Рассказывает о перекрестках эволюции, о Колумбе биологии, о приключениях молекул и клеток, а также о трех дорогах в прошлое



Дата12.06.2016
өлшемі112 Kb.
#129306

ГЛАВА ВТОРАЯ


которая рассказывает о перекрестках эволюции, о Колумбе биологии, о приключениях молекул и клеток, а также о трех дорогах в прошлое
НАПРАВО ПОЙДЕШЬ, НАЛЕВО ПОЙДЕШЬ...

Не нужно думать, что в один прекрасный день закончилась на Земле химическая эволюция молекул и началась биологическая эволюция организмов. Переход был достаточно плавным — черты химической эволюции, воспоминание о прошлом, ученые замечают и в современных высокоразвитых организмах. И все-таки, хотя это случилось и не в один день, переход от веществ к существам был достаточно «революционным» событием. Появились рождение и смерть — понятия бессмысленные для «солярисов». Появились поведение, конкуренция, отбор наиболее приспособленных. Началась настоящая, дарвиновская эволюция живых существ...

Почти полтора века назад плыл по морям и океанам земного шара английский парусник «Бигль» под командой бравого капитана, аристократа и джентльмена до мозга костей Фицроя. С плаванием «Бигля» не связано больших географических открытий — времена Кука, Лаперуза, Беллинсгаузена и Крузенштерна остались позади. Но для истории науки это плавание было более важным, чем для всеобщей истории открытие Америки Колумбом.

Новым Колумбом был никому пока не известный молодой натуралист, застенчивый и малоразговорчиый, согласившийся на пятилетнюю нелегкую службу без всякого денежного вознаграждения. В результате этого путешествия позже — через четверть века — появилась знаменитая книга «Происхождение видов». Молодым мореплавателем-натуралистом на корабле Фицроя и автором книги был Чарльз Дарвин.

Отправляясь в путешествие, Дарвин еще не был, как он сам писал, настоящим биологом — его биофаком стало само путешествие. Но он уже был неплохим геологом. Глаз геолога ставил его перед удивительными фактами, требовавшими объяснения.

Например, Дарвин увидел, как молоды геологически Галапагосские острова. Значит, рассудил он, те виды животных, которые встречаются только на этих островах, тоже не могут быть слишком древними. И все-таки они есть, они резко отличаются от своих родичей на Американском материке, от которых явно произошли. Причем все эти отличия таковы, как будто животные активно и быстро менялись, приспосабливаясь к особенностям жизни на скалистых, обдуваемых сильными ветрами вулканических островках. Дарвину стало ясно, что организмы меняются, эволюционируют под влиянием среды. Но как именно это происходит?

Вернувшись в Англию, он стал изучать историю племенного животноводства. И понял, что быстрые изменения, поразительные свойства новых пород домашних животных — результат прежде всего направленного, сознательного отбора. Хозяин-селекционер оставляет на племя, дает размножаться только таким голубям, ягнятам, жеребятам, которые ближе всего по своим признакам подходят к поставленной человеком цели. Не может ли что-то подобное действовать и в дикой природе, в естественных условиях? — задумался Дарвин. Но что за цель может быть у природы? А задумавшись, понял, что нечто подобное такой цели есть у каждого живого существа. Каждое существо так или иначе стремится выжить и оставить потомство.

На пути к этой «цели» каждое растение, микроорганизм, животное преодолевает множество препятствий, борется с голодом, климатом, болезнями, хищниками и конкурентами — претендентами на тот же корм. Тот, кто в этой борьбе оказывается слабей, вымирает или не оставляет потомства. А поскольку нет двух абсолютно одинаковых организмов — так уж устроила природа, и это называется изменчивостью, — то всегда по какому-то признаку одно существо оказывается чуть приспособленнее другого. Только ничтожная часть потомства любого дикого растения или животного выживает. И это отборная, то есть наиболее приспособленная, часть.


Рис. Адаптивная радиация


Казалось бы, все ясно, теория естественного отбора готова, можно печатать. Но книга о теории появилась только через двадцать лет.

За это время Дарвин стал знаменитым ученым, он написал и опубликовал много важных трудов, но постоянно думал о своей спрятанной недоделанной работе. И о загадке, перед которой остановился.

Однажды Дарвин ехал в карете из Лондона в Даун, в свой сельский дом, куда он переехал вместе с семьей вскоре после возвращения из плавания. Как обычно в то время, он думал о своей новой теории и о трудностях, с которыми ему пришлось столкнуться. Он смотрел на лошадей своей упряжки, они были разных пород, и ему пришло в голову, что вот две лошади — одна сильная и грузная, другая легка в рыси. Они, как и все породы, выведенные человеком, предназначены и приспособлены для каких-то определенных задач. Куда же девается прототип, та универсальная лошадь, которую человек взял из природы для приручения? Дарвин почувствовал, что и здесь аналогия между искусственным и естественным отбором поможет ему в решении задачи. Ведь пока самым неясным для него в истории живого мира было то, что как только появляются два вида животных или растений, они начинают очень быстро оба отклоняться от первоначального вида-предка, причем как бы в разные стороны. Расхождение признаков...

