Справочник для соседей по специальности


ТАКЫР – дно периодически пересыхающего озера. ТАЛНАХИТ



бет16/20
Дата12.06.2016
өлшемі0.98 Mb.
#130582
түріЛитература
1   ...   12   13   14   15   16   17   18   19   20

Т


назад

ТАКЫР – дно периодически пересыхающего озера.

ТАЛНАХИТ – Cu18(Fe,Ni)16S32; минерал сульфидных медно-никелевых руд, часто в сростках с халькопиритом, встречается совместно с пентландитом, магнетитом и др.

ТАЛЬВЕГ – дно долины реки, линия, соединяющая самые глубокие части русла реки.

ТАЛЬК – минерал, Mg3[(OH)2Si4O10], слоистый силикат, часто продукт гидротермального изменения ультраосновных пород.

ТВЕРДОСТЬ – характеристика материала, отражающая его прочность и пластичность; наиболее часто определяется как сопротивление механическому вдавливанию более прочного тела.


Минерал

Твердость по шкале Мооса

Кг/мм2

тальк

1

2-3

гипс

2

36-75

кальцит

3

103-148

флюорит

4

170-198

апатит

5

514-555

ортоклаз

6

764-824

кварц

7

1023-1236

топаз

8

1415-1468

корунд

9

2060

алмаз

10

10060


ТВЕРДЫЕ РАСТВОРЫ – твердые фазы сплавов, минералов, в которых соотношение концентраций компонентов может изменяться без нарушения однородности (изоморфизм). Существуют три основных типа твердых растворов: замещения, внедрения и вычитания: 1) атомы растворенных компонентов замещают атомы растворителя; 2) атомы растворенного компонента располагаются в междуатомных промежутках решетки растворителя; 3) при растворении компонента А в соединении АmBn часть узлов решетки, принадлежащих компоненту В, становится вакантной. См. диаграммы состояния, гетерофазное изменение твердых растворов.

ТЕКСТУРА – преимущественная ориентация кристаллов или молекул в кристаллической или аморфной среде. Возникновение текстуры зависит от разных факторов, которые в свою очередь влияют на тип текстуры. Текстуры могут быть осевыми (линейными) с предпочтительной ориентировкой элементов текстуры относительно одного направления (течение воды, расплава и т.п.); плоскими, с ориентировкой относительно плоскости (уплотнение осадка и т.п.); полными при наличии и плоскости ориентировки и линейного направления в ней (характерно для кристаллизации и перекристаллизации пород под воздействием направленных давлений – стресса). См. магнитная анизотропия.

ТЕКСТУРА ГОРНЫХ ПОРОД – особенности строения горных пород, обусловленные ориентировкой и относительным расположением и распределением составных частей горной породы. Выделяются первичные текстуры пород (кристаллизация магм, слоистость осадков и т.п.) и вторичные, возникающие при дальнейшем изменении пород (диагенез, метаморфизм и т.п.). В английской и американской литературе термины «текстура» и «структура» употребляются в противоположном смысле по сравнению с российской литературой.

ТЕКСТУРНАЯ АНИЗОТРОПИЯ – см. анизотропия.

ТЕКТОНИКА – см. геотектоника.

ТЕКТОНИКА ПЛИТ – современная геотектоническая (геодинамическая) теория, согласно которой структура и история развития литосферы Земли определяется движением литосферных плит. Литосфера Земли разбита на плиты, контуры современных плит отмечаются сейсмическими поясами; вдоль одних границ (конструктивных) плиты расходятся, и там наращивается океанская кора, вдоль других границ (деструктивных) плиты сближаются, пододвигаясь одна под другую и поглощаясь в мантии. Движения плит на сфере поддаются количественному расчету с оценкой полюсов вращения и угловой скорости вращения, в результате чего в геологию впервые введены мера, число. Это оказалось возможным, в первую очередь, благодаря палеомагнитным (магнитотектоническим) данным. Введение числа позволяет в принципе прогнозировать тектонические движения для любого интервала истории развития земной коры, как прошлом, так и в будущем. Тектоника плит широко базируется на геолого-геофизических, геохимических данных; она объединила такие геологические концепции как рифтогенез, дрейф континентов, происхождение океанов, развитие складчатых поясов. См. геодинамика, магнитотектоника, спрединг, гипотеза Вайна и Мэтьюза, субдукция и др.

ТЕКТОНИЧЕСКИЙ КОНТАКТ – соприкосновение горных пород по поверхности разрывного нарушения. Выделения такого рода контактов при палеомагнитных исследованиях, особенно при магнитостратиграфических, важны как для решения прямой, так и обратной задачи (обнаружение таких контактов по палеомагнитным данным).

См. палеомагнитное картирование, магнитотектоника.



ТЕКТОНОМАГНЕТИЗМ – изменение намагниченности горных пород земной коры и, соответственно, локальные изменения геомагнитного поля во времени, вызванные изменениями напряжений в земной коре. Отмечается корреляция тектономагнетизма с землетрясениями, соответственно тектономагнитный эффект изучается как один из возможных предвестников землетрясений. См. пъезомагнетизм.

ТЕМНОЦВЕТНЫЕ МИНЕРАЛЫ – см. цветные минералы.

*ТЕМПЕРАТУРНАЯ ЧИСТКА (Т-чистка) – наиболее распространенный и наиболее эффективный способ разделения компонент Jn по температурам их деблокирования и устойчивости к нагреву. Группа образцов последовательно нагревается до разных температур в немагнитной печи, помещенной в нулевое магнитное поле (экран или кольца Гельмгольца), после каждого нагрева образцы охлаждаются в нулевом поле и измеряются. Этот вид магнитной чистки получил название ступенчатой. В палеомагнитологии применяется и другой тип Т-чистки – непрерывной, когда измерения ведутся непосредственно в процессе нагрева образца на термомагнитометрах с совмещенными нагревательным и измерительным блоками. Термомагнитометры менее чувствительны и, кроме того, при непрерывном терморазмагничивании определение диапазона блокирующих температур для многодоменных и псевдооднодоменных частиц имеет определенные трудности из-за несоблюдения закона аддитивности, поэтому непрерывная Т-чистка чаще используется в качестве рекогносцировочной. На ее основе определяются шаги ступенчатой Т-чистки, выделяются наиболее важные интервалы, требующие сгущения шагов, обычно для надежного выделения основных компонент Jn достаточно примерно 10-15 шагов Т-чистки между комнатной температурой и максимальной точкой Кюри магнитных минералов коллекции. Чтобы не ошибиться (при отсутствии термомагнитометра), лучше увеличить число шагов Т-чистки. Для «чтения» непрерывной записи геомагнитного поля в процессе остывания магматических тел требуется минимально возможный шаг Т-чистки, который допускают печка и терморегулятор, сегодня это интервал 2-3°.

Главный недостаток Т-чистки по сравнению, например, с Н-чисткой: изменение имеющихся и/или образование новых магнитных минералов в процессе нагрева образцов. Для экспресс-контроля параллельно с измерениями остаточной намагниченности после каждого нагрева измеряется восприимчивость, для более строгого контроля – трудоемкие термомагнитные и другие исследования.

*ТЕРМИЧЕСКАЯ ОСТАТОЧНАЯ (ТЕРМООСТАТОЧНАЯ) НАМАГНИЧЕННОСТЬ (Jrt, TRM) – остаточная намагниченность, созданная при остывании магнитного материала от его точки Кюри до некоторой температуры в постоянном магнитном поле. Jrt в малых полях прямо пропорциональна величине напряженности постоянного поля ее создания, зависит от начальной и конечной температур, в интервале которых создавалась Jrt. Если начальная температура создания не ниже точки Кюри, а конечная равна 0 К, то это полное термонамагничивание, соответственно образуется полная термоостаточная намагниченность. В петромагнитной и палеомагнитной практике (и в природе) обычно создается Jrt до температуры, близкой комнатной и ее называют полной. Однозначного универсального диагностического признака Jrt пока не существует. Наиболее распространен признак, необходимый, но не достаточный – сходство зависимостей Jn(T) и созданной на том же образце в лаборатории Jrt(T). Признак недостаточен, т. к. с Jrt(T) может быть сходно поведение и кристаллизационной, и химической остаточных намагниченностей. Примеры других признаков: а) сравнение поведения в переменном магнитном поле Jn и Jrt c Jrs, созданной на том же исходном образце и после его нагрева при создании Jrt; б) сравнение Jn/Jri c Jrt/Jri (среднее отношение Jrt/Jri, созданных в одном постоянном магнитном поле, равно 2,8, в случае преобладания многодоменных зерен и заметно взаимодействующих однодоменных); резкое занижение по сравнению с ожидаемым отношения Jn/Jri стабильной компоненты после Т-чистки – Jnt/Jrit в случае изверженных или обожженных пород может означать, что Jn или Jnt не является полной термической; в) безнагревный тест природы Jn как возможной Jrt – по коэрцитивным спектрам (Nt-тест Шолпо-Лузяниной): Nt³0,25 означает, что исследуемая остаточная намагниченность является Jrt.

