1.1. Магматогенные процессы 1.1.1. Магматическая кристаллизация
Температуры минералообразования наиболее высокие: 1000–1600 оС при кристаллизации магм, излившихся на поверхность, и 700–1000 оС при кристаллизации магм на глубине, в плутонических условиях. Некоторые щелочные, базитовые (основные) и гипербазитовые (= ультраосновные или ультрабазитовые) магмы кристаллизуются и при большей температуре. В среднем температуры кристаллизации вулканитов выше, чем плутонитов, так как идет повышение температуры за счет окисления кислородом
воздуха.
Роль давления удержание в расплаве летучих компонентов магмы: H2O, CO2, B, P2O5, F, Cl и др.; присутствие этих компонентов значительно снижает температуру кристаллизации магмы.
Химизм. Преобладающие компоненты магматического расплава (их принято выражать в виде оксидов) это SiO2, Al2O3, FeO, MgO, CaO, Na2O, K2O. Эти компоненты слагают главную массу минералов магматических пород, и их называют породообразующими. В сумме на их долю приходится около 90 % состава минералов, кристаллизующихся преимущественно в виде силикатов и алюмосиликатов.
Кроме преобладающих (породообразующих) компонентов в расплаве находятся так называемые рассеянные компоненты MnO, BaO, NiO. Они в основном не дают самостоятельных минералов, а рассеиваются в виде примесей в решетках породообразующих минералов.
Присутствуют также в расплаве и акцессорные компоненты ZrO2, P2O5, TiO2, Cr2O3, TR2O3, Fe2O3. Они содержатся в незначительных количествах, но даже при низком содержании стремятся обособиться в виде самостоятельных минералов. При этом они обычно образуют несиликаты: фосфаты апатит, монацит; окислы рутил, хромит, магнетит.
Наиболее важным при оценке химизма магматических процессов является содержание в расплаве кремнезема, которое может меняться
от 25 до 80 %.
По содержанию кремнезема магматические породы делятся на:
|
Le Bas et al., 1992
|
Петр. кодекс, 1995
|
ультраосновные (гипербазиты)
|
SiO2 45 вес. %
|
SiO2 44 вес. %
|
основные (базиты)
|
SiO2 45–52 вес. %
|
SiO2 44–53 вес. %
|
средние (мезиты)
|
SiO2 52–63 вес. %
|
SiO2 53–64 вес. %
|
кислые (ацидиты)
|
SiO2 63 вес. %
|
SiO2 64 вес. %
|
Кроме того, особо выделяют щелочные породы, которые отличаются высоким содержанием щелочей (Na2O + K2O), а по содержанию SiO2 могут быть от кислых до ультраосновных, хотя большая часть их соответствует средним (53–64 вес. % SiO2), что связано с особенностями накопления щелочей в ходе эволюции расплавов.
Последовательную смену парагенезисов, отвечающих породам нормального ряда, можно представить как реакционный ряд Боуэна. Американский петролог Н. Боуэн показал, что кристаллизация расплава начинается с образования наиболее тугоплавких, богатых Mg и Fe силикатов. Позже, по мере снижения температуры, в результате реакций с расплавом, к ним присоединяются Ca-Mg силикаты и алюмосиликаты Са, Na и К. В итоге образуется прерывистый ряд существенно железо-магнезиальных силикатов, называемых фемическими (от Fe-Mg) или мафическими (от Mg-Fe), и непрерывный параллельный ряд салических (от Si-Al) Ca-Na алюмосиликатов. Соответственно выделяют две ветви реакционного ряда Боуэна (рис. 10). Что из этого ряда следует?
1) По мере кристаллизации расплава более поздние минералы оказываются более кислыми, т. е. богаче кремнеземом. Сравним: плагиоклазы по мере кристаллизации обогащаются альбитовым, более высококремнистым, миналом, а состав пироксена отличается от оливина лишь количеством кремнезема, и образование его можно представить как реакцию ранее выкристаллизованного оливина с кремнеземом расплава: (Mg,Fe)2[SiO4] + SiO2 (Mg,Fe)2[Si2O6] (Отметим только, что в зависимости от условий кристаллизации и состава системы порядок кристаллизации минералов, например, орто- и клинопироксена, может меняться.)
2) Крайние члены ряда разделены промежуточными продуктами реакции и потому не могут равновесно сосуществовать друг с другом. Это означает, например, что кварц не может сосуществовать с оливином в равновесном парагенезисе. Случаи нарушения ряда Боуэна при повышении химического потенциала Fe и щелочей мы здесь не рассматриваем. Таким образом, каждая порода будет иметь свою парагенетическую ассоциацию минералов. Рассмотрим подробнее главные из них.
Ультраосновные породы. Парагенетическая ассоциация минералов – одна из наиболее высокотемпературных. Главные минералы – оливин (Ol), пироксены (Px). Породы, содержащие Px и Ol в сравнимых количествах, называются перидотитами. Существенно оливиновые породы называются в зависимости от акцессорных минералов; если с оливином ассоциирует магнетит, то это оливинит, а если оливин с хромитом, то это дунит. Для названных пород весьма характерены ортопироксены – энстатит, бронзит или гиперстен. Преимущественно пироксеновые породы – пироксениты – до 1995 года было принято относить также к ультраосновным, однако после принятия Петрографического Кодекса их относят к основным породам. Соотношение пород показано на рис. 11.
Разновидностью перидотитов являются лерцолиты, имеющие парагенезис Ol + Opx + Cpx (в зависимости от глубинности образования могут присутствовать Pl и/или Sp и/или гранат – пироп). Характерная особенность – то, что Срх в них богат Cr (хромдиопсид). Образование лерцолитов происходит при кристаллизации ультраосновных расплавов (их находят в расслоенных массивах), они также слагают верхнюю мантию, о чем можно судить по ксенолитам, вынесенным основными или ультраосновными вулканическими породами (базальтами, кимберлитами, и др.).
К ультраосновным породам относят кимберлиты – специфические породы трубок взрыва, – также зарождающиеся в верхней мантии и выносимые на поверхность эксплозивным путем. Они обычно содержат большое количество обломочного материала, в том числе оливин, ильменит, пироп (магнезиальный гранат), диопсид, флогопит, энстатит, хромит, иногда алмаз. В основной массе находится вторая генерация минералов, среди которых обычны оливин, монтичеллит, флогопит, перовскит, шпинель, апатит, а также позднемагматические карбонаты и серпентин.
Основные породы. Главные минералы – оливин, пироксены и основной плагиоклаз, в подчиненном количестве может быть роговая обманка (Hbl). В зависимости от того, какой пироксен преобладает, различают: габбро (Срх + Pl), габбронориты (Cpx + Opx + Pl), нориты (Opx + Pl). Клинопироксен – авгит или диопсид. Незначительное присутствие Hbl обычно отражается в названии – роговообманковое габбро.
К основным породам относятся пироксениты, как уже показано выше, а также горнблендиты – нетипичная ассоциация, когда при повышенном парциальном давлении воды в ходе снижения температуры оливин и пироксены почти нацело замещаются амфиболом, а плагиоклазы не образуются или находятся в резко подчиненном количестве.
Средние породы. По ряду Боуэна видно, что роговая обманка образуется при более низких температурах, и в ее составе впервые появляется вода в виде группы (ОН)-. Для средних пород характерна ассоциация роговой обманки (и частично – биотита) со средними плагиоклазами – диориты, здесь уже может появляться свободный кремнезем (кварц). Другой очень важной породой является сиенит, для которого характерна ассоциация роговой обманки и/или биотита (а иногда с ними, или вместо них, и пироксена – диопсида или эгирин-авгита) с калиевым полевым шпатом KFsp (Fsp – feldspar или feldspat), т. е. Bt + KFsp или Hbl + KFsp. Возможны и промежуточные ассоциации с большим количеством как плагиоклаза, так и калишпата.
Кислые породы. Это породы, в которых избыточный, непрореагировавший кремнезем выделяется в свободном виде как кварц, причем количество его становится существенным. Типичными минералами кислых пород помимо кварца будут биотит (м. б. и Hbl), KFsp, кислые Pl, все это – парагенетическая ассоциация гранитов. Присутствие второстепенных минералов так же отражается в названиях: с роговой обманкой – роговообманковый гранит, при высоком содержании темноцветов порода становится переходной к диориту – гранодиорит.
Щелочные породы. Парагенетическая ассоциация этих пород не находит своего отражения в ряде Боуэна. По содержанию кремнезема эти породы соответствуют средним, то есть не содержат избыточного кремнезема. Это означает, что кварц для парагенетических ассоциаций щелочных пород противопоказан.
Для щелочных пород в зависимости от соотношения щелочей и глинозема выделяют два типа: если (Na2O + K2O) Al2O3, это породы агпаитового ряда, если же сумма щелочей ниже содержания глинозема, то ряд называется миаскитовым. В первом случае количества щелочей хватает, чтобы связать весь глинозем и соответствующее количество кремнезема в нефелине и полевом шпате, и еще остается для образования щелочных темноцветных минералов, и тогда парагенетическая ассоциация будет:
нефелин + калишпат + эгирин (щелочной клинопироксен) + арфведсонит (щелочной амфибол) + эвдиалит-эвколит + астрофиллит-лампрофиллит + титанит (сфен) + апатит и ряд других минералов. Типичным примером агпаитовых щелочных пород являются нефелиновые сиениты Кольского полуострова (массивы Хибин и Ловозера). В миаскитовых нефелиновых сиенитах (по станции Миасс на Урале) щелочей хватает только на образование нефелина и полевого шпата, и ассоциация характеризуется парагенезисом: нефелин + калишпат + биотит (или роговая обманка, или клинопироксен эгирин-диопсид) + циркон + пирохлор + апатит + титанит. Широко развито позднее замещение нефелина содалитом, канкринитом, альбитом, цеолитами.
Особо следует остановиться на случае, когда магматический расплав является одновременно и щелочным, и ультраосновным. Такой расплав насыщен большим количеством летучих (в первую очередь СО2, Р2О5, F, Н2О). При кристаллизации его, как правило, образуются кольцевые массивы, наружная зона которых сложена ультраосновными породами (оливинитами), промежуточные зоны – щелочными породами, а к центральной части бывают приурочены особые, существенно карбонатные породы карбонатиты, которые являются продуктом кристаллизации остаточного расплава. В нем как раз и концентрируются летучие компоненты, а также акцессорные элементы. В парагенетической ассоциации карбонатитов могут сочетаться минералы ультраосновного и щелочного парагенезисов оливин, флогопит, магнетит и тут же нефелин, апатит, редкоземельные и циркониевые минералы, характерные для щелочных пород, и карбонаты кальцит, доломит, анкерит, сидерит.
Роль температуры и давления при магматическом минералообразовании тесно связана со скоростью охлаждения. Так, эффузивы неравновесные породы (вкрапленники+вулканическое стекло); они кристаллизуются при высокой температуре и при отсутствии или очень низком содержании летучих компонентов. Вкрапленники, кристаллизуясь до извержения, соответствуют по составу более высокотемпературным ассоциациям. При излиянии лавы на поверхность летучие энергично уходят из расплава, но в отсутствие летучих затруднено образование таких минералов, как биотит и амфиболы. Из-за быстрого охлаждения минералы-вкрапленники не приходят в равновесие с вмещающим расплавом. Фемические компоненты в значительной степени остаются в стекле. Это значит, что при одинаковом составе исходного расплава парагенезис минералов в эффузивных породах будет иным, чем в плутонических.
Роль давления при магматическом минералообразовании сказывается и на составе минералов, и на формировании парагенетических ассоциаций. Например, в базальте вкрапленники плагиоклаза оказывются более основными, чем в аналогичных по составу габбро, а вкрапленники пироксена и оливина более магнезиальными, чем в соответствующей плутонической породе. Вкрапленники при этом часто обнаруживают признаки неравновесности с расплавом оплавленность, изъеденность, реакционные каймы. Вулканическое стекло тоже неустойчиво оно представляет собой подобие переохлажденного расплава и со временем подвергается девитрификации (де без, витро стекло) раскристаллизовывается с образованием тонкозернистой массы между вкрапленниками. Что касается изменения состава, уже отмечалось, что в глубинных ультраосновных породах появляются хромсодержащие силикаты. Давление также способствует образованию минералов с более плотными структурами, например, при повышении давления основной плагиоклаз анортит, у которого довольно рыхлая каркасная структура, становится неустойчивым, и вместо него образуются более плотные минералы гранат и кианит (дистен): 3Ca[Al2Si2O8] (анортит) Ca3Al2[SiO4]3 (гроссуляр) + 2Al2SiO5 (кианит) + SiO2, то есть вместо минеральной ассоциации габбро (анортит + пироксен) будет возникать совсем иная парагенетическая ассоциация гроспидитов (грос от гроссуляра, пи от пироксена и дит от дистена).
Подведем итог: парагенетическая ассоциация при магматическом минералообразовании зависит не только от состава магмы, но и от условий образования, в первую очередь от глубины, на которой кристаллизуется магматический расплав, а также количества летучих (Н2О, СО2) и кислорода.
Остановимся теперь на явлениях, которые сопровождают магматическое минералообразование.
1. Кристаллизационная дифференциация. Может случиться так, что после кристаллизации более основных минералов оставшаяся более легкоплавкая и более кислая часть расплава уйдет по трещинам в результате тектонических подвижек и обособится от ранних продуктов кристаллизации. При этом на старом месте останутся минералы ультраосновного парагенезиса, а на новом месте они образовываться уже не будут и температура расплава уже ниже, и состав его стал более кислым. Возникнет основная или средняя порода. При неоднократном отделении все более поздних и более кислых продуктов от более ранних можно получить весь ряд
дифференциатов (или дериватов) от ультраосновных до средних. Подтверждение этому видят в частом расположении на небольшом удалении друг от друга массивов основных и ультраосновных пород, а также в геохимических данных, например, изотопных отношениях некоторых элементов. Изотопный состав некоторых элементов достаточно инертен и остается неизменным даже в расплаве, поэтому близкие изотопные отношения в таких массивах свидетельствуют об их родственном образовании.
2. Гравитационная дифференциация. Выкристаллизовавшиеся первыми тяжелые рудные и фемические минералы (существенно Mg-Fe), имеют большую плотность, чем плотность расплава. Поэтому под действием сил гравитации они могут опускаться на дно магматической камеры. Так образуются донные залежи хромита в массивах ультраосновных пород. Гравитационная дифференциация характерна для ультраосновных, основных и щелочных магм, поскольку эти магмы имеют низкую вязкость из-за меньшего содержания кремнезема. Однако в щелочных магмах возможено другое проявление гравитационной дифференциации. Появление вначале каркасных алюмосиликатов с низкой плотностью (лейцит или полевой шпат) приводит к их всплыванию и накоплению в верхней части магматической камеры. Так объясняется образование уникальных мономинеральных лейцитовых пород – сынныритов.
3. Ликвационная дифференциация. Если исходная магма богата серой, фосфором и некоторыми другими летучими, то в ходе ее кристаллизации уже в начале может произойти ликвация (ликвацио разжижение) разделение единого расплава на две несмешивающиеся жидкости: силикатный расплав и сульфидный расплав. Эти жидкости будут обладать различной подвижностью и различным удельным весом, и дальнейшая кристаллизация их может вызвать явления гравитационной дифференциации – образующиеся сульфиды, как более тяжелые, могут осесть на дно и образовать донную рудную залежь. А могут образовывать линзовидные скопления (шлиры), или, если сульфидный расплав обособлялся в виде капель в силикатном, эмульсионную вкрапленность сульфидов в силикатной породе. Такой ликвационно-магматический генезис имеют сульфиды Cu, Ni, Fe, образующие большие скопления, связанные с основными породами. К этому типу относят месторождения медно-никелевых руд Норильска, Мончетундры.
