Расчет одноконтурной системы автоматического регулирования


Структурная схема одноконтурной АСР



бет2/3
Дата16.01.2024
өлшемі0.53 Mb.
#489217
түріКурсовая
1   2   3
2курс 6 протокол

2. Структурная схема одноконтурной АСР
Структурная схема системы регулирования, приведенная в задании имеет вид:

Рис. 1. Структурная схема заданной системы регулирования
Учитывая исходные данные, приведенные ранее структурную схему системы регулирования можно преобразовать к виду:

Рис. 2. Преобразованная структурная схема заданной системы регулирования
3. Расчёт и построение границы заданного запаса устойчивости АСР
Для расчёта и построения границы заданного запаса устойчивости АСР с ПИ-регулятором, представленной на рисунке 1, воспользуемся корневым методом параметрического синтеза систем автоматического регулирования с применением расширенных амплитудно-фазовых частотных характеристик (РАФЧХ).
Используя исходные данные, приведенные в таблице 1, можем записать, что для заданной системы регулирования установлены следующие требования к запасу устойчивости системы: степень затухания переходного процесса в системе .
Исходя из этого, зная зависимость между степенью затухания переходных процессов в заданной системе регулирования ψ и степенью колебательности переходных процессов в заданной системе регулирования m, можно определить значение заданной степени колебательности m системы по формуле:
(1)
где ψ - степенью затухания переходных процессов в заданной системе регулирования.
Передаточная функция объекта регулирования согласно исходным данным определяется по формуле:
(2)
где p – оператор Лапласа.
При n=2 выражение для примет вид  примет вид:
(3)
По данным таблицы 1 определяем значения неизвестных параметров: К=1,8 ,  , T1=100 , T2=50. Тогда после подстановки значений выше приведенных параметров получаем окончательное выражение для передаточной функции объекта регулирования:
(4)
Определим расширенные частотные характеристики объекта регулирования. Расширенные частотные характеристики какого-либо звена можно получить подстановкой в передаточную функцию этого звена W(P) оператора  или  , в выражениях для оператора Лапласа ω – частота, с-1. В первом случае расчётные формулы метода обеспечивают получение границы заданной степени колебательности системы m, а во втором - получение границы заданной степени устойчивости системы  в пространстве параметров настройки регулятора.
Заменим в формуле (4) оператор  , в результате получаем выражение для РАФЧХ объекта регулирования:
(5)
Используя программу MathCad, предварительно задав начальное значение частоты  =0 с-1 и шаг по частоте  с-1, рассчитываем расширенные частотные характеристики объекта при изменении частоты до ω=0,20 с-1.
Расширенная вещественная частотная характеристика (РВЧХ):
Reоб(m,ω)=Re(Wоб(m,iω)) (6)
Расширенная мнимая частотная характеристика (РМЧХ):
Imоб(m,ω)=Im(Wоб(m,iω)) (7)
Расширенная амплитудно-частотная характеристика (РАЧХ)
(8)
Расширенная фазо-частотная характеристика (РФЧХ):
(9)
Результаты расчётов сведём в таблицу 2, приведенную ниже.
Таблица 2. Расширенные частотные характеристики объекта регулирования

частота ω, с-1

Reоб(m,ω)

Imоб(m,ω)

Аоб(m,ω)

φоб(m,ω), рад

0

1,8

0

1,8

0

0,005

1,09602

-1,811

2,117

-1,027

0,01

-0,69553

-1,586

1,732

1,157

0,015

-1,09288

-0,478

1,193

0,412

0,02

-0,77535

0,123

0,785

-0,157

0,025

-0,42762

0,291

0,517

-0,598

0,03

-0,2037

0,282

0,348

-0,946

0,035

-0,08166

0,226

0,241

-1,225

0,04

-0,02018

0,17

0,171

-1,453

0,045

0,009

0,125

0,125

1,499

0,05

0,02171

0,091

0,094

1,337

0,055

0,02623

0,067

0,072

1,198

0,06

0,02678

0,05

0,056

1,075

0,065

0,02551

0,037

0,045

0,966

0,07

0,02349

0,028

0,036

0,867

0,075

0,02125

0,021

0,03

0,777

Продолжение таблицы 2

0,08

0,01904

0,016

0,025

0,695

0,085

0,01699

0,012

0,021

0,618

0,09

0,01514

0,0092

0,018

0,546

0,095

0,01348

0,0069

0,015

0,478

0,100

0,01202

0,0053

0,013

0,414

Расчётные формулы корневого метода для ПИ- регулятора имеют следующий вид:
(10)
(11)
В вышеприведенных формулах (10) и (11)  - коэффициент передачи ПИ- регулятора,  - постоянная интегрирования ПИ- регулятора.
 Зададим диапазон изменения частоты  с-1 с шагом  c-1, определим настройки регулятора  и Кр в заданном диапазоне частот. Результаты расчётов сведём в таблицу 3.
Таблица 3. Результаты расчёта настройки ПИ- регулятора
в заданном диапазоне частот

частота ω, с-1



Кр

0

0

-0,556

0,005

0,00011

-0,475

0,01

0,00044

-0,387

0,015

0,00093

-0,295

0,02

0,00156

-0,197

0,025

0,00229

-0,097

0,03

0,00308

6,59·10-3

0,035

0,00389

0,111

0,04

0,00467

0,217

0,045

0,00539

0,322

0,05

0,006

0,425

0,055

0,00644

0,527

0,06

0,00669

0,625

0,065

0,00668

0,719

0,07

0,00637

0,808

0,075

0,00571

0,891

0,08

0,00466

0,967

0,085

0,00316

1,036

0,09

0,00116

1,095

0,095

-0,00138

1,145

0,100

-0,00452

1,185

По данным таблицы 3 построим график зависимости  =f(Kp) ,т.е укажем границу заданного запаса устойчивости системы регулирования на рисунке 3.

Рис. 3. Область параметров настройки ПИ- регулятора
Полученная кривая является линией заданной степени затухания Ψ= Ψзад=0,9 процесса регулирования, что соответствует степени колебательности m=0.366. Таким образом, все значения  и Kp , лежащие на этой кривой, обеспечивают заданную степень затухания.
4. Определение оптимальных параметров настройки ПИ-регулятора
Поиск оптимальных параметров настройки регулятора осуществляется вдоль границы заданного запаса устойчивости системы регулирования, представленной на рисунке 3, до достижения экстремума принятого критерия качества. В задании на курсовую работу в качестве принятого критерия качества указан второй интегральный критерий.
Минимуму второго интегрального критерия  на графике (рисунок 3) соответствует точка 0,95*max   в сторону большего значения частоты («правее максимума»). Эта точка и определит оптимальные параметры настройки ПИ- регулятора. Используя данные таблицы 3 и рисунка 3, находим, что этой точке соответствуют значения:
Kp= 0,808;  с; ωР = 0,07 с-1.
5. Расчёт, построение и оценка качества переходных процессов по каналу
регулирующего воздействия S-Y и при возмущении f, идущем по каналу регулирующего воздействия
5.1. Переходный процесс по каналу регулирующего воздействия S-Y
Для одноконтурной системы регулирования, приведенной на рисунке 1, определим передаточную функцию замкнутой АСР по каналу S-Y по формуле:
, (12)
где передаточная функция объекта регулирования  ;
передаточная функция ПИ- регулятора  .
После подстановки значения  в формулу (12), получаем окончательное выражение для передаточной функции замкнутой АСР по каналу S-Y:
(13)
Получим выражение для АФЧХ замкнутой системы путём замены оператора p в формуле (13) на  , в результате получаем:
(14)
Используя программу MathCad, предварительно задав диапазон изменения частоты  с-1 с шагом  c-1, рассчитываем вещественную частотную характеристику замкнутой АСР при регулирующем воздействии: ReЗ.С.1(ω). Результаты расчёта сведём в таблицу 4.
Таблица 4. Результаты расчёта ВЧХ замкнутой АСР
при регулирующем воздействии

частота ω, с-1

ReЗ.С.1(ω)

0

1

0,005

0,9543776

0,010

0,6574893

0,015

-0,5996062

0,020

-0,6668988

0,025

-0,3679645

0,030

-0,2076016

0,035

-0,1236057

0,040

-0,076551

0,045

-0,0486453

0,050

-0,0313735

0,055

-0,0203348

0,060

-0,0131055

0,065

-0,0082817

0,070

-0,0050179

0,075

-0,0027877

0,080

-0,001255

0,085

-0,0001999

0,090

0,0005238

0,095

0,0010153

0,100

0,0013428

По данным таблицы 4 строим график ВЧХ замкнутой АСР, который приведен на рисунке 4.

Рис. 4. График ВЧХ замкнутой АСР при регулирующем воздействии
Переходный процесс в замкнутой АСР по каналу S-Y можно рассчитать по методу трапеций, используя график ВЧХ замкнутой АСР, приведенный на рисунке 4.
Установлено, что переходная характеристика какой- либо системы y(t) связана с ВЧХ этой системы Re(ω) выражением:
(15)
где t – время переходного процесса в замкнутой АСР.
Для более точного расчёта в качестве верхнего предела интеграла для y(t) принимают не  , а значение частоты, при которой график Re(ω) стремится к 0, т.е. частоту среза ωСР. По графику, приведенному на рисунке 4, определяем, ωСР =0,075 с-1. Поэтому переходный процесс в замкнутой АСР по каналу S-Y можно рассчитать по формуле:
(16)
Задав диапазон изменения времени переходного процесса  с с шагом  с, рассчитываем переходный процесс в замкнутой АСР по каналу S-Y. Результаты расчета сведём в таблицу 5.

Рис. 5. Переходный процесс в замкнутой АСР
Таблица 5 – Результаты расчёта переходного процесса
в замкнутой АСР по каналу S-Y

время t, с

yS-Y(t)

0

0

50

0,069

100

0,39

150

0,806

200

1,12

250

1,249

300

1,216

350

1,102

400

0,988

450

0,922

500

0,914

550

0,943

600

0,984

650

1,014

700

1,026

750

1,022

800

1,01

850

0,999

900

0,993

950

0,992

1000

0,995

1050
110

0,999
1,002

1100

1,002

1150

1,003

1200

1,002

1250

1,001

1300

1

1350

0,999

1400

0,999

1450

0,999

1500

1

По данным таблицы 5 строим график переходного процесса в замкнутой АСР по
каналу S-Y, который приведён на рисунке 5.
Используя данные таблицы 5 и рисунка 5, произведём оценку качества переходного процесса в замкнутой АСР по каналу S-Y.
Прямые критерии качества:
1. Максимальная динамическая ошибка: А1=0,253;
2. Перерегулирование:  (17)
где  - уровень установившегося значения регулируемой величины при времени переходного процесса  , равного  ;
3. Динамический коэффициент регулирования Rд не определяется для такого типа процессов;
4. Степень затухания переходного процесса:  (18)
где  - второй максимальный выброс регулируемой величины;
5. Статическая ошибка:  (19)
где S – сигнал регулирующего воздействия 1(t);
6. Время регулирования:  при величине  .
Все приведенные выше критерии качества указаны на рисунке 5.


Достарыңызбен бөлісу:
1   2   3




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет