Арутюнов Арсен Левонович
Центральный экономико-математический институт РАН
Институт проблем управления им. В.А. Трапезникова РАН
г. Москва
Технико-экономическая оценка эффективности от использования биотоплива в сельскохозяйственном производстве России
Ситуация в начале 90-х, связанная с постоянным падением экономических показателей до 1999 г., определяющих сельскохозяйственное производство (т.е. падение производства продукции животноводства и растениеводства, связанных с постоянным сокращением численности поголовья крупного рогатого скота, сельхозтехники, площадей сельхозугодий, минеральных и органических удобрений и т.д.) сложилась во многом, благодаря реформирования экономики в 1992-1995 гг. Большая часть сельскохозяйственных организаций России (СХО) в эти годы были нерентабельны, т.е. экономически не эффективны, работая с отрицательным балансом, в основном из-за использования при производстве традиционных видов энергоносителей (электроэнергию, дизельное топливо и автомобильный бензин), цены и тарифы на которых росли экспрессивно и не пропорционально с темпами роста ВВП страны в эти годы.
В условиях постоянного роста цен и тарифов на традиционных видов энергоносителей, возникает вопрос о целесообразности использования биотоплива, т.е. использовать в сельскохозяйственном производстве “смешанные” виды (как традиционных, так и альтернативных) энергоресурсов, чтобы снизить тарифную нагрузку на энергоресурсы в СХО.
В настоящее время в стадии различных решений и коммерциализации находятся несколько технических процессов, направленных на получение биотопливных материалов различной природы для целей автомобильного транспорта, сельскохозяйственного производства, получения электроэнергии и тепла:
-
биоэтанол из крахмалосодержащего сырья;
-
биодизель на основе использования растительных масел;
-
биогаз из различных отходов органической природы;
-
биобутанол – процесс получения смеси ацетона и бутанола на основе использования зерна.
Целесообразность развития биоэнергетики в сельском хозяйстве России
В результате проведенных реформ начала 90-х, связанных с макроэкономическими решениями по стабилиза-ции денежного обращения, основанными на жесткой монетарной политике, с реформированием отноше-ний собственности и с неподготовленностью экономики переходного периода с 1991 по 1999 гг. начался интенсивный спад производства сельскохозяйственной продукции, что привело к резкому сокращению потребления традиционных видов энергоносителей (электроэнергии, автомобильного бензина и дизельного топлива) в сельскохозяйственном производстве России. Потребление сократилось по электроэнергии, дизельному топливу в 4,0 раза, автомобильному бензину 6,3 раза в целом в стоимостном выражении [1].
В связи со сложившейся ситуацией на рынке традиционных видов энергоресурсов, предназначенных на производственные нужды сельским хозяйством России, целесообразно смешанное использование как традиционных, так и альтернативных источников энергоносителей для значительного снижения издержек сельхозпроизводства.
В ряде стран-лидеров по производству альтернативных энергоресурсов (Бразилия, США, Канада, Китай, Индия и Европа) существуют специальные правительственные программы по переходу на биотопливо и доведению до 2010-2012 гг. долю производства и потребления биотоплива до 5-7 % в топливно-энергетических балансах выше упомянутых стран [2].
Согласно прогнозно-аналитическим расчетам Международного Энергетического Агентства (International Energy Agency, IEA) производство биоэтанола и биодизеля в США, Канаде, Европейском Союзе и в других странах, подписавших Киотский протокол по выбросам парниковых газов (СО2) в атмосферу будет неуклонно расти до 2020 года (рис.1.). При этом, также неуклонно будет расти и спрос населения на биотопливо [3,4].
Рис. 1. Мировое производство биоэтанола и биодизеля до 2020 года.
Основным поставщиком сырья для производства биоэтанола в России является сельское хозяйство (например, потенциальным источником сырья для производства биоэтанола в России является выведенные из сельхозоборота пахотные земли. Переработка органических отходов необходима также в целях защиты окружающей среды. С помощью высокорентабельных технологий при переработке органических отходов можно получить твердое, жидкое или газообразное топливо, электрическую и тепловую энергию и высокоэффективные органические удобрения (после вторичной переработки остатков). Учитывая, что до 70% территории России, в том числе около 30-35% крестьянских хозяйств, не имеют постоянного централизованного энергоснабжения [1], создание безотходных предприятий АПК существенно повысит энерговооруженность страны.
Развитие данной отрасли энергетики в России базируется на трех основных принципах: высокорентабельных промышленных технологиях, пригодных для любых климатических условий, эффективном и надежном оборудовании, востребованном на внутреннем рынке, масштабной сырьевой базе.
Потенциальной ресурсной базой органических отходов АПК по отчетным данным региональных и окружных комитетов [5] являются отходы птицеводства (яичного и мясного направлений), скотоводства (крупного и мелкого рогатого скота), свиноводства, растениеводства (зернобобовых, подсолнечника, сахарной свеклы, картофеля, овощей), перерабатывающей промышленности (мукомольной, маслобойной, сахароварения, переработки мяса, спиртовой).
