топлива соответственно уменьшается или увеличивается примерно на 1 % при выдерживании одной и той же скорости полета.

Полет на режимах А и Б осуществляется путем выдерживания заданной скорости по прибору, для чего необходимо регулировать работу двигателей, не превышая при этом режима 52° по УПРТ.

Полет на режимах В и Г осуществляется путем выдерживания заданного режима работы двигателей (заданного УПРТ), но при этом скорость полета не должна превышать наибольшую допусти­мую скорость по прибору (460 км/ч).

Часовой расход топлива и истинную воздушную скорость поле­та для полетных весов, не указанных в табл. 24.1, следует опреде­лять путем интерполирования или принимать для ближайшего по­летного веса.
3. Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы:

взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути;

набор заданного эшелона;

горизонтальный полет на заданном эшелоне по маршруту;

снижение до высоты начала построения маневра захода на по­садку;

маневр захода на посадку и посадку.

При расчете потребного количества топлива для обеспечения безопасности полета необходимо учитывать расход топлива не только на перечисленных этапах, но и расход топлива для работы двигателей на земле, а также навигационный запас топлива, кото­рый должен быть на борту воздушного судна на случай направле­ния на запасный аэродром, увеличения времени полета, вызванно­го усилением встречного ветра, обходом грозы и другими обстоятельствами.

Общий запас топлива, необходимый для выполнения рейса, рас­считывается по следующей формуле



Qобщ = Q н.з + Qпол+Qзем+Qнев. ост,

где Qн.з — навигационный запас топлива, количество которого оп­ределяется командиром воздушного судна в соответствии с требованиями НПО ГА-71; Qпол — количество топлива, расходуемого в полете от момента взлета до




Рис. 24.2, График общего расхода топлива в полете
дуемого в полете от момента взлета до посадки, оно опреде­ляется по графику общего расхода топлива в полете (рис. 24.2); Qзем — количество топлива, расходуемого двигателями на земле, при прогреве, опробовании и рулении, берется в соот­ветствии с установленной нормой для данного типа самолета; Qнев.ост— невырабатываемый остаток топлива, его величина задается соответствующими инструкциями. В графике на рис. 24.2 учтен расход топлива на взлет, выполне­ние маневра в районе аэродрома после взлета, набор высоты, гори­зонтальный полет, снижение и заход на посадку. Расход топлива в горизонтальном полете для самолета Ан-24 в графике рассчитан для режима работы двигателей 52 ±2° по УПРТ.

Расчет общего запаса топлива начинают с определения необхо­димого его количества для полета от аэродрома назначения до за­пасного аэродрома с учетом расхода топлива на 30 мин полета для захода на посадку на запасном аэродроме. После определения нави­гационного запаса топлива рассчитывается расход топлива в полете от аэродрома взлета до аэродрома назначения, а затем определяет­ся потребная заправка самолета топливом.

Рассмотрим на примере порядок расчета общего запаса топлива.

Пример. МПУср = 190°; Sобщ = 1100 км; Hвш = 6000 м; δср = 170°; Uср = =80 км/ч; время полета от аэродрома назначения до запасного аэродрома 45 мин; количество топлива, расходуемого на земле, 100 кг; невырабатываемый остаток топлива 50 кг; среднля норма расхода топлива для расчета навигаци­онного запаса 800 кг/ч. Определить общий запас топлива, необходимый для выполнения рейса.

Решение. 1. Рассчитываем навигационный запас топлива для данного полета.

Время полета от аэродрома назначения до запасного аэродрома 45 мин, время, предназначенное для захода на посадку на запасном аэродроме, 30 мин. Умножив 800 кг/ч на 1 ч 15 мин на НЛ-10М, получаем Qн.з =1000 кг.

2. Определяем средний угол ветра и рассчитываем на НЛ-10М скорость эквивалентного ветра:

УВср = δср ± 180° — МПУср = 170° + 180° — 190° = 160°;

ΔU= —76 км/ч.

3. Определяем по графику количество топлива, расходуемого в полете от момента взлета до посадки (см. рис. 24.2). Для определения по графику этого количества топлива откладываем на нижней шкале общее расстояние полета (точка 1). От точки 1 вдоль линий, наклоненных вправо (для встречного ветра), проводим линию до значения эквивалентного ветра (точка 2). От точки 2проводим вертикальную линию до пересечения с линией заданной высоты горизонтального полета (точка 3). В точке 3 получаем количество топлива, расходуемого в полете: 2500 кг.

4. Рассчитываем общий запас топлива, необходимый для выполнения рейса, для чего складываем топливо навигационного запаса, топливо, расходуемое в полете и на земле, и невырабатываемый остаток:



Qобщ= 1000+2500+100+60=3650 кг.
4. Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может случиться, что емкость топливных баков не позволяет заправить столько топлива, чтобы его хватило полета до аэродрома назначения и обратно до запасного аэродрома. В этом случае перед полетом необходимо рассчитать наибольшую допустимую дальность полета до рубежа, где окончательно должно быть принято решение о посадке на аэродроме назначения, если погода соответствует установленному минимуму, или о ррйрате, если она хуже установленного минимума. В самолетовождении условились такой рубеж называть рубежом возврата, Рубеж возврата — это максимальное удаление самолета от аэродрома вылета или запасного аэродрома. С этого расстояния самолет при данном запасе топлива с учетом влияния ветра т возвратиться на аэродром вылета (или запасный аэродроме) сохранив навигационный запас топлива.

