Глава 2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
СИЛОВОЙ УСТАНОВКИ
2.1. Тяга двигателя и удельный расход топлива
Силовая установка самолета состоит из четырех двигателей Д-30КП. Двигатель Д-30КП (рис. 9) турбореактивный, двухконтурный, с двухкаскадным компрессором и смещением газовых потоков наружного и внутреннего контуров.
Компрессор двигателя двухкаскадный, осевого типа. Первый каскад низкого давления /—трехступенчатый, с первой сверхзвуковой ступенью, приводится во вращение четырехступенчатой турбиной низкого давления 5. Второй каскад высокого давления 2— одиннадцатиступенчатый с поворотными лопатками входного направляющего аппарата приводится во вращение двухступенчатой турбиной высокого давления 4. Роторы первого и второго каскада вращаются против часовой стрелки с разной частотой вращения. Степень повышения давления воздуха в компрессоре—19,45 (первый каскад — 2,08, второй — 9,35).
Камера сгорания 3 трубчатокольцевого типа с двенадцатью жаровыми трубами.
Турбина двигателя осевого типа, реактивная, шестиступенчатая, состоит из двух турбин. Первая турбина 4 — высокого давления (в. д.), двухступенчатая, диски, сопловые и рабочие лопатки охлаждаются воздухом. Вторая турбина 5—низкого давления (н. д.), четырехступенчатая, с охлаждаемыми дисками.
Реверсивное устройство створчатого типа, с двумя наружными боковым створками, предназначено для получения обратной тяги, для управления положением створок имеет автономную гидравлическую систему.
Реактивное сопло 7 дозвуковое, нерегулируемое, выполненное как одно целое с камерой смещения 6 потоков внутреннего и внешнего контуров.
Управление каждым двигателем осуществляется рычагом управления (РУД), сблокированным с рычагом управления реверсом тяги (РУР) и рычагом останова (РОД).
Двухвальная схема двигателя улучшает его эксплуатационные данные, расширяет диапазон устойчивой работы, улучшает приемистость и облегчает запуск. Двухконтурная схема двигателя обеспечивает экономичность на всех режимах и условиях полета в результате снижения удельного расхода топлива. Степень двухконтурности двигателя - отношение расхода воздуха, через наружный
Рис. 9. Схема двигателя Д-ЗОКП и графики изменения абсолютной температуры ТК, давления р* и скорости течения газов с по его
газовому тракту:
/—компрессор низкого давления: 2— компрессор высокого давления; 3—камера сгорания; 4—турбина высокого давления; 5—турбина низкого давления: ^—камера смешения: 7—реактивное
сопло
контур к расходу воздуха через внутренний контур — на взлетном режиме равна 2,33. Для улучшения посадочных характеристик и характеристик прерванного взлета все двигатели оборудованы системой реверсирования тяги. Каждый двигатель
Д-ЗОКП создает на взлетном режиме тягу 12000 кгс (4 двигателя — 48000 кгс) на скорости, равной нулю в стандартных условиях. Наличие четырех двигателей с большой тягой обеспечивает хорошие взлетные характеристики самолета. При отказе одного двигателя обеспечивается безопасность продолжения взлета на трех, а также продолжение горизонтального полета на высоте не менее 8000 м при полетном весе 160 т. При отказе двух двигателей обеспечивается возможность продолжения полета на высоте не менее 3000 м при полетном весе 160 т и безопасная посадка на ближайшем аэродроме.
Величина тяги зависит от расхода воздуха и топлива через двигатель в единицу времени. Расход топлива за единицу времени составляет в среднем 1 ... 1,5% от расхода воздуха. Следовательно, можно считать, что масса газов, выходящих из двигателя, практически равна массе воздуха, входящего в него.
Допустим, что давление воздуха перед входом в двигатель равно давлению на выходе из него. Тогда масса газовой струи, проходящая через двигатель, может получить ускорение только вследствие силового воздействия на эту массу. На основании третьего закона механики масса газов, приобретая ускорение, с такой же силой действует на двигатель. Сила действия этой массы на двигатель и является его реактивной тягой РR.
Если обозначить скорость воздуха на входе в двигатель (скорость полета) через V, а скорость выхода газов из него через C5, то изменение количества движения массы воздуха т=G/g, прошедшей через двигатель за время t, будет равно импульсу силы PR, действовавшей на эту массу т(С5—V)=РRt, где РRt — импульс силы PR, а т(С5— V)=тC5—тV — изменение количества движения массы воздуха т. Из этого выражения тяга турбореактивного двигателя будет
где т/t=тсек—секундная масса воздуха, проходящего через двигатель.
Из этой формулы видно, что чем больше секундный расход воздуха (mсек) и больший прирост его скорости (С5—V) в двигателе, тем реактивная тяга больше.
