ПРОГРАММА КУРСА
«Механика сплошных сред: жидкости и газы»
Лектор: д.ф.-м.н. С. А. Ждан 5-й семестр «Гидродинамика»
I. Уравнения движения несжимаемой жидкости
-
Предмет и методы МСС. Интегральные законы сохранения массы, импульса и момента импульса для жидкого и фиксированного объема. (Ж. § 1, Б., 174–183).
-
Уравнения Навье – Стокса. Уравнения Эйлера. Начальные условия. Условия на границе жидкости и твердого тела. Поверхностное натяжение. (Ж. § 2; К2, 385–400; К1, 47–60).
-
Условия на границе несмешивающихся жидкостей. Условия на свободной границе. Уравнение для вихря. Функция тока плоского и осесимметричного течения. Уравнение для функции тока. (Ж. § 3; Б. 108–112).
-
Уравнения движения в безразмерных переменных. Гидродинамическое подобие. Критерии подобия жидкости. Условия равновесия жидкости. Закон Архимеда. (Ж. § 4; К2, 406–415; К1, 83–92).
II. Течения идеальной жидкости
-
Вихревые и потенциальные движения. Свойства вихрей. Теорема Томсона о циркуляции скорости. Теорема Лагранжа. Теоремы Гельмгольца. (К1, 146–159; Ж. § 5).
-
Интегралы уравнений движения жидкости в потенциальном поле внешних сил. Интеграл Бернулли. Потенциальные движения. Интеграл Коши – Лагранжа. (К1, 110–118; Ж. § 5).
-
Особенности потенциального поля скоростей: источники, стоки, вихри, диполи. Плоское потенциальное течение. Комплексная скорость и потенциал. (Ж. § 6; К1, 133–142).
-
Движение системы точечных вихрей. Определение расхода и циркуляции. Плоская задача потенциального обтекания. Теорема Милн – Томсона. (Ж. § 7; К1, 193–197).
-
Обтекание кругового цилиндра. Обтекание контура произвольной формы. Постулат Кутта – Жуковского. (Ж. § 7; К1, 243–251, 257–261).
-
Определение гидродинамических реакций. Формулы Блазиуса – Чаплыгина. Обтекание с отрывом струй. Метод Кирхгофа. Обтекание пластинки. (Ж. § 8; К1, 252–254, 321–329).
-
Пространственная задача потенциального обтекания. Формулы Грина. Потенциальное обтекание сферы. Парадокс Даламбера. (Ж. § 9; К1, 359–362).
-
Неустановившееся движение тела в безграничной жидкости. Расчет гидродинамических реакций. Тензор присоединенных масс. Нестационарное движение шара. (Ж. § 9; К1, 375–389).
-
Волновое движение жидкости. Постановка задачи Коши – Пуассона. Линейное приближение. Элементарные волновые пакеты. Прогрессивные и стоячие волны. Групповая скорость. (Ж. § 10; К1, 402–424).
III. Механика вязкой жидкости
-
Простейшие течения вязкой жидкости. Течение Пуазейля. течение Куэтта. Течение Куэтта между вращающимися цилиндрами. Течение жидкости по наклонной плоскости. (Ж. § 11; К2, 420–432, 447–449).
-
Уравнение переноса энергии. Диссипация энергии в вязкой жидкости. Приближение Стокса. Обтекание сферы медленным потоком вязкой жидкости. Формула Стокса. (Ж. § 12; К2, 400–403, 504–511).
-
Теория пограничного слоя. Вывод уравнений плоского пограничного слоя. Условия Прандтля. Стационарное течение. Преобразование Мизеса. (Ж. § 13; К2, 542–555).
-
Пограничный слой на полубесконечной пластине (задача Блазиуса). Формула для силы сопротивления. Толщина вытеснения. Отрыв пограничного слоя. Условие отрыва. (Ж. § 14; К2, 569–574).
Литература
-
Ждан С. А., Рябченко В. П., Тешуков В. М. Лекции по гидродинамике. Уч. пособие. НГУ, 2002.
-
Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидродинамика. М.: ГИФМЛ, 1963, ч. I, ч. II.
-
Бетчелор Дж. К. Введение в динамику жидкости. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004.
-
Серрин Дж. Математические основы классической механики жидкости. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001.
-
Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 6. Гидродинамика. – М.: Физматлит, 2001.