Рубеж возврата определяется таким образом, чтобы к моменту прилета на аэродром вылета или на запасный аэродром расчетное количество топлива было не менее чем на 1 ч полета. Однако это значит, что после посадки на аэродроме вылета (запасном аэродроме) расчетный запас топлива (на 1 ч полета) должен быть сохранен полностью. Частично навигационный запас топлива может израсходован в случае непредвиденных обстоятельств, возникших при полете от рубежа возврата до запасного аэродрома (обход грозы, усиление встречного ветра, изменение маршрута по­лета, полет в зоне ожидания и др.).

Дальность рубежа возврата на аэродром вылета рассчитывает­ся по формуле

Sp= SштSp/2· К

где К — коэффициент, учитывающий влияние ветра;



К =1— ( ΔU /Vи)2;

Sшт — штилевая дальность .полета, определенная по распола­гаемому запасу топлива; Sp — длина пути за время разворо­та на обратный курс; ΔU — скорость эквивалентного ветра на высоте полета; Vи — истинная воздушная скорость. Для получения располагаемого запаса топлива необходимо из общей заправки самолета топливом вычесть навигационный запас, а также топливо, необходимое для работы двигателей на земле, для взлета и посадки, и невырабатываемый остаток. Для самолета Ан-24 для взлета берется 50 кг, а для посадки— 100 кг топлива. Располагаемый запас топлива

Qрасп = QобщQн.з QземQвзл. и пос Qнев. ост

Время полета на располагаемом запасе топлива рассчитывают на НЛ-10М по часовому расходу топлива на заданной высоте поле­та. Для этого треугольный индекс шкалы 2 подводят под часовой расход топлива, взятый по шкале 1. Затем против располагаемого запаса топлива в килограммах, взятого по шкале 1, читают распо­лагаемое время полета по шкале 2.

Штилевая дальность полета может быть определена по графи­ку общего расхода топлива или рассчитана по формуле

Sшт = V и tрасп

Для упрощения расчета рубежа возврата коэффициент К вы­числяют заранее для средней крейсерской скорости данного типа самолета или наиболее характерных скоростей и различных зна­чений эквивалентного ветра (табл. 24.2).



Таблица 24.2
Коэффициенты К для расчета рубежа возврата самолета Ан-24


± ΔU, км/ч

0

25

50

75

100

125

150

175

200

Режим А: Vи.ср=340 км/ч; Sр=10 км

100

99,5

97,8

95,1

91,4

86,5

80,5

73,5

65,5

Режим Б: Vи.ср=430 км/ч; Sp=18 км

100

99,7

98,7

96,9

94,6

91,6

87,8

83,4

78,4

Режим В: Vи.ср=450 км/ч; Sp=20 км

100

99,7

98,8

97,2

95,1

92,3

88,9

84,9

80,3

В таблице величина коэффициента К выражена в процентах от штилевой дальности, что значительно упрощает расчет рубежа возврата. Из таблицы видно, что коэффициент К наибольший при ΔU =0. Следовательно, и дальность рубежа возврата в этом слу­чае будет наибольшая. Она будет уменьшаться с увеличением эк­вивалентного ветра независимо от его знака.

Рассмотрим на примере порядок расчета рубежа возврата на аэродром вылета.

Пример. Hэш=6000 м; Vи=460 км/ч;Qобщ = 3000 кг;МПУср=250°; φcp = 210°; Uср=130 км/ч; навигационный запас топлива на 1 ч; самолет Ан-24 (если в качестве запасного назначен аэродром вылета, топливо берется из расчета полета до аэродрома назначения плюс навигационный запас на 1 ч полета). Определить дальность рубежа возврата на аэродром вылета. Решение. 1. Определяем располагаемый запас топлива:

Qрасп = QобщQн.з Qзем — Овзл. и пос Qнев. ост = 3000 — 800 — 100 — 150 — 50 = 1900 кг.

2. По полученному располагаемому запасу топлива находим штилевую дальность полета по графику общего расхода топлива. Для этого (см. рис. 24.2) от заданной высоты полета проводим горизонтальную линию до пересечения с кри­вой располагаемого запаса топлива. От полученной точки пересечения опускаем перпендикуляр на шкалу расстояний, где и отсчитываем штилевую дальность по­лета 1000 км.

3. Определяем на НЛ-10М длину пути за время разворота на обратный курс. Для Vи =450 км/ч и крена 15° получаем:



t360=4 мин58 сек;t180= 2 мин 29 сек; SР≈20 км.