Вследствие экономических реформ общая площадь пашни в стране с 1992 г. сократилось на 37 млн. га. из которых 20 млн. га. приходится на европейскую часть [7]. Производство биоэтанола может стимулировать возобновление использования этих земель. К примеру, по расчетам аналитиков из международной биоэнергетической организации [6] один завод мощностью 100 тыс. тонн биоэтанола в год, использует в среднем 300-400 тыс. тонн пшеницы, для выращивания которой требуется 100-200 тыс. га пахотных земель. Возможно также использование и других видов сырья для выработки биоэтанола, к примеру, мелассу. В России ее производится около 1 млн. тонн ежегодно. А также целесообразно использование семян рапса для производства к примеру биодизеля. В стране хорошие условия для вы-
ращивания рапса и производства рап-
сового масла для биодизельного топ-
лива. АПК России расходует в среднем 4,8 млн. тонн ди-
зельного топлива. Чтобы закрыть эту
потребность, необходимо засевать
рапсом до 12 млн. га при урожае семян
10 ц/га. При использовании технологии пря-
мого сжигания смеси отходов птице
водства и растениеводства в пароэлек-
трогенераторах сельское хозяйство
страны может получать 210 млрд. кВт. ч.
электрической и 151,1 Ркал тепловой
энергии в год.
В России были выполнены приоритетные работы по использованию ферментов в
качестве катализаторов электродных процессов. Ферменты на границе раздела фаз
электрод/электролит играют роль эффективных катализаторов переноса электрона. На
базе этого открытия разрабатываются два типа топливных элементов: ферментный и
микробный.
Принципиальной основой электрохимических генераторов электричества
(топливных элементов) является электрокатализ — ускорение процессов переноса
электронов на границе раздела фаз электронный проводник (электрод)/ионный проводник
(электролит). В современных химических топливных элементах электрокатализатором
является мелкодисперсная платина. В топливных элементах, использующих ферменты,
электрокаталитический перенос электронов осуществляется за счет явления
биоэлектрокатализа, открытого в СССР (Государственный реестр открытий СССР,
Открытие № 306). Ферменты могут ускорять электрохимические реакции за счёт прямого
«электронного контакта» между активным центром фермента и проводником за счёт
туннелирования электрона на большие расстояния.
Биологический топливный элемент (БТЭ) — это устройства, в которых
осуществляется превращение химической энергии различных веществ (например,
углеводов, спиртов и др.) в электричество в процессе биологических трансформаций.
Особая привлекательность БТЭ связана с возможностью использования в них в качестве
топлива веществ, являющимися отходами. Это обстоятельство связано с тем, что
микроорганизмы или их ферменты способны к деструкции достаточно широкого класса
низко- и высокомолекулярных соединений. Таким образом, помимо энергетической, БТЭ способны решать и экологические проблемы утилизации отходов. Биологические
топливные элементы можно условно разделить на два класса: ферментные топливные
элементы и микробные топливные элементы.
Технология анаэробного сбраживания органических отходов
Одним из наиболее эффективных направлений научно-технического прогресса в энергетике является биоконверсия органических отходов промышленности, сельского хозяйства и коммунально-бытового сектора в топливо с целью экономии высококачественных жидкого и газообразного энергоресурсов.
На крупных животноводческих комплексах, поставленных на промышленную основу, обеззараживание отходов и их последующее использование превратилось в сложную техническую проблему. Существующая наиболее распространенная система удаления отходов животноводства (внесение его без предварительного обеззараживания в почву) становится практически неприемлемой в связи с возрастающими масштабами загрязнения окружающей среды (воздушного бассейна, естественных водоемов, подземных источников), создания угрозы распространения различных эпизоотии среди животных и в ряде случаев люде. С другой стороны, животноводческий комплекс с переходом на промышленную основу ведения процесса откорма животных во все более возрастающем количестве нуждается в энергии (прежде всего в виде жидкого или газообразного топлива), проблема снабжения которой, из-за рассредоточенности животноводческих комплексов и их удаленности представляет определенные трудности.
Сооружение биоэнергетических установок (БЭУ), осуществляющих биоконверсию органических отходов путем анаэробной ферментации, позволяет полностью перерабатывать отходы не только животноводств, но и полеводства и коммунально-бытового хозяйства сельских населенных пунктов. При этом в отличие от существующих способов аэробной очистки стоков получаются качественные обеззараженные удобрения и биогаз (метан), который позволяет полностью или частично заменить жидкое и газообразное топливо путем использования его в теплогенераторах, печах и двигателях внутреннего сгорания.
К оценке эффективности БЭУ следует подходить с народнохозяйственной точки зрения, когда эффект от экономии органического топлива, повышения урожайности из-за внесения обеззараженного удобрения и улучшения качества окружающей среды оценивается не с позиций отдельного хозяйства, а с учетом интересов всей экономики и общества, для которых энергетическая, продовольственная и экологическая проблемы представляют первостепенную важность.
Таблица 1
Материальный баланс БЭУ при ферментации различных отходов
объемом 500 т/год
|
КРС
|
Свиньи
|
Птица
|
т/год
|
%
|
т/год
|
%
|
т/год
|
%
|
Поступление:
Сухое вещество
Естественная влага
Добавок воды
Итого:
|
42
214
244
500
|
8,4
42,8
48,8
100,0
|
19
75,5
405,5
500
|
3,8
15,1
81,1
100,0
|
37,5
31,5
431
500
|
7,5
6,3
86,2
100,0
|
Выход:
Биогаз
Сухой остаток
Влага
Итого
|
10
32
458
500
|
2,5
6,5
91,5
100,0
|
8
11
481
500
|
1,6
2,2
96,2
100,0
|
19,5
18
462,5
500
|
3,9
3,6
92,5
100,0
|
Распад органики,%
|
10
|
22,6
|
8
|
42
|
19,5
|
52
|
Примечание. Время экспозиции составляет: для КРС - 10 сут., для свиней - 8 сут., для птицы - 35 сут.
Что касается эффектов от получения экономии топлива за счет биогаза и прироста сельскохозяйственной продукции, то в расчетах принималось, что топливо стоит 250 долл./т у.т.,1 а продукция – 350 долл./т.2
Достарыңызбен бөлісу: |