4. Ассимиляция и контаминация. При внедрении магмы во вмещающие породы часто происходит поглощение обломков этих пород и их растворение в магматическом расплаве. Такое поглощение, усвоение вмещающих пород называется ассимиляцией. Если ассимилировано большое количество таких обломков и вмещающие породы заметно отличаются от магматического расплава по химическому составу, то происходит изменение состава расплава обогащение его компонентами вмещающих пород. Такое загрязнение («усреднение») состава за счет ассимилированного материала называют контаминацией. (Обратите внимание на правильное употребление обоих терминов, например: «контаминация магмы известняками», но «ассимиляция магмой известняков»). Оба эти явления могут заметно сказаться на составе минералов, которые будут кристаллизоваться из такого расплава, и даже на характере парагенетической ассоциации. Например, при внедрении гранитного расплава в известняки и ассимиляции их заметно увеличивается в расплаве содержание Са, и при кристаллизации будет образовываться не кислый плагиоклаз, что характерно для нормальных гранитов, а более основной. В результате ассимиляции гранитной магмой глиноземистых пород (например, слюдистых сланцев) при кристаллизации в граните могут появиться такие высокоглиноземистые минералы, как кордиерит (Mg,Fe)2[Al4Si5O18] или андалузит AlAl[SiO4]O.
5. Десиликация. Если расплав, богатый кремнеземом, внедряется в породы, бедные кремнеземом (например, известняки или ультраосновные породы), то происходит извлечение SiO2 из расплава за счет связывания его магнием, кальцием, железом вмещающих пород. Это приводит к обеднению расплава кремнеземом и нарушению изначально нормальной пропорции кремнезема и глинозема, Al2O3 оказывается в вынужденном избытке, и потому вместо обычных алюмосиликатов возникают минералы, обогащенные алюминием, количество кварца уменьшается, а иногда он исчезает совсем. Если при этом количество глинозема оказывается особенно велико, он может выделиться в свободном виде, образуя корунд.
6. Автометаморфизм. Слово означает самопревращение, самоизменение. В чем суть явления? В том, что продукты магматической кристаллизации подвергаются воздействию более поздних (остаточных) порций расплава той же магмы или воздействию обособившихся из этой же магмы летучих. Все эти воздействия происходят в пределах единого геологического процесса магматической кристаллизации без привноса вещества извне (!). Такое воздействие мы уже видели: реакция оливина с расплавом с образованием пироксена, дающего реакционные каемки вокруг ядра, в котором оливин законсервированный реликт, не успевший прореагировать и отделенный затем от расплава пироксеном. Яркий пример автометаморфизма – серпентинизация ультраосновных пород за счет ранее растворен-ной в магме, а затем обособившейся воды. Такая серпентинизация распространена очень широко, и часто от ранних оливина и пироксенов остаются только псевдоморфозы. Нередко именно с явлениями автометаморфизма связывают образование по ультраосновным породам промышленных месторождений серпентин-асбеста и талька.
Здесь мы подходим к оценке процессов магматического минералообразования с точки зрения их практической значимости. В ряде случаев эти процессы приводят к образованию повышенных концентраций некоторых промышленно важных минералов и их месторождений.
1) C ультраосновными породами связаны:
а) алмазы (в кимберлитах и перидотитах) Якутия, Южная Африка;
б) хромиты (в дунитах) Урал, Казахстан, Монголия;
в) платина и платиноиды (в хромитоносных дунитах) Урал;
2)с основными породами:
а) ильменит-титаномагнетит Урал, Казахстан;
б) Cu-Ni сульфидные ликвационно-магматические месторождения Норильск, Мончетундра, Сёдбери (Канада);
в) платина и палладий Восточная Сибирь;
3) со щелочными, ультраосновными-щелочными породами и карбонатитами:
а) крупнейшие месторождения апатита (сырья для фосфорных удобрений) Хибины (Кольский полуостров);
б) комплексные месторождения магнетит, слюда (флогопит), апатит, а также минерализация на TR, Nb, Sr, Ti, U карбонатиты Ковдора, Африканды (Кольский п-ов).
Собственно магматические породы нередко являются ценным сырьем и используются как облицовочный и строительный камень, отделочный камень (розовые туфы Армении, лабрадориты Украины).
Достарыңызбен бөлісу: |