Введение 2
1.Теоретическая часть 4
1.1.Масс-спектрометрический метод анализа 4
1.2.ЯМР-спектроскопия 4
1.3.ИК-спектроскопия 7
2.Определение структуры соединения 11
2.1. Определение брутто-формулы 12
2.2. Расшифровка спектров 12
Заключение 14
Список использованных источников 15
Введение
Спектральный анализ - физический метод анализа химического состава вещества, основанный на исследовании спектров испускания и поглощения атомов или молекул. Эти спектры определяются свойствами электронных оболочек атомов и молекул, колебаниями атомных ядер в молекулах и вращением молекул, а также воздействием массы и структуры атомных ядер на положение энергетических уровней; кроме того, они зависят от взаимодействия атомов и молекул с окружающей средой. В соответствии с этим спектральный анализ использует широкий интервал длин волн - от рентгеновых до микрорадиоволн. В спектральный анализ не входят масс-спектроскопические методы анализа, как не относящиеся к области использования электромагнитных колебаний.
Задача ограничивается пределами оптических спектров. Однако и эта область достаточно широка, она охватывает вакуумную область ультрафиолетовых излучений, ультрафиолетовую, видимую и инфракрасную области спектра. В практике современный спектральный анализ использует излучения с длиной волны примерно от 0,15 до 40—50 ?.
Различные типы спектрального анализа следует рассматривать с трех точек зрения.
1.По решаемым задачам:
элементный, когда устанавливается состав пробы по элементам;
изотопный, когда устанавливается состав пробы по изотопам;
молекулярный, когда устанавливается молекулярный состав пробы;
структурный, когда устанавливаются все; или основные структурные составляющие молекулярного соединения.
2.По применяемым методам:
эмиссионный, использующий спектры излучения, главным образом атомов. Однако возможен эмиссионный анализ и молекулярного состава, например в случае определения состава радикалов в пламенах и газовом разряде. Особым случаем эмиссионного анализа является люминесцентный анализ;
абсорбционный, использующий спектры поглощения, главным образом молекул и их структурных частей; возможен анализ по спектрам поглощения атомов;
комбинационный, использующий спектры комбинационного рассеяния твердых, жидких и газообразных проб, возбуждаемые монохроматическим излучением, обычно - светом отдельных линий ртутной лампы;
люминесцентный, использующий спектры люминесценции вещества, возбуждаемые главным образом ультрафиолетовым излучением или катодными лучами;
рентгеновский, использующий а) рентгеновские спектры атомов, получающиеся при переходах внутренних электронов в атомах, б) дифракцию рентгеновых лучей при прохождении их через исследуемый объект для изучения структуры вещества;
радиоспектроскопический, использующий спектры поглощения молекул в микроволновом участке спектра с длинами волн больше 1 мм.
3.По характеру получаемых результатов:
1) качественный, когда в результате анализа определяется состав без указания на количественное соотношение компонентов или дается оценка — много, мало, очень мало, следы;
2) полуколичественный, или грубоколичественный, или приближенный. В этом случае результат выдается в виде оценки со держания компонентов в некоторых более или менее узких интервалах концентраций в зависимости от применяемого метода приближенной количественной оценки. Этот метод благодаря его быстроте нашел широкое применение при решении задач, не требующих точного количественного определения, например при сортировке металла, при оценке содержания геологических проб при поисках полезных ископаемых;
3) количественный, при котором выдается точное количественное содержание определяемых элементов или соединений в пробе.
Все эти типы анализа, за исключением качественных, используют упрощенные или точные методы фотометрирования спектров.
По способу регистрации спектров различаются следующие методы:
1. Визуальные при наблюдении спектров в видимой области с помощью простых или специализированных спектроскопов (стилоскоп, стилометр). В ультрафиолетовой области возможно наблюдение сравнительно ярких спектров с помощью флуоресцирующих экранов, располагаемых вместо фотографической пластинки в кварцевых спектрографах. Применение электронно-оптических преобразователей позволяет визуально наблюдать спектры в ультрафиолетовой и ближней инфракрасной областях (до 12000А).
2. Фотографические, использующие фотографическую пластинку или пленку для регистрации спектров с последующей обработкой.
3. Фотоэлектрические для ультрафиолетовой, видимой и ближней инфракрасной областей, использующие фотоэлементы разных типов»
фотоумножители и фотосопротивления (инфракрасная область). Фотоэлектрические методы иногда называются методами прямого анализа,
т. е. анализа без посредства фотографической пластинки.
4. Термоэлектрические для инфракрасной области, в том числе далекой, с использованием термоэлементов, болометров и других типов термоэлектрических приемников.
Достарыңызбен бөлісу: |