В случае однодоменных зерен Jrt имеет термоактивационную природу, из чего вытекает справедливость законов Телье о независимости и аддитивности парциальных термонамагниченностей. Для многодоменных зерен закон независимости нарушается, так как намагничивание идет путем смещения границ доменов. Взаимодействие зерен начинает сказываться с содержания магнитных минералов выше 1%. На соблюдении закона аддитивности парциальных термонамагниченностей в случае однодоменных зерен и его нарушении в случае многодоменных зерен построен термомагнитный тест Большакова-Щербаковой доменной структуры магнитных зерен в образце.

см. остаточная намагниченность, диаграмма Араи-Нагаты и др.



ТЕРМОВЯЗКАЯ НАМАГНИЧЕННОСТЬ – образуется при действии постоянного магнитного поля с течением времени и одновременном увеличении температуры.

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ – состояние системы, в которой ее макроскопические параметры не меняются со временем. В таком состоянии системы отсутствуют процессы, сопровождающиеся рассеянием энергии, например, потоки тепла или химические реакции. С микроскопической точки зрения термодинамическое равновесие представляет собой состояние динамического или подвижного равновесия, так что равновесные значения термодинамических параметров – это статистические средние величины (флуктуации малы по сравнению со средними). Термодинамическое равновесие обладает свойством устойчивости, т.е. система, помещенная в неизменные внешние условия, самопроизвольно не может выйти из состояния равновесия. Отсутствие движений в равновесной системе говорит о постоянстве (равенстве) во всех ее частях давления и температуры.

ТЕРМОДИФФУЗИЯ – диффузия, обусловленная градиентом температуры в среде. Термодиффузия нарушает однородность системы: концентрация компонентов в областях с повышенной и пониженной температурами становится различной.

*ТЕРМОМАГНИТНЫЕ ИССЛЕДОВАНИЯ – исследования магнитных свойств вещества в зависимости от термического воздействия. Наиболее распространены, помимо термомагнитного анализа, следующие варианты термомагнитных исследований: 1) изучение поведения намагниченности насыщения, коэрцитивной силы, остаточной коэрцитивной силы, восприимчивости и др. после последовательных ступенчатых нагревов и охлаждений до 20°С, т.е. характера изменений магнитных минералов в результате нагревов; 2) термообработка образцов при температурах, близких солидусу пород (около 1000°С), в нейтральной среде или вакууме с целью регомогенизации первичных магнитных минералов, последующий термомагнитный анализ и измерение других магнитных свойств для получения их магнитных характеристик. Согласно диаграммам состояния твердых растворов в области их стабильного однофазного существования распавшиеся твердые растворы должны гомогенизироваться (например, титаномагнетит выше 550°С). При гетерофазном окислении температура распада не зависит от диаграммы состояния твердого раствора, а определяется лишь неравновесной летучестью кислорода при данной температуре. Соответственно гомогенизация таких распавшихся твердых растворов будет происходить при температуре не ниже температуры гетерофазного окисления. Это позволяет восстанавливать состав первичного твердого раствора путем его гомогенизации, а также оценивать температуру распада. Если твердые растворы – магнитные минералы, то после их регомогенизации по данным термомагнитного анализа и изучения коэрцитивных спектров можно оценить степень гомогенности магнитных минералов в породе, а по точке Кюри определить состав. Для контроля необходимо оценить состав зерен и другим независимым методом. Гомогенизация как способ восстановления состава первичного твердого раствора может не быть эффективной из-за, во-первых, изменений пород, сопровождающихся привносом-выносом материала зерна, во-вторых, изменений магнитных минералов в процессе лабораторной термообработки, в-третьих, несоответствия режима гомогенизации режиму кристаллизации первичного твердого раствора. Нужен оптимальный режим лабораторной обработки – достаточно высокая температура (но не плавление!), чтобы термообработка была короткой, тогда несоответствие режимов доводится до минимума.

Совокупность термомагнитных исследований в сочетании с электронной микроскопией, микрозондированием и другими методами исследований вещества позволяет надежно диагностировать магнитные минералы, восстанавливать состав и другие особенности первичных магнитных минералов, оценивать условия их образования.

На базе термомагнитных исследований создана серия магнитных геотермометров, т.е. способов оценки температуры кристаллизации, перекристаллизации магнитных минералов или температуры приобретения ими остаточной намагниченности. Все они в основном используются как предельные: оценивается температура образования выше или ниже точки Кюри присутствующих в породе магнитных минералов.

*ТЕРМОМАГНИТНЫЙ АНАЛИЗ – исследование температурной зависимости намагниченности, остаточной намагниченности, восприимчивости, определение точек Кюри, температур фазовых переходов и других изменений магнитных минералов в ходе нагрева. Данные термомагнитного анализа важны для диагностики минералов непосредственно в породе. Для наиболее распространенных в природе магнитных минералов – титаномагнетитов, пирротина характерны Q и Р-типы зависимости Js(T) Нееля. Парамагнетики имеют гиперболическую (H) форму Js(T). Главное достоинство термомагнитного анализа по сравнению с другими методами исследования вещества – очень высокая чувствительность (достаточно присутствия в породе менее 0,01% магнетита и т.п. минералов).