«Допустим, в очень ранний период истории, — думал Дарвин, глядя на лошадей, — люди одного племени или в известной местности нуждались в лошадях, быстрых на бегу, а другие или в другом месте — в более сильных и грузных лошадях. Первоначальное различие могло быть очень мало, но с течением времени, вследствие постоянного отбора, с одной стороны, наиболее быстрых, а с другой — наиболее сильных животных, различие могло возрасти и дать начало двум подпородам. Наконец, по истечении столетий эти подпороды превратились в две хорошо установившиеся и совершенно отличные одна от другой породы. Лошади с промежуточными признаками, то есть первоначального типа, были худшими как для первого, так и для второго племени. Их все меньше оставляли на племя — и вот они исчезли».

Может ли что-нибудь подобное происходить в природе? Может, решил Дарвин. Как только появляется разновидность животного или растения, хорошо приспособленная к обитанию в какой-нибудь части той страны, — где до этого везде обитал вид-предок, эта разновидность сразу вытесняет своих родичей именно с этих мест. Предковый вид отступает перед своим более приспособленным потомком, отступает в те места, где он может жить и развиваться по-прежнему, а выделившаяся специализированная разновидность не только не имеет преимуществ, но даже и проигрывает из-за своей суженной специализации. Но, оказавшись в стесненных условиях, предковая разновидность либо вымирает, либо тоже начинает меняться, приспосабливаясь. Образуется другой вид-потомок. Два вида, происходящие от одного предка, как бы оказываются на разных полюсах. «Чем более потомки какого-нибудь вида будут различаться между собой... тем легче им будет завладеть более многочисленными и более разнообразными местами в «хозяйстве» природы, а следовательно, тем легче они будут размножаться», — писал Дарвин позднее.

Ну а сама неизмененная предковая форма? Она через какое-то время постепенно сократится в численности, теснимая своими более приспособленными родичами, и, если не найдет укромного местечка, где она могла бы жить по-старому, не развиваясь, вымрет либо «растворится» путем скрещивания с той или другой формой-потомком. В тех же редких случаях, когда ей удается найти свой особый изолированный мир, предковая форма уцелеет, превратившись в живое ископаемое. В глубине Индийского океана вблизи Коморских островов уцелел один из видов кистеперой рыбы, нашей прабабушки, вышедшей когда-то из воды на сушу и давшей начало земноводным, пресмыкающимся, млекопитающим и птицам.

Остался на одном из островов, где его никто не тревожил, один из древних «завров» — гаттерия, современница динозавров. Целый материк сохранил для нас мир животных, как будто явившихся из сказок, — мир сумчатых млекопитающих. Этот материк — Астралия. В Австралии сохранилось даже такое чудо, как полупресмыкающиеся-полумлекопитающие ехидна и утконос. Но все это исключения из правила. А правило заключается в том, что два недавно разошедшихся от общего родословного древа побега стремятся неограниченно разойтись друг от друга в признаках, то есть оказаться разными видами, затем родами, семействами, отрядами итак далее. Предковая же форма обычно обречена на безвозвратное исчезновение.

Сформулировав свое правило расхождения признаков, Дарвин понял, что новая теория, в общем, готова. И особенно ясно он это понял, когда в 1857 году получил с далекой Малайи письмо от своего молодого талантливого коллеги, путешественника Уоллеса. Уоллес сообщал Дарвину, что закончил работу о естественном отборе, и просил дать о ней заключение. Название работы сильно взволновало Дарвина. Статья Уоллеса называлась: «О стремлении разновидностей к неограниченному уклонению от первоначального типа».

Уоллес был благородный человек и, когда узнал о том, как глубоко обоснована у Дарвина эта главная работа его жизни, не только не попытался спорить и ссориться из-за того, «кто первый сказал» (так, к сожалению, иногда бывает между учеными), но, отдав свою жизнь пропаганде и развитию нового учения, сам всегда называл его дарвинизмом.

Дарвину, Уоллесу и дарвинистам не пришлось очень жестоко бороться за самую идею эволюции, превращения видов, за идею естественного отбора. Если не считать первоначальной очень резкой реакции некоторых деятелей церкви и религиозно настроенных ученых, в целом и общественность, и ученые Европы и Америки до конца столетия уверовали в новую теорию.

Но как только ученые принимали теорию естественного отбора, они начинали к ней присматриваться и находить недостатки и неясности, которых было немало.
Сомнение 1. УПРЯМЫЕ ХВОСТЫ

Простой пример. Всегда было известно, что часть особенностей того или другого существа появляется в результате наследственности, а часть — приобретена самим организмом в течение его жизни. Например, форма кроны у деревьев зависит от направления ветров в местности, пушистость меха у собаки или лисы частично зависит от того, на севере или на юге животное обитает. Два брата-близнеца начнут сильно отличаться друг от друга, если один занимается, ну, например, гиревым спортом, а другой бегом. Вот эти вторые, приобретенные, признаки — наследуются они или нет? Читающему эти строки известно из школьного курса биологии, что нет, не наследуются. А вот пишущий учил в свое время по школьному учебнику, что иногда вроде и наследуются. Называлось это почему-то мичуринским учением (сам садовод И.В. Мичурин ничего о таком учении при своей жизни не слыхивал), а несогласных выгоняли с работы и даже сажали в тюрьму.

В работах самого Дарвина не было ясного ответа на этот вопрос. Дарвину больше нравилась идея случайных, неопределенных отклонений в наследуемых признаках живых существ, с остальным вполне мог справиться естественный отбор, отличая, выделяя приспособленных, подавляя, отсекая неприспособленных. И все же Дарвин, говоря на эту тему, каждый раз оставлял какое-то место для сомнительного наследования приобретенных признаков. Почему?

Не было настоящей теории наследственности. Сам Дарвин думал, что каждый орган тела взрослого животного или растения вырабатывает что-то вроде полномочного «представителя» — геммулу. Эти геммулы со всего тела током крови или соков собираются в органах размножения. Но если бы наследственность передавалась так, приобретенные признаки наследовались бы! Ведь из отрубленного хвоста не могла прийти геммула «хвостатости», и, значит, щенок бесхвостой собаки должен быть обязательно бесхвостым или хотя бы с укороченным хвостом. Самое удивительное, в научной литературе того времени появлялись тысячи описаний опытов, как будто подтверждающих такую точку зрения, — описывались и собаки и короткохвостые щенки. По-видимому, те опыты были «нечистыми» — кто-то из предков короткохвостого щенка был из короткохвостной породы, а это совсем другое дело!

Выдающийся немецкий биолог Август Вейсман взялся разрубить запутанный узел наследования приобретенных признаков самым прямым и беспощадным образом. Он рубил... хвосты мышей — выращивал их поколение за поколением, и каждое поколение тщательно обмерялось. Результаты этого опыта с точными измерениями были опубликованы. В двадцати двух поколениях мышей не обнаружилось никакого уменьшения длины хвоста. Хвосты у мышей упрямо вырастали до нормы. Приобретенные признаки не наследовались!

Опыты Вейсмана подтвердили его теорию о том, что передачу наследственности осуществляют специальные частицы, «атомы наследственности», хранящие и передающие память поколений. И все-таки до недавнего времени, пока не стала совершенно ясной структура единиц наследственности — генов, снова и снова некоторые ученые пытались вернуться к идее наследования приобретенных признаков...


Сомнение 2. КОШМАР ДЖЕНКИНА

Дарвина терзало еще одно сомнение. Одна из главных идей «Происхождения видов» — малость, незаметность тех отклонений, которые со временем, накапливаясь, дают большие изменения, порождают виды. Но такие малые, незаметные отклонения все время должны находиться под угрозой исчезновения!

Достаточно, рассуждал об этом современник Дарвина инженер Дженкин, существу с едва появившимся отклонением в одну сторону, скреститься с существом без отклонения или с отклонением в другую сторону, как в потомстве едва наметившийся новый признак исчезнет или почти исчезнет. И все насмарку!

Выход из этого «кошмара» давали только труды современника Дарвина Г. Менделя (но это поняли много позже, сначала менделизм был чуть ли не синонимом антидарвинизма), открывшего, что наследуются не доли, не частицы признаков, а сами признаки, а вернее, как опять же истолковали это позднее, гены, кодирующие эти признаки. Раз появившись, новый признак обязательно передается целиком потомству либо в явном, либо в скрытом виде — никуда он исчезнуть не может. Правда, и сейчас неясно, сколько времени нужно, чтобы новый ген стал новым признаком вида. Но это уже не кошмар, а обычный вопрос, требующий наблюдения и раздумий.


Сомнение 3. ПРИЗРАК КЕНТАВРА

Много сомнений и споров вызвала «догма» теории естественного отбора о расхождении свойств и признаков. Основываясь на этой догме, было очень удобно строить родословное древо всего живого. Каждому классу, роду, виду — своя ветка определенного ранга. Считалось, что идеальное эволюционное древо должно соответствовать систематике всех организмов, в каждой развилке должен сидеть предок вида, рода, класса. А если не сидит, то, значит, не найден еще, но обязательно найдется, только надо поискать. Эта система действительно помогала и помогает работать и находить и прогнозировать. Но не всегда...

А может ли быть обратное — схождение признаков? Ведь и дерево можно привить чужим черенком... Ведь всякая новая жизнь на Земле, как правило, зарождается в результате объединения наследственных зачатков существ двух полов. Ученые припоминали случаи создания «кентавров» — удивительных скрещиваний далеких друг от друга разновидностей, видов и даже родов.

Замечательный российский ученый Г. Д. Карпеченко уже в 20-х годах скрестил редьку и капусту — растения из разных родов. Получился капустно-редечный кентавр, да не просто какой-то там урод, а новое растение, которое стало размножаться как новый вид. Может быть, и в природе этот «химерный» путь много раз был пройден: соединяются два непохожих существа, вот и получаются, разом, без долгой эволюции, новые виды?

В каждом биологе сидит систематик, и он восставал при таких предположениях — как тогда строить стройное эволюционно-систематическое древо? Но природа не обязана подчиняться соображениям удобства или неудобства ее исследователей. Еще Дарвин, отвечая на подобный вопрос, указывал, что чаще всего химеры, кентавры, потомство от таких скрещиваний, гибриды бесплодны. Он не знал, почему изредка из этого правила бывали все-таки исключения (гибрид Карпеченко, например, был полиплоидом, довольно редким — хотя и не единственным — случаем сложения наследственности, хромосомных наборов редьки и капусты).

Но дело не только в гибридизации. Если просто вспомнить всю историю живого мира даже в самых общих чертах, ясно, что вообще усложнение, соединение не могли не сопровождать эволюцию на всех этапах. Вначале в лужах или океанах с «бульоном» были сравнительно простые молекулы. С ними происходила химическая эволюция — молекулы усложнялись, становились все больше, появились полукристаллы-полуорганизмы, похожие на нынешние вирусы и фаги.

Предорганизмы и биомолекулы становились все сложней, они объединялись под общей оболочкой, появились первые по-настоящему живые организмы, то есть проходящие весь путь от рождения до размножения и смерти безъядерные клетки — бактерии, архебактерии и какие-то еще, не дошедшие до наших дней и еще не опознанные в древних микроскопических окаменелых остатках.

В клетках нынешних животных и растений «обитают» маленькие органоиды (органеллы) — митохондрии, хлоропласты и т.д. Они двигаются в клетке, они во многом автономны. Какие-то органеллы могут даже самостоятельно размножаться. Мы уже говорили о том, что наши клетки — это тоже кентавры, которые произошли от соединения под одной оболочкой самых разных древних существ. К ним стоит присмотреться, к этим знавшим славное прошлое частицам клеток... Ядро (а в ядре — ядрышко), митохондрия — энергетическая подстанция животной клетки (а растительной — хлоропласт, в прошлом — сине-зеленая водоросль), центриоль, рибосомы. Впрочем, если познакомиться с ними поближе, оказывается, что наши предки внутри нас не все забыли из того, чему научились от матери-природы миллиарды лет назад, когда (как думают сейчас уже почти все специалисты) они были самостоятельными...

Ну а что такое ты, читатель? Или я? Или лягушка, или елка? Это соединившиеся вместе отдельные клетки. Клетки, научившиеся жить вместе, разделив обязанности.

Итак, в ходе эволюции существа становились все более сложными. Конечно, это усложнение нельзя сводить только к соединению более простых частей. Но все-таки соединение какую-то роль не могло не играть...

Итак, природа знает сведение воедино, соединение свойств разных организмов, она даже не могла обойтись без него в какие-то эпохи. Древо не идеально. Да и не противоречит ли такое рассуждение правилу расхождения, выведенному дарвинизмом и очень плодотворному для многих поколений биологов?
ЭВОЛЮЦИЯ ЭВОЛЮЦИИ

В науке часто бывает так: спорят ученые до хрипоты, спорят всю жизнь, а правы-то оба, как потом выясняется.

Может быть, именно так обстоит дело с расхождением и сближением в мире живого. Может быть, обе точки зрения верны. Оба процесса — объединение и расхождение свойств разных существ — действуют в эволюции. И всегда действовали. Только в первые сотни миллионов лет эволюции объединение играло более заметную роль. Дерево разветвляется не только ввысь, в будущее, но и вниз, в прошлое. Ниже уровня земли — мощная система корней...

Но со временем организмов становилось все больше, они стали сильно отличаться друг от друга, научились все надежнее обособляться, защищать свое потомство от всяких неожиданных смешений, и все большую власть над ними приобретало правило дивергенции, которое и господствует в современном живом мире (и тут прав был Дарвин, считавший, что скрещивание, сближение видов или родов в современном мире есть и играет какую-то эволюционную роль, но ничтожную, несравнимую со всеобщим преобладанием расходящихся путей). Получается, что эволюция была всегда, но когда-то в ней главную роль играли иные законы, нежели сегодня. Эволюция сама развивалась, эволюционировала. Здесь мы подходим к другому очень древнему спору ученых — это спор о принципе актуализма.

Как-то мне пришлось быть на одном совещании геологов, где снова, как и сотню лет назад, разгорелся этот спор — спор о том, позволяют ли наши знания о нынешних вулканических, горообразовательных процессах, о том, как отлагаются сейчас илы на дне океана или галька в горных ущельях, производить уверенные реконструкции далекого прошлого. (Эта уверенность нужна геологам, чтобы улучшить методы разведки месторождений полезных ископаемых, ведь большинство таких месторождений возникло в очень давние времена.) Скорее всего, и здесь правы обе спорящие стороны. Наиболее общие законы действовали на Земле во все времена, и это позволяет нам вообще сметь рассуждать о временах миллиардолетней давности, но характер действия этих законов, их относительное значение менялись с ходом геологической истории. Происходила эволюция эволюции.

Что же касается древа эволюции, схождения и расхождения признаков, то, может быть, кроме них, в ходе эволюции действуют иногда совсем иные силы, вообще выходящие за рамки давнего спора. Но об этом мы поговорим в конце книги...


ИМПЕРИИ ЖИВОГО

Сам момент, когда из одного эволюционного ствола вырастают две ветви, не очень ясен. Именно эти разветвления по каким-то не совсем ясным причинам палеонтологи не могут найти в окаменелостях, напластованиях прошлых эпох — это называется неполнотой геологической летописи. Разветвления — очень важный момент теории эволюции. Когда произошла первая большая дивергенция?

Вот в «Солярисе» появились первые едоки-организмы — и сразу же стали уничтожать «питательный бульон», вещества преджизни, из которых могли возникнуть первые организмы. Они уничтожали «промежуточный тип», из которого могли возникнуть организмы еще раз! Именно поэтому жизнь могла зародиться на Земле только раз. И зародилась она именно с едоков, гетеротрофов, неспособных еще к фотосинтезу, самостоятельному извлечению углерода из тогдашней атмосферы.

И даже если кое-где и удавалось сохранившимся веществам преджизни породить вновь примитивные существа, эти существа опять-таки были обречены на уничтожение. Ведь жизнь на Земле ушла вперед, и хорошо развившиеся, приспособленные организмы были несравненно сильнее новичков.