4. Определяем штилевую дальность рубежа возврата:



Sр в шт= S шт Sр/2 = 1000 — 20/2 = 980/2 = 490 км

5. Определяем средний угол ветра и рассчитываем на НЛ-10М скорость эк­вивалентного ветра:

УВср = φcp ± 180°—МПУср=210°—180°+360°—250°=140°; ΔU = — 100 км/ч.

6. Находим по таблице коэффициент К. Для Ки=450 км/ч и ΔU = 100 км/ч получаем К=95,1%.

7. Определяем дальность рубежа возврата с учетом влияния ветра. Расчет дальности можно производить в уме или на НЛ-10М. При расчете в уме шти­левую дальность уменьшают на величину, зависящую от коэффициента К. Для нахождения дальности на НЛ-10М прямоугольный индекс с числом 100 шкалы 2 подводят под штилевую дальность рубежа возврата, взятую по шкале 1. За­тем против коэффициента К, взятого по шкале 2, читают дальность рубежа возврата с учетом влияния ветра по шкале 1. Получаем: Sp в = 466 км,

Рубеж возврата отмечается на карте. По остатку топлива для ППМ, записанному в штурманском бортовом журнале, и положе­нию отмеченного рубежа определяют расчетный остаток топлива для рубежа возврата. Дальность рубежа возврата и расчетный остаток топлива для этой дальности записывают в соответствующие графы штурман­ского бортового журнала.

Основным элементом, определяющим надежность возврата, является не расстояние, а остаток топлива. Дальность рубежа воз­врата используется только для ориентирования экипажа и службы движения о районе, из которого возможен возврат. Вследствие изменения ветра, режима полета, удлинения пути остаток топлива, обеспечивающий надежность возврата, может достигнуть расчет­ной величины до выхода на рубеж возврата.

Рассчитанную дальность рубежа возврата необходимо уточнять в полете по фактической скорости эквивалентного ветра, так как в случаях ошибочного прогнозирования ветра на высоте полета возможны значительные отклонения фактического рубежа возвра­та от расчетного. Пролет рубежа возврата следует контролировать не по времени, а по месту, используя для этого все средства само­летовождения.

В целях повышения надежности возврата обратный полет реко­мендуется выполнять на большей высоте, если только на ней нет резкого увеличения встречной составляющей ветра.

Расчет рубежа возврата на запасный аэродром, расположенный на маршруте между аэродромами вылета и назначения, выполняет­ся аналогично. Штилевая дальность определяется по остатку топ­лива над пролетаемым аэродромом без учета навигационного за­паса, невырабатываемого остатка и топлива, необходимого для за­хода на посадку.

Возврат на запасный аэродром, расположенный в стороне от маршрута, выполняется по установленной трассе. Поэтому рубеж возврата должен рассчитываться как допустимый отход от точки ответвления маршрута. Для этого штилевую дальность полета, по­лученную для момента пролета точки ответвления маршрута, уменьшают на расстояние от этой точки до запасного аэродрома.

В этом случае рубеж возврата

Sр. в = S штS Sр/ 2· К,

где S — расстояние от точки ответвления маршрута до запасного аэродрома.

В практике при расчете рубежа возврата штилевую дальность полета чаще определяют не по графику, а на НЛ-10М по часово­му расходу топлива.

Рассмотрим порядок расчета рубежа возврата для этого слу­чая на примере.



Пример. Нэш = 6000 м; Vи = 450 км/ч; G = 20000 кг; Q общ = 3100 кг; МПУср=265°; δср=230°; Uср=90 км/ч; навигационный запас топлива на 1 ч, самолет Ан-24. Определить дальность рубежа возврата на аэродром вылета. Штилевую дальность полета рассчитать на НЛ-10М по располагаемому запасу топлива и его часовому расходу.

Решение. 1. Определяем располагаемый запас топлива:



Q расп = Q общ — 1100 кг = 3100 — 1100 = 2000 кг.

2. Используя табл. 24.1, находим по полетному весу самолета, скорости и высоте полета часовой расход топлива: Q = 713 кг/ч.

3. С помощью НЛ-10М располагаемый запас топлива представляем в виде, времени полета. Получаем tрасп=2 ч 48 мин.

4. Определяем на НЛ-10М штилевую дальность полета: Sшт = 1260 км.

5. Определяем длину пути за время разворота на обратный курс: Sp=20 км.

6. Определяем штилевую дальность рубежа возврата:



Sр в шт= S шт Sр/2 = 1260 — 20/2 = 1240/2 = 620 км

7. Определяем средний угол ветра и рассчитываем на НЛ-10М скорость эк­вивалентного ветра:

УВср = φcp ± 180°—МПУср=230°—180°+360°—265°=145°; ΔU = — 74 км/ч.

8. Находим по табл. 24.2 коэффициент К. Для Vи=450 км/ч и ΔU = 75 км/ч, получаем К =97,2%.

9. Определяем дальность рубежа возврата с учетом влияния ветра:

Sрв = 603



Достарыңызбен бөлісу:
1   ...   16   17   18   19   20   21   22   23   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет