Таблица 2 – Кинетика отверждения и степень сшивки вулканизатов
Динитрил-N-оксид
|
Мс·103
|
νl/v,
моль/см3
|
τинд40 °С,
мин
|
Кт40 °С·103,
мин1
|
ΔЕА,
(30…60 °С)
кДж/моль
|
Содержание отвердителя,
% масс.
|
0,2
|
0,3
|
0,4
|
0,2
|
0,3
|
0,4
|
0,4
|
TE
|
5,95
|
5,6
|
3,8
|
0,220
|
0,234
|
0,345
|
351
|
0,28
|
32,5
|
Dur
|
7,4
|
6,0
|
4,2
|
0,177
|
0,229
|
0,312
|
293
|
0,34
|
36,4
|
DMO
|
10,0
|
8,0
|
6,5
|
0,090
|
0,109
|
0,201
|
162
|
0,61
|
47,4
|
MBS
|
7,4
|
6,9
|
3,6
|
0,176
|
0,191
|
0,354
|
138
|
0,72
|
53,5
|
Отверждающий агент MBM не вступает в реакцию отверждения до Т=60 С, поэтому для дальнейших исследований не использовался.
Увеличение содержания отверждающего агента приводит к падению Мс и соответственно к повышению жесткости (модуля упругости) и снижению деформативности вулканизатов. Максимальная плотность сшивки νl/v наблюдается при использовании 0,2…0,3 % ТЕ и Dur и составляет 0,234 и 0,229 соответственно. Дальнейшее увеличение концентрации ароматических динитрил-N-оксидов до 0,4 % приводит к резкому повышению плотности сшивки полимера для всех исследованных отвердителей, особенно MBS. Минимальная энергия активации (32,5 кДж) наблюдается при использовании отверждающего агента TE, а максимальная – 53,5 кДж – MBS.
Оценка влияния строения ароматических динитрил-N-оксидов на динамику структурирования и кинетику процесса отверждения тетразольного полимера показала существенные различия в реакционной способности экранированных реакционных центров, что, по-видимому, можно связать с действием стерических или стереоэлектронных факторов. Представляет интерес провести расчет электронной структуры и различных индексов реакционной способности динитрил-N-оксидов (в частности, с параметрами Фукуи) в целях нахождения возможных соотношений структура – свойство.
Список литературы
1. Охотников М.А., Валуев В.И. Исследование кинетики отверждения полиуретанов, содержащих двойные связи в цепи, динитрилоксидами // Журнал прикладной химии. – 2002. – Т. 75. – Вып. 9. – С. 1555–1558.
2. Якубов А.И., Цыганов Д.В., Беленький Л.И. и др. Синтез стабильных функционально замещенных нитрилоксидов ароматического ряда // Известия АН СССР. Сер. хим. – 1991. – С. 1201–1203.
3. Белоусов А.М., Пазников Е.А., Петрова Г.Я. и др. Исследование низкотемпературного процесса отверждения поли-N-метилаллил-5-винилтетразола // Журнал прикладной химии. 2008. – Т. 76. – С. 1197–1199.
4. Белоусов А.М., Пазников Е.А., Петрова Г.Я. и др. Некоторые закономерности отверждения поли-N-метилаллил-5-винилтетразола N-оксидом // Ползуновский вестник. – 2004. – № 1. – С. 278–282.
5. Аверко-Антонович И.Ю., Бикмуллин Р.Т. Методы исследования структуры и свойств полимеров. Казань, 2002. – 302 с.
6. Huggins M.L. Thermodynamic compatibility of polymers with the solvent / Ann. Acad. Sci. – 1942. – V. 43. – N. 4. – P. 32–35.
RHEO-KINETICS OF STRUCTURING AND FEATURES OF CURING OF AZOLE BINDERS BY STERICALLY DIFFICULT AROMATIC DINITRIL-N-OXIDES
P.I. Kalmykov1, L.F. Podanyova1, A.A. Lukashev1, A.Yu. Mershin2, A.A. Astratyev2,
P.V. Petrekov3, Ye.A. Pyznikov3
1 JSC Federal Research & Production Center «ALTAI», Biysk, Russia
2 Federal State Unitary Enterprise «Special Design-Technological Bureau
«Process Engineer», Saint-Petersburg, Russia
3 Biysk Technological Institute of Altai State Technical University, Biysk, Russia
Dinitrile-N-oxides of aromatic series are widely used as low-temperature hardeners of synthetic polymers during processing and manufacturing of composite materials based on plasticized polyesterurethane elastomers: 1,3-dinitrile-2,4,6-triethylbenzene and more active 1,3-dinitrile-2,4,6-trimethylbenzene. Crosslinking of polymer chains occurs due to the 1,3-dipolar cycloconnection with the formation of five-membered isoxazolines cycles in the temperature range 35–40 ºC [1, 2]. In the structure of allylated poly-N-methyl-5-vinyltetrazole, continuous individual groups are not located in the main chain, but in most accessible for the hardener side tetrazole fragments, so its reactivity to interact with these dinitrileoxide increases [3, 4].
The main factor determining the activity of dinitrile-N-oxides, apparently, is a spatial shielding of reactionary nitrile-oxide groups in a molecule by other substituents. Thus, changing the position and the nature of the substituents, it is possible both to decrease and to increase the speed of hardening of polymeric binder.
A number of new aromatic dinitrile-N-oxides with different substituents were synthesized to estimate the influence of the structure of hardeners on their activity in the process of three-dimensional grid formation from plasticized azole polymer and their properties were studied.
The studied compounds are soluble in 1,4-dioxane, acetonitrile, ethyl-acetate and limited in benzene, toluene, isopropyl alcohol, ethanol, 1,2-dichloroethane.
The ratio of the solubility of the curing agent in plasticizer and its activity is of interest.
The solubility of the obtained compounds in plasticizer, measured by refractometry method at the temperature of compositions preparation (T=23 °C) and vulcanization of products on their basis (T=40 °C), are given in Table. 1.
As it can be seen, the highest solubility has ТЕ: Cm40 °С =36 % mass, moderate solubility (up to 10–20 % of the mass) is observed for hardeners ТМ, DMO, Dur, MBS и MBM (Cm40 °С =6.6–17 % mass.), poor solubility for MBE (Cm40 °С=2.5 % mass). Hardeners MBP and MBB with large amount of substituents in the molecule structure are not soluble.
In general, it can be noted that the solubility of the studied dinitrile-N-oxides in the temperature range 23…40 °C, taking into account their low concentration in the system, is high (Cm23 °С >1.0 %). Therefore, it can be expected that the studied curing agents in the compositions will be completely dissolved, except MBP and MBB.
Rheo-kinetic curves of structuring the binder (ratio of polymer-plasticizer 15/85 % mass.) with dinitrile-N-oxides of various reactivity (0.216 % from NET mass) at T = 25 °C, recorded on a rotational viscometer «Brookfield» model HBDV-II+Pro in the range of effective shear rate γ= 1...5 s–1 are given in Figure 1.
_________________________________
Figure 1 – Dependence of viscosity changes of azole binder on the time, using aromatic dinitrile-N-oxides at T = 25 °C
______________________________
Table 1 – Dinitrile-N-oxides of aromatic series of various structures
Name
|
Constitutional formula
|
Gross-formula
|
ММ
|
Solubility Сm, %
|
23 С
|
40 С
|
Tri-ethyl (TE)
2,4,6-triethyl-1,3-benzoldinitrileoxide
|
|
C14H16N2O2
|
244.280
|
5
|
36
|
Tri-methyl (TM)
2,4,6-trimethyl-1,3-
benzoldinitrileoxide
|
|
C11H10N2O2
|
202.199
|
4
|
17
|
Di-methoxi (DMO)
3,6-methoxy-1,4- benzoldinitrileoxide
|
|
C10H8N2O4
|
220.170
|
4
|
15
|
Durol (Dur)
1,4 - dinitrileoxide - 2,3,5,6 -tetramethylbenzole
|
|
C12H12N2O2
|
216.226
|
2,7
|
6.6
|
Methylene-bis-salicyloxi
(MBS)
2,2’- methylene-bis(oxi)- dinitrileoxibenzole
|
|
C15H10N2O4
|
250.143
|
2,4
|
16
|
Methylene-bis-methoxi (MBM)
5,5’-methylene-bis(2-methoxinitrileoxide)
|
|
C17H14N2O4
|
310.295
|
2
|
12
|
Methylene-bis-ethoxi (MBE)
5,5’- methylene-bis (2-ethoxinitriloxidebenzole)
|
|
C19H18N2O4
|
338.349
|
1
|
2.5
|
Methylene-bis-propoxi (MBP)
5,5’- methylene-bis (2-propoxynitrileoxide
benzole)
|
|
C21H22N2O4
|
366.403
|
N/s
|
N/s
|
Methylene-bis-buthoxi (MBB)
5,5’- methylene-bis (2-butoxynitrileoxide
benzole)
|
|
C23H26N2O4
|
394.457
|
N/s
|
N/s
|
It is stated that the hardeners MBS and DMO are the most reactive among the all studied from aromatic group of dinitrile-N-oxides. They are characterized by a low period in structuring induction (gel formation) τind.=3–5 h. The hardeners ТМ, Dur and ТЕ are characterized by average reactivity with τind =14–30 h. The binuclear dinitrile-N-oxides MBM and MBE with bulky alkyl substituents are weak active, they have τind.≥37–40 h or gelation is not observed (MBP and MBB).
The rate constants of structuring (gel formation) NET at T = 25 °C with aromatic dinitrile-N-oxides (defined as time reciprocal of increasing the level of dynamic viscosity up to 250 Ps) are given in Figure 2.
_______________________________
Figure 2 – Rate constants of structuring of the binder and solubility of dinitrile-N-oxides at T=25 C
____________________________
As it can be seen, the rate of structure formation is not dependent on soluble of the studied hardeners (see Figure 2 and Table. 1), it is only important that in terms of the process they were in solution.
By the method of equilibrium swelling it was studied the kinetics of gel fraction output Pr of the binder based on tetrazole copolymer and the parameters of vulcanization grid - molecular mass of the middle area in chain between nodes of spatial grid Ms, the effective density of cross-linking νl/v by known methods [5, 6] when the content of aromatic dinitrile-N-oxides ТЕ, DMO, Dur, MBS from 0.2 to 0.4 % from the binder mass in the temperature range of 30 – 60 ºС. The numerical values of the obtained kinetic characteristics of the process of curing and spatial grid of vulcanizates are given in Table 2.
Table 2 – Kinetics of cure and degree of crosslinking of vulcanizates
Dinitrile-N-oxides
|
Мs·103
|
νl/v,
mole/cm3
|
τind40 °С,
min
|
Кт40 °С·10–3,
min–1
|
ΔЕА,
(30…60 °С)
kJ/mole
|
Hardener content, % mass.
|
0.2
|
0.3
|
0.4
|
0.2
|
0.3
|
0.4
|
0.4
|
TE
|
5.95
|
5.6
|
3.8
|
0.220
|
0.234
|
0.345
|
351
|
0.28
|
32.5
|
Dur
|
7.4
|
6.0
|
4.2
|
0.177
|
0.229
|
0.312
|
293
|
0.34
|
36.4
|
DMO
|
10.0
|
8.0
|
6.5
|
0.090
|
0.109
|
0.201
|
162
|
0.61
|
47.4
|
MBS
|
7.4
|
6.9
|
3.6
|
0.176
|
0.191
|
0.354
|
138
|
0.72
|
53.5
|
Curing agent MBM does not react curing up to temperature of 60 °C, therefore, it were not used for further research.
The increase in the content of curing agent leads to the decrease of Ms and, so to the increase of the rigidity (modulus of elasticity) as well as to the reduction of deformability of vulcanizates. The maximum density of crosslinking νl/v is observed when using the 0.2–0.3 % ТЕ and Dur, making 0.234 and 0.229 respectively. Further increase in the concentration of aromatic dinitrile -N-oxides up to 0.4 % leads to a sharp increase in the density of crosslinking polymer for all the studied hardeners, especially MBS. The minimum activation energy (32.5 kJ) is observed when using a curing agent TE and maximum – 53,5 kJ – when using MBS.
The studies of the influence of the structure of aromatic dinitrile-N-oxides on the structuring dynamics and the curing process kinetics of tetrazole polymer revealed the significant differences in reactivity of shielded reaction centers, which, apparently, can be associated with the effect of steric or stereoelectronic factors. To calculate the electronic structure and various indices of reactivity of dinitrile-N-oxides (in particular, with Fukui parameters) in order to find possible correlation between «structure – property» is of interest.
References
1. Okhotnikov M.A., Valuev V.I. Studies on Kinetics of Polyurethanes Curing, Having Two Bonds in Chain by Dinitroxilamides // Journ of Applied Chem. – 2002. – V. 75. – Iss. 9. – P. 1555–1558.
2. Yakubov A.I., Tsyganov D.V., Belenkiy L.I. et al. Synthesis of Stable Functionally Subtituted Nitriloxides of Aromatic Group // Izv. АN USSR. Ser. Chem. – 1991. – P. 1201–1203.
3. Belousov L.I., Paznikov Ye.A., Petrova G.Ya. et al. Studies on Low-Temperature Curing Process of Poly-N-methylallyl-5-viniltetrazole // Journ. of Applied Chem. – 2008. – V. 76.– P. 1197–1199.
4. Belousov А.М., Paznikov Ye.A., Petrova G.Ya. et al. Some Laws of Curing of Poly-N-methylallyl-5-viniltetrazole by N–oxide // Polzunov’s Vestnik. – 2004. – No. 1.– P. 278–282.
5. Averko-Antonovich I.Yu., Bikmullin R.T. Methods to Study the Structure and Property of Polymers / Kazan, 2002. – 302 p.
6. Huggins M.L. Thermodynamic compatibility of polymers with the solvent / Ann. Acad. Sci. – 1942. – V. 43. – N 4. – P. 32–35.
МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ ПО ИССЛЕДОВАНИЮ
ПОДВОДНОЙ УДАРНОЙ ВОЛНЫ НА МАЛОМАСШТАБНЫХ МОДЕЛЯХ
С.Б. Егоров, В.И. Пегов
ОАО «Государственный ракетный центр им. академика В.П. Макеева»,
г. Миасс, Россия
При проектировании и эксплуатации различных подводных объектов, судов и прочих плавсредств необходимы количественные оценки воздействия на них подводного взрыва взрывчатых веществ. Для решения ряда таких задач представляется важным проведение модельных экспериментов, для чего требуется теоретически обоснованная и экспериментально апробированная методика.
В настоящей работе представлены методики моделирования воздействия подводной ударной волны (ПУВ) по максимальному давлению и по импульсу ПУВ, предложен подход по их применению при использовании стандартных зарядов малой мощности. Приведены результаты экспериментальной апробации предлагаемого подхода, показавшие его корректность.
EXPERIMENTAL METHODOLOGY TO INVESTIGATE AN UNDERWATER SHOCK WAVE WITH SMALL-SCALE MODELS
S.B. Yegorov, V.I. Pegov
Open Joint Stock Company «Academician V.P. Makeyev State Rocket Centre», Miass, Russia
In designing and operation of various submerged objects, ships, and other waterborne vehicles it is required to quantify impact of the explosive underwater burst on them. To find a decision it is important to simulate the tasks that asks for their theoretically validated and experimentally verified methodology.
The paper is focused on methodologies developed for simulation of the underwater shock wave in pressure and impulse and proposes an approach for their application using the available standard charges of low power. The results of experimental approbation of the approach, that prove its correctness, are shown.
ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ЗАЖИГАНИЯ ГЕЛЕОБРАЗНОГО
Достарыңызбен бөлісу: |