Так произошла первая большая дивергенция. На живое и неживое — без промежуточного «полуживого» связующего звена между ними (нынешние вирусы и фаги могут служить только приблизительной моделью тех первичных полуорганизмов-полукристаллов, ведь они сейчас способны лишь к паразитическому существованию в организмах настоящих).

Дальше были события в мире первых клеток-прокариот. Это были «надцарства», или «империи» бактерий и архебактерий (архей). В эволюции эти «империи» возникли путем еще одной дивергенции (кто был раньше, пока трудно сказать) около 4 миллиардов лет назад. Не исключено, что были и другие дивергенции, другие «империи», не дожившие в самостоятельном виде до наших дней. Архей и бактерий не очень-то различали раньше, между ними много общего, но, похоже, именно из представителей этих и, возможно, других «империй» при их объединении под общей оболочкой получилось третье из нынешних надцарств, ядерные клетки-кентавры — эукариоты. Возможно, общая оболочка новорожденной клетки, которая не похожа на белковые оболочки вирусов и бактерий, как раз и принадлежала еще одному из не дошедших до нас в самостоятельном виде существ...

Среди собственно бактерий нашлись такие, что очень рано научились фотосинтезу. Цианобактерии, то есть сине-зеленые водоросли, живут на Земле без особых изменений по сей день, но в те времена и они поучаствовали в первой большой дивергенции, встроившись в качестве органелл-хлоропластов в клетки эукариот-водорослей (от которых произошли в дальнейшем все зеленые растения).

Три надцарства (эукариоты, прокариоты-археи и прокариоты-бактерии) сегодня считаются главными в живом мире, фундаментом всей систематики и одновременно эволюции.

В нашей «империи» эукариот царства животных, растений и (отдельно) грибов в эволюции располагаются рангом пониже.

ПЕРВАЯ РАЗДАЧА СКЕЛЕТОВ


До сих пор мы рассуждали о временах, от которых в геологических пластах, этой каменной летописи Земли, не осталось почти ничего. А то, что осталось — какие-то крошечные микроскопические окаменевшие палочки, шарики и нити в древних горных породах Гренландии, Австралии, Канады, Африки, Карелии, — это все очень трудно рассматривать, нет даже полной уверенности, что это живые организмы, а не какие-то минеральные причуды природы. Если же это все-таки остатки живых существ, то это очень интересно — ведь такие же палочки, шарики и нити ученые часто находят в веществе каменных метеоритов, падающих на Землю из межпланетного пространства.

Если эти шарики и нити были живыми существами, то между ними должны попадаться и те, которые мы могли бы считать нашими предками, если бы у нас было хоть малейшее понятие, чем наши предки-шарики (нити — это все-таки, видимо, древние водоросли) отличались от других шариков-микроорганизмов, которые нашими предками не являются. Бесспорно только одно — они, наши предки, были вот такими крошечными бактериоподобными организмами, и даже трудно сказать, были ли эти крошки ближе к животным или растениям (так же, как это трудно сказать про современных микробов).

Семь восьмых истории жизни на Земле ученые называют эрой скрытой жизни —криптозоем. Почти все нерастительные организмы Земли все это время развивались и эволюционировали, будучи мягкими, бесскелетными. Погибая, организмы разлагались без следа, не оставляли окаменелостей. Лишь очень редко эти мягкие медузоподобные существа — все они были жителями древних морей, озер и рек — так захоронялись в иле, что разлагались очень медленно и их мягкие тела замещались твердым кремневым веществом. Несколько десятков слепков таких древних животных палеонтологи — специалисты в изучении вымерших животных и растений — обнаружили в древних отложениях Австралии и некоторых других областей Земли. Но и среди этих редких слепков трудно найти наших предков, может быть, их даже и не удастся никогда найти и узнать.

И все-таки не вся жизнь в докембрии была скрытой, бесскелетной. И тогда были существа, которые научились выделять известь и строить коллективные скелеты, похожие на нынешние постройки коралловых полипов. Эти коллективные скелеты составляют красивейший мрамор, давно получивший название «коврового камня» или, по-гречески, строматолита за свой необычайно ритмичный, похожий на орнамент ковровый рисунок.

Строматолитами почти всю свою научную жизнь занимался замечательный геолог и писатель, необычайно одаренный, тонкий и остроумный человек И.Н. Крылов. Ему я, пишущий эти строки, обязан многим, в том числе, отчасти, и замыслом этой книги.

Что же это были за существа, первые изобретатели скелета? Гадать ученым не пришлось: эти организмы, одноклеточные и нитчатые сине-зеленые водоросли, живут на Земле и по сей день, ими в жаркое лето зацветает вода в прудах и даже огромных водохранилищах, огорчая рыбохозяйственников. Есть в продуктах выделения этих самых древних из ныне живущих организмов вещества, для современной высокоорганизованной жизни неприятные и попросту ядовитые. Попадаются и сейчас на нашей планете места, соленые озера и опресненные воды океана в устьях некоторых рек, где сине-зеленые по старой привычке строят свои рифы, конкурируя с кораллами — любителями воды чистой и соленой. Первыми сине-зеленые водоросли заводятся и в почти кипящих кислых бассейнах на склонах и в кальдерах вулканов.

Ты спросишь, какое отношение имеют эти единственные, хорошо изученные жители криптозоя к нашим предкам — ведь они же растения? Суди сам.

Сине-зеленые, наряду с некоторыми бактериями (впрочем, перегородки между ними нет, сине-зеленые имеют второе название — цианобактерии) — из числа самых первых автотрофов, то есть это существа, научившиеся использовать солнечное излучение для фотосинтеза, добывания углерода из углекислого газа и воды. Сине-зеленые автотрофы стали новым источником пищи для гетеротрофов — живых существ, не умеющих проводить фотосинтез. Мы с тобой, как и все животные (и еще грибы), — гетеротрофы. Начав извлекать углерод, сине-зеленые наладили на нашей планете производство кислорода. Огромные пространства земной поверхности стали окисляться, появилась возможность для экономичного и высокоэффективного кислородного дыхания, и это дало колоссальный толчок всей эволюции — подавляющее большинство нынешних обитателей Земли дышат кислородом. Ты считаешь, этого мало? Хорошо. Сине-зеленые или их близкие родственники два-три миллиарда лет назад были не только пищей гетеротрофов. Некоторые из новых более высокоорганизованных живых одноклеточных организмов научились заглатывать сине-зеленых, не переваривая их, а оставляя в клетках как фотосинтезирующую частицу-органеллу. Сначала такое сожительство двух организмов было временным сотрудничеством — симбиозом. И сегодня на Земле немало есть простейших, внутри которых живут вполне самостоятельные, по-другому размножающиеся «цианеллы». Но постепенно большая клетка научилась передавать потомству кодовое распоряжение об устройстве хлоропласта — органеллы, бывшей когда-то самостоятельной, хотя и примитивной протоклеткой. Так, считал известный русский ученый академик А. Фаминцын и считают многие современные ученые (но лишь в самое последнее время), родился современный мир зеленых растений.

Ну а все-таки, скажешь ты, цианобактерии, сине-зеленые — они не были ведь нашими предками? Трудно сказать. Какие-то другие бактерии, мало чем от них отличающиеся, были. Здесь важно то, что «примитивные» сине-зеленые клетки-водоросли (примитивны они своим внутренним устройством, в них недостает некоторых важных органелл — составных частей настоящих, больших клеток, и прежде всего в них нет ядра — этого «мозга» современной совершенной клетки) сделали первую серьезную попытку объединиться друг с другом, чтобы дать начало новому уровню организации — многоклеточным организмам. Попытка эта частично удалась: многие сине-зеленые уже тогда существовали в виде нитей, гирлянд из клеток — этакая одномерная многоклеточность. Некоторые современные исследователи бактерий не в культуре, а в природе отмечают, что там, «на воле», колонии бактерий (например, скользкие пленки в термальных источниках на склонах вулканов и просто в водопроводах или шарики в почве) ведут себя вовсе не так, как те же бактерии в чашечке в лаборатории или тоже в почве или свободно плавающие, но по отдельности. Пленки и колонии типа «бычий глаз» гораздо лучше защищаются от разрабатываемых человеком антибиотиков, у них отмечается элементы «социального» поведения, «чувство кворума». У бактерий даже есть гены, управляющие именно колониями и раньше принимавшиеся исследователями за «молчащие гены» непонятного назначения. По некоторым расчетам, таких генов «коллективности» у бактерий — до половины всего генома! Так что даже незаконченность, незавершенность опыта наших предков-прокариот (многоклеточного «прокариотного» растения или животного в эволюции, видимо, так и не появилось) делают их коллективные постройки интересной моделью, показывающей, как упорно природа стремилась выйти на более высокий уровень многоклеточного строения.
ОТ КЛЕТОК-РЕМЕСЛЕННИКОВ К КЛЕТКАМ-РАБОЧИМ

Итак, в какой-то момент эволюции колония одноклеточных организмов превратилась в первый многоклеточный организм. Правда, «момент» этот наверняка длился десятки или сотни миллионов лет. И резкой границы — вот до сих пор колония бактерий, вот простейших, а дальше уже многоклеточное существо — наверное, не было.

Чем же отличается колония клеток от единого организма? Одноклеточное существо можно сравнить с ремесленником-одиночкой. Ремесленник работает один, и все трудовые операции одного при изготовлении, скажем, воинского доспеха может выполнить другой.

Клетку многоклеточного животного (или растения) можно сравнить с рабочим предприятия. В чем разница? Главное отличие: на предприятии есть разделение труда. Там (даже если это старинное предприятие без механизации — мануфактура) трудятся рабочие разных специальностей и каждый занят своим делом. Заменить одного рабочего другим гораздо трудней, его надо переучивать на другую специальность.

К предкам многоклеточных животных, нашим предкам, ближе всех нынешние низшие многоклеточные. Например, губки. У этих животных нет ни настоящих органов тела (например, желудка или сердца), нет тканей (у нас, ты знаешь, есть мышечная ткань, нервная, покровная и т.д., причем каждая ткань образована клетками одной специальности).

И все-таки губка — это не колония простейших. Клетки ее тела ведут себя очень самостоятельно, они легче переучиваются, осваивая «смежные специальности», чем клетки нашего тела, но они разные, и каждая занята своим делом.

Губка образует что-то вроде открытого кверху кувшинчика. В стенках кувшинчика сидят клетки-трубочки, через которые внутрь губки проникает вода (а с водой кислород для дыхания и всякая муть для питания).

По всей внутренней поверхности кувшинчика сидят совсем иные клетки с хвостиками-жгутиками, очень похожие на существующих в природе простейших жгутиковых инфузорий. Работа этих клеток состоит в том, чтобы дружно болтать своими хвостиками и тем самым заставлять воду течь через клетки-поры внутрь кувшинчика. Снаружи кувшинчик «облицован» плоскими клетками, напоминающими клетки нашего кожного покрова. А между «кожей» и жгутиковыми клетками сидят клетки, занятые улавливанием и усвоением поступающей пищи. Эти клетки бродят по всему телу губки и ведут себя, как обычные амебы. Они охватывают своим студенистым телом частицы пищи и переваривают их в пищеварительных вакуолях, возникающих специально по этому случаю... Если кусок велик и «жалко» его выбрасывать, амебы начинают вести себя более осмысленно. Кусок будет окружен несколькими амебами и переварен коллективно!

Напитавшись, клетки-амебы могут вдруг начать меняться на глазах, отращивая жгутик, и вот уже они заменяют своих голодных собратьев, машут хвостиками, создают ток воды. А те, наоборот, превращаются в амеб и начинают заниматься вопросами пропитания. Может надоесть однотонное существование и клеткам «кожного покрова». И они могут заменить клетки-провиантмейстеры или клетки-водометы. Похоже, чуть не из каждой клетки губки можно вырастить целую новую губку. Но тогда, может быть, губка — это все-таки не целый организм, а колония слегка специализированных клеток? Но нет, именно с губки начинает действовать правило Гарвея, действительное для всех цельных многоклеточных животных: «Все живое — из яйца». У губок есть специальные клетки (опять-таки способные превратиться в другие), занятые вопросами размножения, формирования яйца, зародыша будущей целой губки.

Специально сохраняется в теле губки некоторое число неспециализированных клеток — клеток без определенного занятия. Это на случай беды. Повредит губку прибой или хищник — клетки без специальности кидаются латать дырку: одни наружный защитный слой выстилают, другие, уже с хвостиками, глядишь, воду гонят, третьи дырку в себе прорастили — через пору вода и еда идут, и ее тут поджидают уже сформированные новые клетки-амебы.

Есть клетки, занятые строительством скелета. Очень красивый скелету губок — биокристаллы-спикулы из кальцита или кремня. Почему биокристаллы ? Да потому, что с одной стороны здесь используются природные кристаллобразующие силы, а с другой — не просто используются, но и направляются силами жизни. Под микроскопом ученые с изумлением выследили это чудо.

Вот клетка-скелетообразовательница «задумала» делиться. Ядро разделилось, их уже два, а клетка еще не делится, медлит. И вот уже видно: между ядрами протягивается полупрозрачная ниточка. Ниточка обрастает кальцитовыми молекулами. Кальцитовая иголочка растет, и клетка все-таки делится. И тут начинается самое удивительное: две клетки начинают работать вдвоем, будто между ними связь какая-то есть, доброе согласие. Клетки рассаживаются по концам иглы-спикулы.

Одна — на том ее конце, который растет внутрь губки, другая — на том, что снаружи. Эта вторая клетка начинает двигаться по спикуле внутрь губки, по неведомо какой программе откладывая на ней еще слой кальцита, формируя изящную иглу. Доходит до второй — и вот уже другая начинает двигаться в ту же сторону, образуя самый конец иглы. Обе клетки сходят с конца иглы, дело сделано.

Повторяю: каждая из этих клеток, образующих тело губки, очень напоминает и внешне, и строением, и по роду деятельности какое-то самостоятельное одноклеточное существо, амебу или инфузорию. Конечно, если просто представить себе, как однажды собрались амебы и инфузории и договорились: ты делаешь то, а я это, сотворим-ка цельный многоклеточный организм, — это будет похоже на неправдоподобную сказку. Все, конечно, «проще», то есть сложнее. Но разве не похожа на сказку эта сложная жизнь внутри губки, примитивной по сравнению с нами, высшими многоклеточными, вторичноротыми, позвоночными, млекопитающими, да еще приматами к тому же, что значит — первыми, главными. Ведь снаружи губка и на животное-то не походит, неподвижная, вроде растения, их так и звали долго: зоофиты — животнорастения.

А разве не похоже на сказку сложное поведение маленьких предклеток-органелл — ядер, митохондрий, рибосом внутри клеток? И даже поведение молекул? Помнишь, мы говорили об этом... Транспортная РНК подтаскивает нужную аминокислоту к рибосоме, а та собирает белковую молекулу, как станок с программным управлением...

Задолго до появления многоклеточных жизньдостигла потрясающей сложности. Ученые сейчас всерьез говорят о поведении клеток, органелл и биомолекул, но знают они о законах этого поведения гораздо меньше, чем о законах поведения, скажем, волков в стае.

Действия клеток в телах губок, медуз и других древних морских животных удивительны. Но не думай, что клетки внутри нас, «царей природы», какие-то совсем иные. Нет, и в них есть черты самостоятельности. Их можно размножать в чашечках с питательным раствором, и там они, вспоминая далекое прошлое, начинают походить на амеб — медленно ползать, выдвигать псевдоподии, обволакивать частицы пищи и самостоятельно переваривать их! И у нас под верхним слоем кожных специализированных клеток есть запас неспециализированных, готовых всегда прийти на помощь, если ссадина или рана. Это — регенерация. Не такая, как у губок (каждая клетка еще может заменить любую), и не такая, как у морских звезд (из каждого луча разорванной морской звезды вырастает новая звезда), и даже не такая, как у более близкого к нам тритона, способного отрастить новую лапу. Но и это неплохо.

Обрати внимание и запомни, это скоро понадобится: когда многоклеточному организму плохо, в нем иногда происходит как бы шаг назад.

Его шанс на выживание порой зависит от того, насколько он способен к регенерации, то есть велик ли у него запас неспециализированных клеток, клеток без определенного занятия, готовых выучиться любой нужной профессии. Легче выучить новичка, чем переучить старого мастера другой профессии.

Иногда говорят, что живая природа знает только прогресс, только движение вперед. Как видишь, это не совсем так. Порой отступления помогали сохранить жизнь — значит, они были нужны для того же прогресса.

Начиная с этой главы мы будем говорить уже о многоклеточных наших предках, о том, как они, превращаясь один в другого, «шли» к человеку. Ты увидишь, что и в этом развитии были моменты, напоминающие регенерацию. Иногда развивающемуся сообществу животных приходилось несладко на Земле, и тогда оно могло выжить, отступив назад, к менее специализированной и, значит, более древней форме. А отступив, подняться на следующую ступеньку эволюционного развития. Один мой знакомый палеонтолог говорил об этом так: шаг назад — два шага вперед.

Ну а когда появились многоклеточные наши предки? И давно и недавно. По последним сведениям, это произошло в конце раннерифейской эпохи, примерно 1,4 миллиарда лет назад. Низшим грибам — 2,2 миллиарда лет. Уже знакомым тебе строматолитовым рифам, самым первым — 2,4 миллиарда лет. Это значит, что цианобактерии, сине-зеленые водоросли, которые, наверное, не сразу научились строить рифы, еще старше. Самым древним остаткам одноклеточных, первым простым безъядерным клеткам типа бактерий или водорослей в некоторых случаях — 3,4 миллиарда лет.

Интересно, что первые сложные клетки, ядерные одноклеточные организмы типа дрожжей и амеб появляются в слоях земных незадолго перед появлением многоклеточных. Может быть, со временем ученые обнаружат, что в начале рифея — последней эпохи эры тайной жизни — создались какие-то особые условия для усложнения и прогресса живых существ. И что оба важнейших скачка в эволюции наших предков — слияние доядерных клеток в сложные клетки и объединение новообразованных сложных клеток в большие организмы — шли подряд. Во всяком случае, путь от начала до первой настоящей клетки был неизмеримо дольше и трудней, чем переход к многоклеточным, «большим» животным и растениям.
А НУЖНА ЛИ ПАЛЕОНТОЛОГИЯ?

Здесь читатель вправе задать автору несколько вопросов: вот вы хотели рассказать о самых древних наших предках. А о ком рассказываете — о губках. Ничего себе древность. В аптеке продается пресноводная губка-бодяга, ее полно в наших речках и прудах. От ревматизма, говорят, помогает. В морях и океанах губки устилают дно. И каких только губок нет! Значит, губки — современные животные, какие же они предки? Но если предки живут рядом с нами и их так удобно изучать, тогда зачем рыться в земле, отыскивать ископаемых животных, которые и сохранились плохо, и не известно, чем питались, как себя вели.

И еще: в каждом учебнике зоологии про это есть. Каждый организм, даже человек, когда развивается как зародыш, как будто проходит тем же путем, которым шли его предки, превращаясь друг в друга. Картинка есть: у человеческого зародыша — жаберные щели. Значит, мы были рыбами. Хвост — значит, мы были хвостатые. И тогда опять-таки зачем гадать, кто из этих ископаемых мог быть нашим предком, просто надо взять хороший микроскоп и очень внимательно проследить, как развивается зародыш, на кого он похож в первый день, во второй — до конца. И вся родословная готова.
ТРИ ДОРОГИ В ПРОШЛОЕ

Вопросы важные. Стоит их обсудить.

Да, губки наши современницы, но у ученых есть веские основания подозревать, что древние первые многоклеточные были на них похожи, а поскольку эти древние многоклеточные в геологических слоях не сохранились, значит, можно смотреть на губок как на модель, иллюстрацию, набросок портрета нашего предка. Мы не раз еще будем говорить о таких живых моделях далекого прошлого. Но говорить о них мы можем именно потому, что нам это «разрешила» палеонтология. Из палеонтологии мы знаем, что губки, с тех пор как у них появился скелет (и, значит, они появились на страницах геологической летописи), почти не менялись.

Родственными отношениями в мире живого занимается самая древняя из биологических наук — систематика. Все живые существа на Земле — родственники (только степень родства — ее и определяет систематика — разная). Можно изучать предков, раскапывая их захоронения, а можно восстанавливать родственные связи, сравнивая нынешних, живущих потомков, каждый из которых несет в себе те или иные черты предков. Эти две дороги в прошлое — палеонтологическая и сравнительно-анатомическая — идут рядом, часто пересекаются, но это разные дороги, они не сливаются в одну, как не сливаются идущие рядом шоссе и река — голубой путь для теплоходов и барж.



Ну а что касается третьего пути в прошлое... Да, зародыш часто как бы повторяет эволюционное развитие предков, но не всегда, не точно. И вообще здесь все очень непросто. Но мы с тобой договорились не обходить трудные вопросы. Попробуем не разобраться — разобраться полностью в этих делах науке еще не удалось и удастся не скоро, — попробуем понять главные черты этого еще одного великого чуда жизни.

Рис. Зародыши



Достарыңызбен бөлісу:




©dereksiz.org 2025
әкімшілігінің қараңыз

    Басты бет