-
Рябченко В. П., Карабут Е. А. Задачи по гидродинамике. Уч. пособие. НГУ, 2002.
-
Childress S. An introduction to theoretical fluid mechanics. New York: Courant Institute of Mathematical Sciences. Lecture notes. V. 19. 2009.
6-й семестр «Газовая динамика»
I. Элементы термодинамики
-
Основные понятия и обозначения. Первый и второй законы термодинамики. Идеальный газ, газ Ван-дер-Ваальса. Цикл Карно. (М. § 1.1–1.3).
-
Основное термодинамическое тождество. Политропный и нормальный газы. Условия устойчивости термодинамического равновесия. Основные свойства адиабат Пуассона. (О. § 2, М. § 1.3).
II. Законы сохранения и сильный разрыв
-
Интегральные законы сохранения. Вывод дифференциальных уравнений газовой динамики. (О. § 1, § 3; М. § 2.1, § 2.3).
-
Обобщенные движения газа, уравнения сильного разрыва. Классификация разрывов. (О. § 4, М. § 2.2).
-
Основные свойства ударных волн. Форма адиабаты Гюгонио, поведение вблизи центра. Возрастание энтропии вдоль адиабаты Гюгонио, теорема Цемплена. Свойство определенности ударной волны (О. § 5).
III. Характеристики уравнений газовой динамики
-
Основные определения. Характеристики квазилинейной системы уравнений. Условия на характеристиках. (О. § 6; М. § 3.1, § 3.2).
-
Слабый разрыв. Характеристики уравнений газовой динамики. Бихарактеристики. Характеристический коноид. Характеристическая форма уравнений газовой динамики. (О. § 6, М. § 3.3).
-
Задача Коши. Теорема об оценке решения. Теорема единственности гладкого решения задачи Коши (О. § 7; Р. § 2, 6, гл. 1).
IV. Одномерные неустановившиеся движения газа
-
Характеристическая форма системы уравнений одномерного движения с плоскими, цилиндрическими и сферическими волнами. Лемма о плотности. (О. § 15).
-
Изэнтропические движения с плоскими волнами, инварианты Римана. Простые волны, центрированные простые волны. Истечение газа в вакуум. (О. § 16; М. § 4.1; Р. § 2, 3, гл. 2).
-
Теорема о примыкании к постоянному решению. Волны сжатия и разрежения. Градиентная катастрофа. (О. § 16; М. § 4.2; Р. § 2, 3, гл. 2).
-
(p,u) –диаграммы простых и ударных волн. Существование и единственность автомодельного решения задачи о распаде произвольного разрыва. (О. § 17, М. § 4.3).
-
Задачи о поршне и об ударной трубе. Отражение ударной волны от жесткой стенки. Взаимодействие сильных разрывов (О. § 18; Р. § 6, 7, гл. 2).
V. Плоскопараллельные установившиеся течения
-
Линии тока. Потенциал, функция тока. Интеграл Бернулли. Максимальная и критическая скорости. Тип системы уравнений. (О. § 10, М. § 5.1).
-
Характеристики и инварианты Римана безвихревого сверхзвукового течения. Простые волны. Теорема о примыкании. Задача обтекания угла, большего (О. § 24, М. § 5.2).
-
Косые скачки уплотнения. Ударные поляры на плоскости годографа. Задача обтекания бесконечного клина сверхзвуковым потоком газа. (О. § 25, М. § 5.3).
-
Дозвуковые и околозвуковые течения. Уравнения Чаплыгина. Звуковая линия. Уравнение Трикоми. Теорема Никольского – Таганова. Задача об истечении дозвуковой струи. (О. § 23, § 26; М. § 5.4).
Литература
-
Овсянников Л. В. Лекции по основам газовой динамики. Москва-Ижевск: Ин-т компьютерных исследований, 2003.
-
Меньщиков В. М., Тешуков В. М. Газовая динамика. Задачи и упражнения. Уч. пособие. НГУ, 1990; 2012.
-
Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1978.
-
Крайко А. Н. Краткий курс теоретической газовой динамики. Уч. пособие. М.: МФТИ, 2007.
-
Lax P. D. Hyperbolic partial differential equations. New York: Courant Institute of Mathematical Sciences. Lecture notes. V. 14. 2006.
Достарыңызбен бөлісу: |