- Обычно используется компромиссный вариант. Начинают с простых моделей, стараясь спроектировать регулятор так, чтобы он «подходил» и для сложной модели. Это свойство называют робастностью (грубостью) регулятора (или системы), оно означает нечувствительность к ошибкам моделирования.
- Затем проверяют работу построенного закона управления на полной модели или на реальном объекте. Если получен отрицательный результат (простой регулятор «не работает»), усложняют модель, вводя в нее дополнительные подробности. И все начинается сначала.
- Проще всего решать линейные уравнения. С нелинейными уравнениями (квадратными, кубическими и др.) работать намного сложнее, многие типы уравнений математика пока не умеет решать аналитически (точно).
- Среди операторов самые простые – также линейные. Они обладают двумя свойствами:
- умножение на константу: U[α ⋅ x] =α ⋅U[x] , где α – любая постоянная (то есть, при увеличении входа в несколько раз выход увеличивается во столько же раз, однородность);
- принцип суперпозиции: если на вход подать сумму двух сигналов, выход будет представлять собой сумму реакций того же оператора на отдельные сигналы(аддитивность):
2.4. Линейность и нелинейность - Модели, которые описываются линейными операторами, называются линейными. С ними можно работать с помощью методов теории линейных систем, которая наиболее развита и позволяет точно решать большинство известных практических задач.
- Однако, все модели реальных систем – нелинейные. Это легко понять хотя бы потому, что всегда есть предельно допустимое значение входного сигнала – при его превышении объект может просто выйти из строя или даже разрушиться (линейность нарушается). Методы исследования нелинейных операторов очень сложны математически, в теории нелинейных систем точные решения известны только для достаточно узкого круга задач. Здесь пока больше «белых пятен», чем полученных результатов, хотя это научное направление активно развивается в последние годы.
Достарыңызбен бөлісу: |