Для оценки экономичности двигателя вводится понятие удельной тяги руд и удельного расхода воздуха Суд. Учитывая, что секундная масса воздуха, проходящего через двигатель mсек=Gсек/g (где Ссек—секундный вес воздуха, проходящего через двигатель), то тягу двигателя можно выразить РR=Gсек(C5—V)/g.
Выражение (C5— V)/g и является удельной тягой руд. Как видно из формулы, удельная тяга руд=(C5— V)/g численно равна тяге, получаемой при прохождении через двигатель 1 кг воздуха.
Удельный расход топлива Суд==Счас/РR—часовой расход топлива в килограммах, необходимый для получения одного килограмма тяги двигателя. Если удельный расход топлива Суд меньший, а удельная тяга руд больше, то двигатель более экономичен.
2.2. Дроссельная характеристика двигателя
Дроссельная характеристика выражает зависимость тяги РR и удельного расхода топлива Суд от частоты вращения ротора двигателя (от оборотов двигателя).
На рис. 10 изображена дроссельная характеристика двигателя Д-ЗОКП при скорости полета V=0 и высоте Hмса=о (t°=15С и p = 760 мм рт. ст.).
График (см. рис. 10,а) выражает зависимость тяги, а график (см. рис. 10,б) зависимость удельного расхода топлива от частоты вращения двигателя.
Основные режимы дроссельной характеристики нанесены на графиках рис. 10, а, б и даны в табл. 2 и 3.
Как видно из графиков рис. 10 и табл. 2 и 3 каждый режим характеризуется прежде всего частотой вращения ротора высокого давления и ротора низкого давления в % (1% оборотов для ротора высокого давления соответствует 109 об/мин, для ротора низкого давления — 53,8 об/мин).
Режим малого газа. На режиме малого газа двигатель должен работать устойчиво с оборотами 60±1% (V=0, Hмса=о). Тяга на этом режиме минимальная около 940 кгс. Частота вращения и тяга зависят от внешних условий, а в полете и от высоты. На режиме малого газа почти вся тепловая энергия газов расходуется на вращение двигателя. Следовательно, скорость истечения газов из реактивного сопла и тяга двигателя небольшие. Часовые расходы топлива минимальны (800 кг/ч), а удельные — велики, так как тяга незначительная.
При увеличении расхода топлива (увеличении РУД) увеличивается температура газов перед турбиной, крутящий момент и частота вращения турбины двигателя, вследствие чего компрессор увеличивает подачу воздуха. Увеличение расхода и температуры газов вызывает увеличение тяги. На малых оборотах тяга увеличивается медленно, а с их ростом — быстрее. Быстрый рост тяги с увеличением расхода топлива (частоты вращения) объясняется тем, что на вращение турбины (компрессора и др.) с несколько большей частотой вращения требуется небольшой дополнительный крутящий момент турбины.
Рис. 10. Дроссельная характеристика двигателя Д-ЗОКП (У==0; 1=1УС, р==760 мм рт, ст.):
а—зависимость РR от nнд ; б—зависимость СR от пвд
Следовательно, дополнительный расход топлива и воздуха идет в основном на увеличение тяги. В этом случае увеличивается секундный расход воздуха в результате увеличения частоты вращения компрессора, увеличивается давление газов перед турбиной и скорость их истечения из реактивного сопла.
Удельный расход топлива резко падает, так как тяга возрастает в большей степени, чем часовые расходы топлива. Минимальные удельные расходы топлива будут при крейсерских режимах работы двигателя (см. рис. 10,6).
При частоте вращения ротора высокого давления около 79% происходит скачкообразное изменение параметров двигателя по причине закрытия клапанов перепуска воздуха в наружный контур из 5-й и 6-й ступени компрессора высокого давления, при этом тяга скачкообразно возрастает, а удельный расход топлива также скачкообразно уменьшается.
При выходе двигателя на взлетный режим часовые расходы топлива, температура газов и обороты турбины становятся максимальными. Компрессор обеспечивает максимальную подачу воздуха. Расход газов через двигатель и скорость их истечения достигают максимума, и тяга становится максимальной пв.д=97,5 (+0.5… -1.5) %, PRmах=12000кгс).
При увеличении оборотов двигатель проходит следующие характерные режимы работы.
Режим 0,42 номинального характеризуется оборотами высокого давления nвд=79,5...82% и тягой 4000—2% кгс. Этот режим является посадочным малого газа.
Режим 0,7 номинального характеризуется nвд=86,5 ... 88,5%. PR=6650 кгс. Необходимо помнить, что на этом режиме производится прогрев двигателя.
Режим 0,9 номинальною характеризуется nвд=90. ..92% и PR=8550 кгс. Это наибольший режим, который можно эксплуатировать без дополнительных ограничений по времени в каждом полете.
Номинальный режим характеризуется nвд==93±1%, PR=9500 кгс. На номинальном режиме производится набор высоты. Горизонтальный полет при необходимости можно выполнять на номинальном режиме.
Взлетный режим характеризуется максимальной тягой nвд=97,5%, PR=12000 кгс. На этом режиме производится взлет самолета и уход на второй круг. Он может быть использован с ограничением по времени в крайне трудных условиях полета (полет и заход на посадку на одном двигателе). Взлетным режимом непрерывно можно пользоваться не более 5 мин. В особых случаях полета допускается не более 15 мин.
Режим максимальной обратной тяги (реверса) имеют все двигатели. Устанавливается этот режим специальными рычагами при положении РУД на режиме малого газа после приземления самолета и при прерванном взлете, nвд=93+1%, РR=-3800 кгс при V=0. Величина отрицательной тяги на этом режиме зависит от скорости полета, причем, чем больше скорость полета, тем отрицательная тяга больше (см. рис. 12). Так, на скорости пробега 200 км/ч РR=5200 кгс.
При эксплуатации двигателя необходимо учитывать, что величина тяги, частоты вращения и температуры газов на каждом режиме в значительной степени зависят от температуры воздуха и атмосферного давления. На рис.11 показана зависимость тяги Д-30КП на взлётном режиме от температуры воздуха при различном атмосферном давлении.
Из графиков (рис. 11) видно, что при увеличении температуры воздуха до 15° С при постоянном атмосферном давлении 760 мм рт. ст. тяга почти не изменяется (незначительно увеличивается). При дальнейшем увеличении температуры
Рис.11 Зависимость тяги на взлётном режиме от температуры воздуха при различном атмосферном давлении
воздуха тяга резко уменьшается вследствие уменьшения расхода воздуха через двигатель, понижения степени повышения давления компрессора и уменьшения подачи топлива с целью сохранения постоянной (максимальной) частоты вращения двигателя и температуры газов перед турбиной.
Рассмотрим характер изменения тяги на малых и больших оборотах с позиции летной эксплуатации самолета. Согласно требованиям НЛГС приемистость двигателя характеризуется следующими данными. При переводе РУД на земле с режима малого газа до взлетного за 1 -2 с, двигатель устанавливает взлетные обороты за 7... 10 с, а в полете с режима малого полетного газа (0,42 номинала) за 4... 7 с. Тяга двигателя до оборотов высокого давления (79%) будет расти медленно (в среднем на 1% увеличения оборотов рост тяги составляет около 100 кгс). При увеличении оборотов с 79% до взлетных 97,5% тяга растет значительно быстрее (в среднем на 1% оборотов тяга увеличивается в среднем на 490 ... 500 кгс). Эту особенность приемистости и изменения тяги следует учитывать на снижении при заходе на посадку и особенно при уходе на второй круг.
2.3. Зависимость тяги двигателя и удельного расхода топлива от скорости полета
Зависимость тяги и удельного расхода топлива от скорости полета на различных режимах работы двигателя показана на рис. 12. Рассмотрим зависимость тяги и удельного расхода топлива от скорости полета на взлетном режиме. Если скорость самолета равна нулю и двигатель Д-30КП работает на оборотах 97,5%, то тяга его максимальная и равна 12000 кгс. При увеличении скорости тяга сначала несколько уменьшается. Это объясняется тем, что на малых скоростях полета секундный расход воздуха (mсек) и скорость истечения газов из двигателя С5) практически не изменяется, а скорость полета V возрастает.
При дальнейшем увеличении скорости скоростной напор (динамическое давление) воздуха перед двигателем увеличивается, вследствие чего увеличивается секундный расход и скорость истечения газов С5. Причём скорость С5, возрастает дополнительно, так как при увеличении тсек автоматически увеличивается и расход топлива для поддержания постоянной температуры газов перед турбиной двигателя. Такое изменение mсек и V сначала замедляет падение тяги, а при больших скоростях особенно на больших высотах она начинает возрастать, так как скоростной напор воздуха растет пропорционально квадрату скорости. Удельный расход топлива при этом непрерывно увеличивается, особенно на малых скоростях.
Такой характер изменения тяги и удельного расхода воздуха от скорости происходит и на всех режимах двигателя меньше взлетного.
При работе двигателя на режиме малого газа вследствие уменьшения тяги уже на скорости 400—450 км/ч она становится равной нулю, а на больших скоростях становится отрицательной.
Обратная (реверсивная) тяга при увеличении скорости полета увеличивается. Если при V=0 она была равна —3800 кгс, то при скорости 200 км/ч она становится —5200 кгс, а при V=250 км/ч РR=- 5500 кгс (см. рис. 12).
2.4. Зависимость тяги двигателя и
удельного расхода топлива от высоты полета
З ависимость тяги двигателя и удельного расхода топлива от высоты изображена на рис. 13. На рис. 13,а показана зависимость тяги и удельного расхода топлива от высоты полета для различных чисел М, а на рис. 13,б—зависимость тяги и удельного расхода топлива от оборотов при различных числах М на высоте 11000м.
Рассмотрим зависимость тяги и удельного расхода топлива с поднятием на высоту в тропосфере. Так как тяга двигателя при постоянной температуре уменьшается пропорционально падению давления, то с поднятием на высоту в тропосфере она уменьшилась бы так, как уменьшается давление. Но уменьшение температуры при увеличении высоты в тропосфере (до II 000 м) вызывает замедления падения плотности воздуха и увеличение степени сжатия компрессора двигателя, вследствие чего замедляется падение тяги. Кроме того, понижение температуры наружного воздуха замедляет уменьшение расхода топлива для поддержания постоянной температуры газов в камере сгорания, а это в свою очередь замедляет падение давления газов в камере сгорания по сравнению с падением давления в атмосфере, вследствие чего увеличивается скорость истечения газов С5. Поэтому тяга реактивного двигателя с поднятием на высоту в тропосфере уменьшается не только медленнее давления, но и медленнее плотности воздуха. Такой характер уменьшения расхода топлива в единицу времени и тяги двигателя приводит к уменьшению удельного расхода топлива.
Рассмотрим изменение тяги и удельного расхода топлива при постоянной температуре воздуха и скорости полета, но при уменьшении атмосферного давления (это имеет место на высотах более II 000 м). В этом случае пропорционально падению давления будут уменьшаться плотность и секундный расход воздуха, проходящего через двигатель. Скорость истечения газов из двигателя и прирост скорости (С5-V) изменяться не будут. Это объясняется следующим. Пусть давление, а следовательно, плотность и секундный расход воздуха уменьшились в два раза. Во столько же раз уменьшится избыточное давление воздуха перед компрессором двигателя и за ним, так как они пропорциональны скоростному напору, а температура в атмосфере и температура газов в камере сгорания поддерживается постоянной. В нашем примере вдвое меньшее избыточное давление действует на вдвое меньшую массу газа, следовательно, эта масса приобретает такую же скорость истечения, какая была до понижения атмосферного давления.
Можно сделать вывод, что при постоянной скорости полета и скорости истечения газов из двигателя С5 тяга уменьшается пропорционально С5, который при постоянной температуре воздуха уменьшается пропорционально падению давления. Тяга в этом случае уменьшается пропорционально падению давления.
Расход топлива в единицу времени автоматически уменьшается пропорционально уменьшению расхода воздуха, так как подогрев его осуществляется на одинаковое число градусов. Значит удельный расход топлива не изменяется (часовой расход топлива и тяга двигателя уменьшаются а одинаковой степени). При полете в стратосфере тяга с поднятием на высоту уменьшается пропорционально падению давления, а удельный расход топлива остается постоянным.
Глава 3. ГОРИЗОНТАЛЬНЫЙ ПОЛЕТ
3.1. Скорость и тяга, потребные для горизонтального полета
С хема сил, действующих на самолет в горизонтальном полете, изображена на рис. 14.
Если все силы приложены в одной точке (центре масс самолета—-точке 0), то для осуществления горизонтального полета подъемная сила должна уравновешивать вес самолета, а тяга силовой установки —лобовое сопротивление самолета
Y=CySV2/2=G (3.1.)
X=CxSV2/2=Pг.п. (3.2.)
Скорость, потребная для горизонтального полета Vг.п, обеспечивает создание подъемной силы, равной полетному весу самолета. Величину потребной скорости можно определить из условия горизонтального полета (3.1). Решив это уравнение относительно Vг.п; получим выражение скорости, потребной для горизонтального полета
Vгп=2G/(CyS)
Тяга, потребная для горизонтального полета Ргп, определяется из условия Х=Рг.п. Разделив почленно уравнение (3.1) на (3.2), получим У/Х=G/Рг.п=К. Из этого выражения следует, что тяга потребная для горизонтального полета Рг.п= G/К..
Как видно из формулы, величины скорости и тяги, потребных для горизонтального полета, зависят от веса самолета, угла атаки и высоты полета. Рассмотрим их зависимость от угла атаки.
1. При увеличении угла атаки самолета до критического (кр=20°) коэффициент аэродинамической подъемной силы Су возрастает. Для сохранения подъемной силы, равной полетному весу самолета, скорость необходимо уменьшить. При критическом угле атаки коэффициент Сумах=1,42 и скорость, потребная для горизонтального полета, будет минимальной.
Вычислим Vг.п min для полетного веса самолета 160000 кгс при полете на высоте, равной нулю:
Vгп=2160000/( 1,420,125300)=72,6 м/с280 км/ч,
2. При увеличении угла атаки до наивыгоднейшего аэродинамическое качество увеличивается, а потребная тяга уменьшается.
При нв=7,5°,Кмах=15,5 потребная тяга минимальная.
Если полетный вес самолета 160000 кгс, то Pгп min=10300 кгс, при этом наивыгоднейшая скорость полета у земли будет 124 м/с или 448 км/ч.
При увеличении угла атаки больше нв вследствие уменьшения аэродинамического качества самолета потребная тяга увеличивается.
Если горизонтальный полет происходит на скоростях, которым соответствует число М>0,4, то вследствие сжимаемости воздуха коэффициенты Су и Сх увеличиваются, а аэродинамическое качество несколько уменьшается. Уменьшение аэродинамического качества вызывает увеличение потребной тяги, а увеличение Су уменьшение потребной скорости на каждом угле атаки.
Для вычисления Pгп в этом случае необходимо иметь поляры режимов горизонтального полета. Для построения поляр режимов горизонтального полета берутся поляры для различных чисел М (см. рис. 5); в этой системе координат наносятся кривые, которые показывают для каждого значения Су (угла атаки) величину Сх с учетом сжимаемости воздуха. Эти кривые носят название поляр горизонтального полета (полетные поляры). Выполняя горизонтальный полет при больших числах М на заданной высоте, самолет как бы переходит с поляры одного числа М на поляру другого числа М.
Для построения поляры горизонтального полета самолета для заданного веса и высоты задаемся теми числами М, для которых построены кривые Сy=f() и поляры Су=f(Сх) (см. рис. 5). Из условия горизонтального полета
Y = Cy SV2/2=CySM2a2/2=G
вычисляем коэффициент Сугп, потребный для горизонтального полета для каждого числа М Сугп=2G/(СуSМ2а2). На полярах для различных чисел М откладываем вычисленные значения Су на оси Су и проводим горизонталь до поляры того числа М, которому соответствует этот Су. Соединив эти точки на всех полярах, получим поляру горизонтального полета для заданного веса и высоты. Такие построения выполняются для ряда высот или полетных весов (см. рис. 5).
Таким образом, поляра горизонтального полета позволяет для каждого Сугп определить значение Схгп с учетом сжимаемости воздуха при различных числах М. Влияние сжимаемости на величину Схг.п проявляется при тех значениях Суг.п, при которых поляра горизонтального полета отклоняется от поляры для малых чисел М (М<0,4).
Для определения тяги, потребной для горизонтального полета, необходимо определить Суг.п для заданной скорости (числа М), по Суг.п на поляре горизонтального полета найти Схг.п, соответствующий числу М; по Сугп и Схгп найти аэродинамическое качество, а по весу самолета и качеству—Ргп=G/К.
Таким методом можно вычислить скорость и тягу, потребных для горизонтального полета при любом значении коэффициента Суг.п (любом числе М) и высоте полета. По значениям Vг.п и Ргп можно построить кривые потребных тяг для заданного веса самолета и высоты полета. Следует помнить, что каждому полетному весу самолета и высоте соответствует поляра горизонтального полета.
3.2 Кривые потребных и располагаемых тяг
Кривые потребных и располагаемых тяг позволяют определить основные летные характеристики самолета. Эти кривые строятся для различных полетных весов самолета и высот полета.
Кривая потребной тяги показывает зависимость тяги, потребной для горизонтального полета, от скорости полета.
Кривая располагаемой тяги показывает зависимость располагаемой тяги силовой установки самолета от скорости полета. Располагаемая тяга силовой установки самолета—это сумма тяг всех двигателей при работе их на номинальном режиме.
Построим кривую потребных тяг самолета Ил-76Т с полетным весом 160000 кгс для Н=0 (=0,125 кгс с2/м4) по стандартной: атмосфере.
Порядок расчета потребных тяг для данной высоты полета (в нашем примере Н=0) следующий.
1. Задаемся рядом скоростей горизонтального полета (от 280 до 600 км/ч (600 км/ч — максимально допустимая приборная скорость, а на Hмса=о Vпр= Vис).
2. По формуле Суг.п=2G/(SV2) вычисляем значения Сугп, потребные для горизонтального полета на заданной скорости.
3. На поляре горизонтального полета (Н=0) находим значение коэффициента Схг.п для каждого значения потребного Сугп.
4. По значениям Суг.п и Схг.п вычисляем аэродинамическое качество К= Су г.п/Схг.п.
5. Вычислим тягу, потребную для горизонтального полета на. заданной скорости Рг.п= G/К.
Если есть необходимость определить углы атаки, то при любом значении Сyг.п по кривой Су=f() для различных чисел М можно определить значения углов атаки.
Вычисления производятся для всех значений заданных скоростей и сводятся в табл. 4.
Эта таблица показывает изменения потребной тяги горизонтального полета от скорости с учетом сжимаемости воздуха.
Если на оси абсцисс отложить скорость Vг.п, а на оси ординат силу тяги Ргп, то на основании табл. 4 можно построить кривую потребных тяг.
Произведя аналогичные вычисления для других высот (2000; 4000; 8000; 10000 м), можно построить кривые потребных тяг и для этих высот.
Кривая располагаемой тяги Рр наносится на эту же систему координат. Значение тяги двигателей на каждой скорости полета на номинальном режиме определяют опытным путем. Вычислив сумму тяг четырех двигателей на каждой скорости полета, получим значения располагаемых тяг. По значениям скорости и располагаемой тяги строим кривую располагаемых тяг.
Имея кривые потребных и располагаемых тяг до заданного полётного веса и высоты полета, можно определить основные летные данные самолета при этих условиях.
На рис. 15 изображены кривые потребных и располагаемых тяг для G=160000 кгс на H=0.
По кривым потребных н располагаемых тяг можно определить следующее.
1. Для любого угла атаки скорость, потребную для горизонтального полета Vг.п. , тягу, потребную для горизонтального полета Pгп, располагаемую тягу при данной скорости полета Рр и запас тяги Р=Рр - Pгп. Используя эти значения, можно определить летные характеристики самолета на этом же угле атаки в режиме набора высоты и других режимах полета.
2. Правая точка пересечения кривых потребных и располагаемых тяг дает угол атаки , которому соответствует максимальная скорость горизонтального полета. Самолет Ил-76Т по условиям прочности имеет ограничение по приборной скорости (скоростному напору), а на больших числах М ограничения по устойчивости и управляемости, поэтому выполнять горизонтальный полет на максимальной скорости запрещается.
На высотах полета от Н=0 до 7500 м максимально допустимая приборная скорость Vmax э =600 км/ч ПР, при которой скоростной напор 1740 кгс/см2.
На высотах более 7500 м величина максимально допустимой скорости ограничивается числом Мmax э =0,77. При остатке топлива менее 5000 кг Vmax э = 550 км/ч ПР.
3. Проведя касательную к кривой потребной тяги параллельно оси ординат, определим минимальную (теоретическую) скорость горизонтального полета V гп min, которая равна 280 км/ч ПР. Эта скорость соответствует критическому углу атаки кр==20°. Такую скорость в полете допускать не разрешается по условиям устойчивости и управляемости самолета. Для определения минимально допустимой приборной скорости, обеспечивающей безопасность полёта, предварительно в процессе летных испытаний определяется при различной конфигурации самолета приборная скорость сваливания Vc(Vs) и соответствующие ей угол атаки c(s) и коэффициент Сyc(Сys).
Под сваливанием понимается возникшее в результате отрыва потока на крыле непроизвольное апериодическое или колебательное движение самолета относительно любой из трех осей со сравнительно большими, заметными для пилота средней квалификации, амплитудами угловых скоростей и (или) угловых ускорений, не парируемое без уменьшения угла атаки самолета.
Минимально допустимые приборные скорости Vmin доп, соответствующие им углы атаки доп и коэффициенты Судоп должны удовлетворять следующим требованиям норм лётной годности самолетов (НЛГС-2):
не должно возникать самопроизвольных колебаний самолета, которые нельзя немедленно парировать рулями;
должна быть обеспечена приемлемая управляемость самолетом по тангажу, крену и рысканью;
должен быть обеспечен запас по углу атаки (от угла атаки сваливания) не менее 3°;
не должно быть тряски, угрожающей прочности конструкции или затрудняющей пилотирование;
не должно возникать также особых нарушений работы силовой установки и систем, которые требуют немедленных действий пилота по восстановлению их нормальной работы либо немедленного уменьшения угла атаки;
не должны появляться признаки неустойчивой работы двигателей;
должна быть обеспечена естественная, либо искусственная сигнализация пилоту о выходе самолета на доп(Су доп), предупреждающая о приближении сваливания или других явлений, по которым устанавливается доп (Су доп);
производная линейного перемещения штурвальной колонки по коэффициенту подъемной силы самолетах XштСy должна быть отрицательной, т. е. при отклонении штурвальной колонки «на себя» угол атаки и коэффициент Су должны увеличиваться и наоборот.
Для предупреждения пилота о выходе самолета Ил-76Т на большие углы атаки установлен автомат углов атаки и перегрузок (АУАСП). Этот прибор настроен так, что его срабатывание происходит при скоростях, имеющих запас от скорости сваливания около 1,13 Vс. Максимально допустимые углы атаки на указателе АУАСП в зависимости от числа М:
число М 0,54 и менее 0,6 0,7 0,74 0,77
угол атаки, град 15 13,5 11 10 9
Значения приборных скоростей сваливания, скоростей срабатывания АУАСП и минимально допустимых при различном весе самолета с убранной механизацией крыла можно определить по графикам (рис. 16). Значения этих скоростей сведены в табл. 5.
4. Проведя касательную к кривой потребной тяги параллельно оси абсцисс, определим минимальную тягу, потребную для горизонтального полета (Рг.п min = 10300 кгс). Минимальная потребная тяга будет при наивыгоднейшем угле атаки нв=7,5°, которому соответствует наивыгоднейшая скорость Vнв=448...450 км/ч ПР.
5. Все скорости, на которых теоретически возможен горизонтальный полег, составляют теоретический диапазон скоростей горизонтального полета (V), т. е. от минимальной скорости до максимальной.
Практический диапазон скоростей (Vпрак) значительно меньше и включает все скорости горизонтального полета, на которых обеспечивается безопасность полета, т. е. от минимально допустимой скорости 1,25 Vс=350 км/ч ПР до максимально допустимой— 600 км/ч ПР. Величину практического диапазона характеризуют разностью между максимально допустимой и минимально допустимой приборными скоростями Vпрак==600—350==250 км/ч ПР.
6. Весь диапазон скоростей горизонтального полета делится на два режима, границей которых является наивыгоднейшая скорость Vнв = Vkmах= 448 ... 450 км/ч ПР.
Первый режим горизонтального полета выполняется на скоростях, больших наивыгоднейшей ( нв). В этом режиме самолет
имеет достаточно хорошую устойчивость и управляемость на числах М не более0,77.Первый режим ограничен числом Мmах э = 0,77 и Vmах э=600 км/ч ПР. Ко второму режиму относятся скорости горизонтального полета, меньшие наивыгоднейшей ( нв). В этом режиме значительно ухудшается продольная и боковая устойчивость и управляемость самолета. Кроме того, при выходе на большие углы атаки наблюдается тряска, которая затрудняет управление самолетом, но вместе с этим и является предупредительным сигналом пилоту о наличии больших углов атаки (второго режима).
Как было указано, минимально допустимой скоростью является скорость 1,25 Vс=350 км/ч. Значение минимально допустимых скоростей для других полётных весов даны в табл.5 и на графиках рис.16.
3.3. Влияние полётного веса на лётные данные самолёта
При выполнении полёта на современном транспортном самолёте полётный вес значительно уменьшается вследствие выгорания топлива. Такое изменение полётного веса вызывает значительное изменение лётных характеристик самолёта.
Для выполнения горизонтального полёта с меньшим полётным весом необходима меньшая подъемная сила, а значит, при том же угле атаки и высоте полета необходима меньшая скорость и тяга.
Для оценки изменения летных характеристик самолета при уменьшении полетного веса удобно построить кривые потребных тяг для различных весов на одном и том же графике. Располагаемая тяга на любой скорости полета остается величиной постоянной. Уменьшение потребной скорости и тяги при уменьшении веса самолета вызывает перемещение каждого угла атаки и всей кривой потребной тяги в системе координат влево и вниз. На рис. 17 построены кривые потребной тяги для веса самолета 160000 и 130000 кгс.
При таком изменении полетного веса, как указано на рис. 17, наблюдаются следующие изменения характерных скоростей горизонтального полета:
а) максимальная скорость горизонтального полета уменьшается с 280 до 252 км/ч ПР;
б) наивыгоднейшая скорость уменьшается с 448 до 402 км/ч ПР;
в) теоретический диапазон скоростей горизонтального полета увеличивается с 320 до 348 км/ч ПР;
г) максимальный избыток тяги при наивыгоднейшей скорости горизонтального полета увеличивается с 18600 до 23400 кгс.
Аналогичные изменения характерных скоростей горизонтального полета происходят на всех высотах.
3.4. Влияние высоты на летные данные самолета
Рассмотрим горизонтальный полет на различных высотах при одном и том же полетном весе и угле атаки.
При выполнении горизонтального полета на любой высоте необходимо обеспечить равенство подъемной силы и веса самолета. Для выполнения этого условия при постоянном весе и угле атаки на большей высоте, где плотность воздуха меньше, истинная скорость горизонтального полета должна быть больше, но приборная скорость одна и та же.
Сохранение приборной скорости при любом постоянном угле атаки на различных высотах объясняется тем, что приборная скорость замеряет динамическое давление q=V2/2. С поднятием на высоту для сохранения Y=G при постоянном угле атаки (Су=const) квадрат истинной скорости полета увеличивается во столько раз, во сколько раз уменьшается плотность воздуха, а значит, динамическое давление и приборная скорость остаются постоянными. Это хорошо видно из выражения V2/2, получаемого из уравнения Y=G; правая часть не зависит от высоты, т. е. динамическое давление и приборная скорость с высотой не меняются.
Учитывая это, можно установить связь между истинной и приборной скоростями. Для определения истинной скорости необходимо значение приборной скорости умножить на высотный коэффициент 0/H, т. е. V=Vпр0/H, и наоборот, Vпр=V/0/H, где значения 0 и Н берутся из таблицы стандартной атмосферы.
Сохранение приборной скорости при любом постоянном угле атаки на всех высотах при одном и том же весе самолета имеет большое значение и в обеспечении безопасности полета, так как позволяет пилоту определять режим полета (угол атаки). Так, например, минимально допустимые скорости полета для всех высот устанавливаются по величине приборной скорости (широкая стрелка на указателе скорости).
Тяга, потребная для горизонтального полета на малых числах М, от высоты (плотности воздуха) не зависит. Это объясняется следующим. Полет при постоянном угле атаки (Сх=const) с данных полетным весом (G=const) на всех высотах выполняется на одной и той же приборной скорости, а значит, при одном и том же динамическом давлении. Следовательно, сопротивление самолета при таких условиях не изменяется, и тяга, потребная для горизонтального полета, остается величиной постоянной
Х=СхSV2/2=Pгп=const
Таким образом, под действием одной и той же тяги горизонтальный полет на заданном угле атаки при постоянном полетном весе на больших высотах выполняется на одной и той же приборной скорости, что и у земли, но с большей истинной скоростью.
Так как с поднятием на высоту скорость звука уменьшается, а истинная скорость полета при постоянной приборной увеличивается, то увеличивается и число М. Учитывая это, можно утверждать, что постоянство потребной тяги и приборной скорости (угла атаки) будет сохраняться до той высоты, до которой число М будет оставаться меньшим 0,4, т. е. пока можно еще пренебрегать влиянием сжимаемости воздуха. Если при заданной приборной скорости (угле атаки) число М горизонтального полета станет больше 0,4, то потребная тяга увеличится, так как вследствие сжимаемости воздуха коэффициент Сх на этом угле атаки и сопротивление самолета увеличатся.
Для определения летных характеристик самолета с заданным полётным весом на различных высотах полета пользуются кривыми потребных и располагаемых тяг для этих высот (рис. 18).
Для определения величины тяги, потребной для выполнения горизонтального полета при любой постоянной скорости (угле атаки) и заданной высоте, используют поляру горизонтального полета для этой высоты (см. рис. 5 а). Из поляры берутся значения Су и Сх и по соответствующим формулам вычисляются аэродинамическое качество и тяга, потребные для горизонтального полета на заданных скоростях. В результате этих вычислений составляется таблица значений потребной скорости и тяги с учетом сжимаемости воздуха для заданной высоты полета. Такие таблицы составляются для ряда высот. На основании таблиц производится построение. кривых потребных тяг для этих высот.
Кривые располагаемых тяг для этих же высот строятся на основании результатов испытаний двигателя.
Так как с поднятием на высоту скорость, потребная для горизонтального полета, при любом постоянном угле атаки увеличивается, а потребная тяга не изменяется (за исключением больших чисел М), то кривые потребных тяг на графике смещаются вправо с поправкой на сжимаемость воздуха при больших числах М.
Располагаемая тяга силовой установки самолета с поднятием на высоту уменьшается (см. гл. 2), кривые располагаемых тяг для различных высот показать на рис. 13.
В следствие изменения потребной скорости, располагаемой тяги и потребной тяги для больших чисел М изменяются летные характеристики самолета с поднятием на высоту.
На рис. 18 и 19 показано изменение характерных скоростей горизонтального полета самолета Ил-76Т при полетном весе 160000 кгс с поднятием на высоту.
1. На кривой 1 (см. рис. 19) показано изменение истинной максимальной скорости горизонтального полета при приборной скорости 600 км/ч и числе М=0,77, причем на Н=7500 м на V =600 км/ч ПР число М= 0,77.
2. Минимальная (теоретическая) скорость горизонтального полета соответствует критическому углу атаки. Эта скорость практически равна скорости срыва Vс, определяемой летными испытаниями. На кривой 5 показано изменение минимальной истинной скорости горизонтального полета при изменении высоты. Полет на минимальной скорости, соответствующий критическому углу атаки будет до H=4500 м, а на больших высотах угол атаки станет меньше критического, так как располагаемая тяга силовой установки станет меньше потребной для горизонтального полета. Угол атаки, соответствующий этой скорости, будет уменьшаться.
Для обеспечения безопасности полеnа на всех высотах устанавливается минимально допустимая приборная скорость, равная 1,25 Vс (кривая 4).
Как видно из графиков минимальная и минимально допустимая истинные скорости с увеличением высоты увеличиваются. Величины скоростей срыва у земли при различном весе самолета показаны на рис. 16.
3. Изменение теоретического и практического диапазона скоростей с поднятием на высоту показано соответственно кривыми 1—5 и кривыми 1—4.
4. На кривой 3 показано изменение наивыгоднейшей истинной скорости горизонтального полета. При Н=0 Vнв=448. ..450 км/ч ПР и равна истинной. С увеличением высоты наивыгоднейшая истинная скорость увеличивается.
5. Кривая 2 показывает увеличение истинной скорости при наборе высоты со скоростью Vнаб=530 км/ч ПР и ее уменьшение при числе М=0,73.
Достарыңызбен бөлісу: |