ТЕРМОМАГНИТНЫЙ ТЕСТ БОЛЬШАКОВА-ЩЕРБАКОВОЙ – тест доменной структуры магнитных зерен в образце. Тест построен на соблюдении закона аддитивности парциальных термонамагниченностей в случае однодоменных зерен и его нарушении в случае многодоменных зерен. При охлаждении образца от температуры выше точки Кюри до некоторой температуры Та без магнитного поля, а ниже Та в постоянном поле, создается парциальная термоостаточная намагниченность Jrpt. В случае однодоменных зерен такой образец при нагреве в нулевом магнитном поле размагнитится при температуре Та, в случае псевдооднодоменных зерен температура размагничивания выше Та, в случае многодоменных зерен J(T) не зависит от Та и заканчивается в точке Кюри образца. Тест имеет два недостатка: 1) при нагреве возможны минералогические изменения материала, 2) анализируется не весь спектр магнитных зерен образца, а лишь те, на которых создается Jrpt.

ТЕРМОНАМАГНИЧИВАНИЕ – намагничивание магнитного материала за счет уменьшения температуры от его точки Кюри до некоторой температуры при действии постоянного магнитного поля. См. термическая остаточная намагниченность.

ТЕРРАСА – выровненная действием воды площадка на склоне в сочетании с поднятием участка, климатическими колебаниями и эвстатическими перемещениями уровня бассейна (реки, озера, моря).

ТЕСТ ГАЛЕК ГРЭХЕМА – способ оценки палеомагнитной стабильности по степени хаотичности распределений векторов естественной остаточной намагниченности и ее компонент в обломках (гальках) из конгломератов, брекчий, туфов и т.п. пород. Для применения теста галек Грэхема выбираются обломки (гальки) пород, переотложенные в конгломератах и других обломочных породах, аналогичных изучаемому объекту, по 20-30 галек для каждого типа породы. Чем ближе по времени и месту переотложения конгломераты и находящиеся в них обломки (гальки), тем надежнее тест галек. В случае внутриформационных галечников или брекчий тест галек может стать прямым методом обоснования первичной остаточной намагниченности. При наличии в Jn нехаотической (вторичной) компоненты можно выяснить вид и режим чистки для выделения такой компоненты. По среднему направлению нехаотичной компоненты Jn можно судить о времени перемагничивания галек. Таких нехаотичных компонент Jn в ходе чистки может быть выделено несколько, при этом они могут по разному проявляться в разных группах пород и по отношению к складчатости, и характеризовать процессы, приведшие к изменениям пород, образующих конгломераты, и их время. Применяя тест галек Грэхема к разным типам пород, можно выбрать наиболее надежные из них для решения поставленной задачи и рациональный комплекс их чистки.

С помощью теста галек Грэхема можно решать и ряд обратных задач, например, определять температурные условия отложения туфобрекчий (температура перехода от упорядоченных направлений Jn обломков к хаотичному в ходе Т-чистки, прогрев ксенолитов в лавах и др.).

Обычно, согласно статистике Фишера, распределение принимается хаотичным, если K<3. Строже и достовернее степень концентрации при малых К устанавливается с помощью параметрического критерия равномерности Релея. С.В. Шипунов [1993] предложил более строгую процедуру выполнения теста галек, основанную на принятии или отклонении ряда гипотез (идентичность состава галек изучаемым породам, выполнение критерия равномерности Релея на сфере для палеомагнитных направлений и для осей галек, изометричность галек и т.д.).



*ТЕСТ ДЛИННЫХ ЧАСТИЦ ПЕЧЕРСКОГО – тест оценки палеомагнитной стабильности, природы естественной остаточной намагниченности и непосредственное измерение палеомагнитного склонения по моде ориентировки длинных осей удлиненных обломочных зерен магнитных минералов в плоскости слоя терригенной осадочной породы. Для этого теста изготавливаются ориентированные прозрачно-полированные шлифы, параллельные плоскости слоя осадка. В отраженном свете диагностируются зерна, в проходящем свете измеряется ориентировка удлиненных зерен. Для надежного определения моды необходимо измерить ориентировку длинных осей нескольких сотен зерен в одном срезе. Экспериментально показано, что ориентируются во внешнем магнитном поле, близком к земному, зерна магнетита размером менее 40мкм, удлинение которых не менее 1,5. Для исключения направленных ориентировок удлиненных зерен, не связанных с действием геомагнитного поля, следует измерять в том же шлифе ориентировку крупных зерен заведомо немагнитных минералов, моды которых не могут быть связаны с действием геомагнитного поля, выравнивание длинных осей таких зерен связано с течениями, деформациями и т.п.

ТЕСТ НЕСОГЛАСИЯ – анализ поведения магнитозон прямой и обратной полярностей по латерали в разрезах с установленными стратиграфическими несогласиями: резкий "обрыв" магнитозон у поверхности несогласия, cвидетельствует о том, что возраст компоненты Jn древнее несогласия и, наоборот, продолжение магнитозон "сквозь" несогласие свидетельствует о вторичной природе остаточной намагниченности.

*ТЕСТ Nt ШОЛПО-ЛУЗЯНИНОЙ – тест оценки термической природы остаточной намагниченности по коэрцитивным спектрам намагничивания из естественного (ЕС) и нулевого (НС) состояния образца. Nt= Hx/Ho, где Нх – расстояние между прямолинейными участками коэрцитивных спектров или касательных к ним из ЕС и НС; Но – максимальное постоянное поле прямолинейного участка НС (область Рэлея). Эмпирически установлен признак полной термоостаточной намагниченности: Nt³0,25. Подбором коэрцитивных спектров остаточной намагниченности, созданной при известной температуре, до совпадения со спектром ЕС можно примерно оценить температуру намагничивания материала. Тест Nt не имеет обратной силы, т.е. если Nt<0,2, это не значит, что Jn не термического происхождения. Такое возможно в случае Jrt ансамбля невзаимодействующих или слабо взаимодействующих однодоменных зерен. Практика показывает, что естественные магнитные состояния горных пород часто оказываются более сложными, чем "простое" теоретическое состояние, соответственно коэрцитивные спектры ЕС и НС нередко имеют "неправильную" форму. Причины различны, прежде всего, это искажение первичного термогенетического состояния со временем, ведущее к большей стабилизации магнитного состояния. В результате ЕС искажается и приближается к наиболее стабильному состоянию – НС, что ведет к уменьшению величины Nt. Другие причины искажения: например, наложенные давления, деформации, окисление зерен, ведущие к росту напряженного их состояния. Показано, что давление на абсолютное нулевое состояние оказывает обратное температуре действие, уменьшая степень его метастабильности, начиная с мягкой части коэрцитивного спектра. Следовательно, в ряде случаев возможно небольшими нагревами (заведомо ниже точки Кюри материала) восстановить исходное термогенетическое состояние, если оно искажено давлением или иной причиной роста напряжений, в частности, маггемитизацией титаномагнетита и магнетита: у образцов долеритов, диабазов, содержащих маггемитизированный магнетит, продукт высокотемпературного гетерофазного окисления первичного титаномагнетита, в исходном состоянии Nt<0,1, после нагрева до 200-400°С Nt>0,25; у образцов, содержащих заведомо вторичный низкотемпературный магнетит Nt<0,22 и в исходном состоянии, и после нагрева до 400-500°С. Наиболее громоздкое, но и наиболее полное представление магнитного состояния материала – на диаграмме Прейзаха-Нееля.

ТЕСТ ОБЖИГА – способ оценки палеомагнитной надежности, заключающийся в совпадении направлений Jn или стабильной ее компоненты магматической породы и обожженной ею в экзоконтакте вмещающей породы и отличие от направления Jn или стабильной компоненты вмещающей породы вдали от зоны обжига. Такая ситуация однозначно свидетельствует о том, что палеомагнитное направление обожженной и обжигающей пород относится ко времени обжига и для магматической породы является первичным. Обожженные породы из экзоконтактов лав и других близповерхностных магматических тел – наилучший объект для определения направлений первичной остаточной намагниченности и оценки величины палеонапряженности, особенно нагревными методами (методом Телье и т.п.). Обожженные осадочные породы по сравнению с необожженными аналогами обладают повышенной естественной остаточной намагниченностью и магнитной восприимчивостью, измерения последней непосредственно в обнажениях позволяют оценить относительную степень обжига и мощность зоны обжига. В случае обжига магнетитсодержащих пород в высокоокислительных условиях их намагниченность может падать в связи с переходом магнетита в гематит.



ТЕСТ (МЕТОД) ОБРАЩЕНИЯ ИРВИНГА-КРИЕРА – способ выделения и оценки направления древней компоненты Jn по прямо и обратно намагниченным одновозрастным породам одного объекта. Первичная остаточная намагниченность таких пород должна отличаться на 180°. Если принять, что вторичные компоненты в равной мере участвуют в Jn прямой и обратной полярности, то поворот на 180°одной из намагниченностей по отношению к другой, т.е. смена знака наклонения на обратный и прибавление к склонению 180°, сложение после этого их нормированных векторов, приведет к уничтожению вторичной компоненты, а направление суммарного вектора и есть направление древней компоненты Jn, возможно близкой к первичной. Предпринята попытка количественной оценки этого теста, что использовано в Мировой базе палеомагнитных данных [McElhinny, Lock, 1990].

ТЕСТ ПЕРЕОСАЖДЕНИЯ ХРАМОВА – способ проверки природы Jn терригенных осадков или осадочных пород, пригодных для переосаждения; способ оценки величины палеонапряженности геомагнитного поля. Тест приблизительный, так как переосаждение в лаборатории является довольно грубой моделью образования осадка в естественных условиях.



ТЕСТ ПЛОСКОСТЕЙ (КРУГОВ) ПЕРЕМАГНИЧИВАНИЯ ХРАМОВА – способ оценки палеомагнитной стабильности и определения направления древней доскладчатой компоненты Jn. Для применения теста необходимо знать направления возможного перемагничивания и Jn образцов из синхронных отложений с разными элементами залегания. Строятся плоскости перемагничивания (их следы на поверхности сферы – круги перемагничивания), в которых расположены векторы полной Jn и вторичной послескладчатой компоненты. Такие плоскости (круги на сфере) для толщ с разным залеганием пересекутся в точке положения доскладчатой компоненты. Ныне применяется более эффективная модификация этого теста – метод пересечения кругов перемагничивания в ходе чистки [Halls, 1976; 1978]. Последний, в принципе, аналогичен первому, но не требует знания направления поля возможного перемагничивания, круги проводятся по результатам ступенчатой чистки единичных образцов, а не только по средним направлениям, что резко увеличивает статистическую надежность результата.

ТЕСТ СКЛАДКИ ГРЭХЕМА – способ оценки палеомагнитной стабильности и оценки времени приобретения Jn или ее компонент, выделенных чистками, относительно времени смятия изучаемых пород в складки. В случае доскладчатого образования Jn векторы последней в разных частях складки располагаются одинаково относительно слоистости; в случае, если Jn образовалась после складчатости, векторы ее располагаются параллельно друг другу независимо от элементов залегания пород в разных частях складки. Промежуточные варианты (синскладчатая намагниченность) имеют промежуточную картину. Качественно соотношение до- и послескладчатой компонент Jn видно по соотношению кучностей векторов в современных координатах Кс (т.е. без введения поправки за залегание) и в древних координатах Ка (после "выпрямления" складки до горизонтального залегания слоев). Если залегание пород различно, то соотношение Кас свидетельствует о возможном заметном вкладе в Jn доскладчатой компоненты, а Кас – о преобладании послескладчатой компоненты. В последнее время тест складки усовершенствован, главное – в него введена количественная мера [McFadden, 1990]. Так, например, предложено в процессе "выравнивания" складки определять максимальную кучность и таким образом идентифицировать компоненты, приобретенные в процессе складчатости [McLelland-Brown, 1983]. М.Л. Баженов и С.В. Шипунов [1988, 1993] используют в комплексе корреляционный метод (поиск корреляционных связей между палеомагнитными направлениями и нормалями к пластам в процессе выравнивания), отношение кучностей и равенство средних. По мнению авторов, наибольшей чувствительностью к обнаружению второй компоненты обладает корреляционный тест.

Учитывая высокую эффективность теста складки, при любых палеомагнитных исследованиях следует подбирать объекты с разными элементами залегания. Ценность теста складки резко возрастает, если известен возраст дислокаций. Возможно решение обратной задачи – оценка возраста складчатости – если удается надежно выделить до-, син- и послескладчатую компоненты Jn.

ТЕСТ СМЕЩЕНИЯ – см. метод смещения Храмова.

ТЕСТ СТРУКТУРНО-ТЕКТОНИЧЕСКИЙ – анализ корреляционных связей между ориентацией структурно-геологических характеристик магматических тел (элементы залегания плоскости контактов даек, силлов) с одной стороны, и палеомагнитными направлениями, с другой, в современной и древней системах координат.

ТЕСТ (МЕТОД) ХОФФМАНА-ДЕЯ – метод выделения компонент Jn, имеющих заметно перекрывающиеся коэрцитивные спектры или спектры блокирующих температур и др. Метод основан на анализе поведения на сфере разностных векторов, полученных в результате ступенчатых магнитных чисток [Hoffman, Day, 1978].

ТЕТИС – древний океан, существовавший в палеозое и мезозое между Евразией и Африкой. Альпийско-Гималайский складчатый пояс образовался в результате закрытия Тетиса при сближении Африканской и Индийской плит с Евразией.

ТЕТРАГОНАЛЬНАЯ СИНГОНИЯ – кристаллы с одной четверной осью симметрии. Две другие оси координат перпендикулярны четверной оси и образуют между собой угол 90°.

ТЕФРА – вулканокластический материал, продукты вулканического извержения. См. кластогенный.

ТИЛЛИТ – древняя морена, литифицированная, метаморфизованная.

*ТИТАНОМАГГЕМИТ – минерал, Fe3-xTixO4+γ, катион-дефицитный титаномагнетит, продукт однофазного окисления титаномагнетита. Главные особенности: 1) Намагниченность насыщения Js меньше, а точка Кюри Тс и магнитная жесткость (например, Hcr) больше, чем у исходного титаномагнетита, причем Js с ростом степени однофазного окисления Z падает, а Тс и Hcr растут. Это четкий признак присутствия в коллекции пород, содержащих титаномаггемит. 2) При нагревах титаномаггемит распадается с выделением магнетита, в результате получается необратимая кривая термомагнитного анализа, Js и Тс при этом растут. Такой эффект заметен при Z>0,4. Титаномаггемиты с Z<0,4 по этому признаку не отличаются от титаномагнетитов. 3) Титаномаггемиты с Z<0,4 при термообработке в вакууме или нейтральной среде (температура примерно 1000°С) восстанавливются, образуется титаномагнетит, близкий по составу и свойствам первичному, что выражается в уменьшении точки Кюри и ее соответствии среднему составу зерен по данным микрозондирования. Титаномаггемиты с Z>0,4 при указанной термообработке не восстанавливаются до состава исходного титаномагнетита. Это объясняется тем, что большое однофазное окисление титаномагнетита сопровождается выносом части железа за пределы зерна, т.е. нарушением исходного состава и состояния титаномагнетита.

См. однофазное окисление твердых растворов, титаномагнетиты, магнитное упорядочение.

*ТИТАНОМАГНЕТИТ – минерал, Fe3-xTixO4; непрерывная серия твердых растворов со структурой обращенной шпинели от магнетита (х=0) до ульвошпинели (х=1). Титаномагнетиты – наиболее распространенные в природе магнитные минералы, особенно магнетит. Обычны примеси Mg, Al, реже Cr, Mn. Ферримагнетики. От х=1 до х=0 плавно меняются точка Кюри от -155 до 580°С, удельная намагниченность насыщения от 4 до 92 Ам2/кг и параметр кристаллической решетки от 0,853 до 0,8396 нм, магнитная стабильность монотонно падает. Последняя зависимость существенно затушевывается более сильной зависимостью от структурного состояния и размера зерен, напряжений и дефектов в них. Состав титаномагнетитов чрезвычайно чувствителен к условиям образования, особенно Т-fO2, является индикатором глубины магмового очага (последнего равновесного состояния магмы). Титаномагнетиты неустойчивы в условиях земной поверхности и легко окисляются и однофазно, и гетерофазно. Продукты гетерофазных изменений титаномагнетита и их магнитные свойства – важные показатели условий этих изменений. Сказанное в сочетании с широкой распространенностью титаномагнетитов определяет большое внимание, которое уделяется этим минералам и продуктам их изменений в петромагнитных и палеомагнитных исследованиях.



См. магнитное упорядочение, магмовый очаг, однофазное окисление, гетерофазное изменение твердых растворов.

ТОЛЕИТ – тип базальта, насыщенный SiO2, обедненный калием. Обычно состоит из основного плагиоклаза, пироксенов, оливина. Широко распространен среди пород дна океана.

ТОНАЛИТ – плагиогранит, обогащенный цветными минералами (роговая обманка, биотит).

ТОНКАЯ СТРУКТУРА ГЕОМАГНИТНОГО ПОЛЯ – изменения элементов геомагнитного поля во времени с характерными временами 102-105 лет, такие как вековые и палеовековые вариации, геомагнитные экскурсы и другие палеомагнитные аномалии, изучаемые по палеомагнитным данным.

ТОЧКА ВЕРВЕЯ – температура фазового перехода магнетита – кубическая решетка переходит в орторомбическую при температуре -150°С.

ТОЧКА КЮРИ (Тс) – температура перехода магнитного материала в парамагнитное состояние. Повышение температуры приводит к разупорядочению ориентации магнитных моментов в магнитном материале вследствие увеличения энергии теплового движения, что ведет к спаду самопроизвольной намагниченности вплоть до нуля в точке Кюри. Точка Кюри – фундаментальная характеристика магнитного материала, зависящая от его состава и строения кристаллической решетки. В сериях твердых растворов либо в магнитных минералах, содержащих примеси, не меняющие их кристаллическую структуру, точка Кюри является однозначной функцией состава магнитного минерала. Диапазоны изменений точек Кюри основных групп природных магнитных минералов (титаномагнетитов и других феррошпинелей, гемоильменитов, пирротина) перекрываются, поэтому для однозначной диагностики магнитного минерала недостаточно знания точки Кюри. См. магнитное упорядочение.

ТОЧКА МОРИНА (Тм) – температура фазового перехода крупнокристаллического гематита близ -23°С, выше Тм магнитный момент лежит в главной плоскости кристалла, ниже Тм – направлен вдоль его тройной оси. С уменьшением размера зерна или добавлением примеси Ni, Al, Mg, Mn, Fe2+ Тм смещается в более низкие температуры. См. гематит, гётит.

ТОЧКА НЕЕЛЯ (ТN) – температура, выше которой антиферромагнетик превращается в парамагнетик – антиферромагнитная точка Кюри. См. магнитное упорядочение.

ТРАЕКТОРИЯ ПЕРЕМЕЩЕНИЯ ПАЛЕОМАГНИТНОГО ПОЛЮСА – кажущееся перемещение палеомагнитного полюса Земли во времени, объясняющееся дрейфом континентов и других блоков литосферы, для которых определяется положение палеомагнитного полюса в разные интервалы времени. Траектория кажущегося движения полюса служит для количественной оценки горизонтальных перемещений плит, их частей, в конечном счете, для палеотектонических реконструкций – определения величины и времени относительных и абсолютных перемещений тектонических блоков. Траектория кажущегося движения полюса может служить для оценки возраста пород, оценка тем точнее, чем детальнее и качественнее определена эта траектория для конкретного блока и чем она сложнее.

См. магнитотектоника, кажущееся движение полюса, блуждание палеомагнитных полюсов, истинное движение полюса.



ТРАНСГРЕССИИ – процесс наступления моря на сушу. Сопровождается размывом, перерывом, угловым несогласием в отложениях. В разрезе снизу вверх мелководные отложения сменяются глубоководными.

ТРАНСФОРМНЫЕ ГРАНИЦЫ ПЛИТ – см. границы скольжения.

ТРАНСФОРМНЫЕ РАЗЛОМЫ – разломы, ограничивающие плиты по границам скольжения.

ТРАПП – общее название толщ основных магматических пород (базальты, долериты, диабазы), образованных в результате мощного внутриплитного вулканического и интрузивного толеитового магматизма (Сибирские, Деканский траппы и др.). Ныне их связывают с плюмовой деятельностью.

ТРАХИТ – вулканическая порода, содержащая щелочные полевые шпаты, иногда вместе с плагиоклазом, цветные минералы – биотит (чаще), авгит.

ТРЕВОРИТ – минерал группы шпинели, NiFe2O4. Удельный вес 5,26 г/см3; плотность упаковки 0,157; параметр решетки ао =0,843 нм. Ферримагнетик. См. феррошпинели.

ТРЕМОЛИТ – минерал, Ca2Mg5[(OH,F)Si4O11]2; разновидность амфибола, крайний член серии твердых растворов тремолит-ферроактинолит. См. актинолит.

ТРИГОНАЛЬНАЯ (РОМБОЭДРИЧЕСКАЯ) СИНГОНИЯ – характеризуется равенством ребер элементарной ячейки по трем осям, образующих между собой равные, но не прямые углы (ось симметрии третьего порядка).



ТРОИЛИТ – FеS, крайний член серии сульфидов железа. Гексагональный: а=0,596нм; с=1,175нм. Термически устойчив ниже 138°С. Антиферромагнетик, точка Нееля 315°С. Встречается в метеоритах, на Земле редок: образует включения в самородном железе, в пирротине из перидотитов и габбро, в медно-никелевых рудах.

ТРОКТОЛИТ – полнокристаллическая основная порода, обычно состоящая из основного плагиоклаза и оливина. Лейкократовая разновидность – форелленштейн.

ТУРБИДИТЫ – отложения суспензионных, мутьевых потоков (течений). Состоят главным образом из чередующихся прослоев песков, алевритов, глин. Широко распространены на склонах дна океана. Обычно отлагаются на глубинах более 2км.

ТУФ – горная порода вулканического происхождения, состоит из продуктов вулканических извержений, впоследствии уплотненных и сцементированных. Могут отлагаться в «горячем» виде и «холодном» (переотложенный материал извержений).

ТУФФИТ – осадочно-вулканогенная порода, содержащая менее 50% осадочного материала и более 50% продуктов вулканизма.

ТЭНИТ – самородный сплав железа и никеля, содержит до 50% Ni. Образует основную массу железных метеоритов, присутствует в каменных метеоритах. См. никель, железо.

назад



Достарыңызбен бөлісу:
1   ...   12   13   14   15   16   17   18   19   20




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет