Рис. 111. Упрощенная схема автоматического переключателя внутреннего освещения
В каждую дверь вмонтировано по два световых заслона (Fl — Л1 и F2 — Л2), расположенных на одинаковом расстоянии (около 10 см) и на одинаковой высоте (рис. 110). Когда кто-то входит в помещение, они срабатывают и включается свет. Одновременно с этим счетчик получает один импульс. Если люди из помещения выходят, то счетчик считает в обратном порядке и гасит свет, как только помещение покидает последний человек. Схему можно условно разделить на две основные части (см. рис. 111): счетчики 1 и 2 с входом НЕ-И и реле; блок определения направления движения.
Счетный блок состоит из двух бинарных десятичных счетчиков. Если они оба установлены на нуль, то всегда их параллельно соединенные выводы (IC1 и IC2) находятся в одинаковом состоянии, поэтому обмотка реле обесточена. Как только счетчик 2 получит импульс, на его выходе появляется логическая единица и реле срабатывает. Каждый следующий числовой импульс увеличивает различия между счетчиками.
Если числовой импульс получит счетчик 1, то разница показаний счетчиков сокращается, что в конце концов приводит к одинаковому состоянию всех параллельных выводов, и реле отпускает.
Для определения идентичности параллельных выходов используют резисторы R2 — R9 (по 10 кОм), инверторы I1, 12, 13 и 14, а также диоды Dl — D8. Элементы D1 — D8, а также D9 — D12 — это германиевые диоды типа АА133, поскольку из-за большого падения напряжения (свыше 0,6 В) на кремниевых диодах не может быть обеспечено надежное переключение инвертора.
Рассмотрим работу схемы. Если выводы 12 счетчиков (рис. ПО) имеют одинаковое напряжение (нулевое), то через диоды DJ и D2 на входе инвертора 14 устанавливается нулевой уровень. В таком случае точка А инвертора 14 должна иметь уровень логической 1 (рис. 111). Поскольку на резисторах R2 — R4 напряжение менее 0,4 В, его нет и на выходе инвертора (в точке Л).
Пусть на выводах 12 счетчиков будут уровни логической 1. Тогда на выходе инвертора будет логический 0. Напряжение точки А в этом случае тоже равно нулю. Если выводы 12 имеют различные уровни, то входы инвертора 14 подключены к земле через диод D1 или D2. На его входе, следовательно, появляется логический сигнал «Да». Поскольку резисторы R2 и R4 имеют одинаковые номиналы, то в точке А появляется напряжение около 1,2 В. Поэтому, если состояние счетчиков 1 и 2 различное, по крайней мере на одной из точек А, В, С и D появляется напряжение, большее 1,2 В. Это напряжение через диоды D9 — D12 изменяет базовый ток транзистора Т1, который включает реле в коллекторной цепи транзистора ТЗ.
Источником импульсов и цепью распознавания направления движения является интегральная микросхема типа СА3086, которая включает в себя пять не связанных друг с другом транзисторов. Два из них использованы для создания триггера Шмитта. Прекращение освещения светочувствительного элемента F2 вызывает скачок положительного напряжения на коллекторе второго транзистора. Оно через конденсатор, соединенный с выводами 5 и 6, попадает и на базу третьего транзистора (вывод 6}, на чьем коллекторе возникает импульс отрицательного напряжения. Последний через конденсатор С1 формирует импульс «движение вперед».
Если свет падает на F2 через четвертый транзистор, находящийся после триггера Шмитта (выводы 9, 10, И интегральной микросхемы типа СА3086), то с помощью конденсатора 4,7 нФ формируется импульс «движение назад». Резисторы, подключенные к выводам 6 и 12, служат для разряда конденсаторов, соединенных с выводами 5 — 6 и 11 — 12 IC4.
Затемнение F1 означает подключение к земле катода диодов DM, D15 через инвертор 16. Следовательно, импульсы переключения через конденсатор 4,7 нФ, соединенный с выводами 5 и 11 IC4, поступают к земле и счетчик перестает считать.
Рассмотренная схема питается от напряжения 5 В. Реле, установленное в переключателе, функционирует от 12 В, поэтому только к транзистору ТЗ должно быть подано питание 12 В. Целесообразно создать источник питания для всего устройства с таким напряжением, а от него через стабилизатор получать уже необходимые 5 В.
Светочувствительный переключатель может быть установлен и в помещении, где несколько дверей. Для этого надо столько раз смонтировать блок распознавания направления движения (и подачи импульсов), сколько дверей в помещении. Все импульсы «движение вперед» или «движение назад» надо подводить к одному и тому же счетчику.
При монтаже переключателя особое внимание следует обращать на то, чтобы при установке фотоэлементов обеспечивалась надежная работа схемы. При этом нужно позаботиться о точной направленности пучков света и соответствующей защите от внешних световых источников. Следить необходимо еще и за тем, чтобы при перекрытии светового барьера (заслона) происходило надежное включение.
2.3. ЭЛЕКТРИЧЕСКИЕ СХЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЯМИ РАЗЛИЧНОГО НАЗНАЧЕНИЯ
2.3.1. СХЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯМИ
Электрические двигатели, например для небольших моделей поездов, пароходов, в основном представляют собой машины постоянного тока с возбуждением от постоянных магнитов. Приведем несколько примеров управления такими двигателями.
Изменение направления вращения двигателей. Для изменения направления вращения достаточно поменять полярность питания. Это можно сделать следующим образом:
1) с помощью сдвоенного переключающего реле (с двумя контактами). В схеме на рис. 112 при отключенном реле двигатель вращается в одну сторону (по часовой стрелке, например); если реле сработает, то направление вращения изменится на противоположное. Недостаток метода: грубое переключение из-за быстрой работы реле. И еще: отключение и повторное включение источника тока происходит при полной нагрузке, что приводит к сильному искрению между контактами реле, что в свою очередь является причиной их выхода из строя и появления помех.
Рис. 112. Изменение направления вращения двигателя путем изменения полярности питания (с использованием реле с двумя контактами)
Рис. 113. Изменение направления вращения двигателя путем изменения полярности питания (с использованием двух управляющих реле)
В схеме необходимо использовать реле, рассчитанное на напряжение питания, т.е. Uпит=Uv;
2) при помощи двух простых переключающих реле, у каждого из которых есть по одному контакту.
Как видно из рис. 113, если реле находятся в одном и том же состоянии (оба включены или оба выключены), двигатель не вращается. Срабатывание реле J1 дает направление вращения по часовой, a J2 — против часовой стрелки. Достоинства метода: если оба реле включены, двигатель накоротко замкнут, никакого вращения нет (он заторможен). Это способствует быстрой его остановке. Поочередное срабатывание реле позволяет плавно изменять направление движения.
Недостатком такого устройства является необходимость двух каналов управления (Uvi и Uvi). Можно ограничиться и одним каналом, снабдив сервоузел переключателями, обеспечивающими быстрое прерывание цепи (ркс. 114): в основном положении оба контакта Морзе не замкнуты, двигатель не работает; при перемещении переключателя налево реле Л срабатывает, что приводит к вращению двигателя против часовой стрелки.
Рис. 114. Изменение направления вращения двигателя при помощи сервоузла (см. схему на рис. 113)
Схема позволяет изменять угловую частоту вращения. Практически же, медленно перемещая переключатель, можно добиться и регулирования угловой частоты, например из-за значительной инерции моделей судов;
3) используя сдвоенную батарею питания (рис. 115);
4) при помощи мостовой схемы на транзисторах (рис. 116).
Рис. 115. Изменение направления вращения двигателя при помощи схемы двойного стационарного питания
Рис. 116. Изменение направления вращения двигателя при помощи мостовой транзисторной схемы
Когда на контакт Uvi подается положительный потенциал, а на UV2 — отрицательный, транзисторы Т1 и ТЗ открыты, а Т2 и Т4 закрыты. Контакт А двигателя имеет положительный потенциал, а В — отрицательный,
Если на Uvi подать отрицательный потенциал, а на UV2 — положительный, то проводящим будет транзистор Т4, а также Т2.
Транзисторы Т1 и ТЗ закрыты. Контакт А двигателя положительный, В — отрицательный. Направление вращения, следовательно, будет противоположным.
Рис. 117. Изменение направления вращения двигателя в зависимости от полярности выпрямленного напряжения
Когда транзисторы открыты, они на самом деле не обладают нулевым сопротивлением. Между их коллекторами и эмиттерами всегда есть какое-то падение напряжения, и его необходимо учитывать. Если транзистор германиевый, то оно равно 0,5В, для кремниевого транзистора падение напряжения составляет 1 В.
На рис. 117 показан двигатель малой мощности с постоянным магнитом, изменение направления вращения которого достигается переменой полярности выпрямленного напряжения (переключатель К). Светодиоды одновременно являются и индикаторами, и выпрямителями. К индикаторам и переключателю подводятся два проводника а и б (рис. 117).
Схема на рис. 118 служит для запуска и остановки двигателей. Как только свет достигнет фотодиода (рис. 119, а) (фоторезистора, фототранзистора), его сопротивление уменьшается, транзистор Т1 закрывается, Т2 и ТЗ открываются и двигатель вступает в работу. Если ТЗ — транзистор на 200 мВт, то ток управляемого двигателя составляет 30 — 50 мА, если же транзистор рассчитан на несколько ватт, то 100 — 1000 мА (например, с транзисторами типа АС 128 или ASZ1016). Напряжение питания выбирается в соответствии с типом двигателя и может составлять от 3 до 12 В.
При помощи схемы на рис. 118, б можно также менять направление вращения, но в зависимости от степени освещенности диодов D1 и D2.
Изменение частоты вращения двигателей. Одним из способов, позволяющих это реализовать, является изменение питающего напряжения, т. е. числа подключаемых источников питания (рис. 119, а). Здесь следует опасаться только одного: контактным переключателем нельзя накоротко соединять два следующих друг за другом вывода источника питания.
Аналогичный результат можно получить, если последовательно с двигателем включить переменный резистор (потенциометр) (рис. 119, б). Однако в этом случае не учитываются изменения нагрузки двигателя. Идеальным было бы решение с автоматически меняющимся значением сопротивления потенциометра, которое само приспосабливалось бы к изменениям нагрузки. Если бы нагрузка возрастала, сопротивление уменьшалось бы, и наоборот, т. е. напряжение поддерживалось бы все время постоянным.
Рис. 118. Двигатель с постоянным магнитом:
а — световое управление; б — изменение направления вращения при помощи светочувствительного переключателя
Рис. 119. Изменение частоты вращения двигателя с постоянным магнитом:
а — переменным питающим напряжением; б — с помощью потенциометра; в — стабилизированным источником питания; г — применением импульсной схемы питания; д — временные характеристики
На рис. 119, в показана схема линейно-последовательного источника питания. На вход усилителя с одной стороны поступает необходимое (заданное) напряжение Uзад, с другой — Uвых. Разница между ними усиливается, а резистором с электронной регулировкой сводят ее к нулю. При этом колебания нагрузки вызывают только незначительное изменение выходного напряжения. Недостатком метода является низкий коэффициент полезного действия.
Достарыңызбен бөлісу: |