Учебно-методический комплекс дисциплины «физика 2» для специальности «5В070200» автоматизация и управление


Резонансное поглощение -излучения (эффект Мёссбауэра*)



бет22/31
Дата25.06.2016
өлшемі7.1 Mb.
#158001
түріУчебно-методический комплекс
1   ...   18   19   20   21   22   23   24   25   ...   31

Резонансное поглощение -излучения (эффект Мёссбауэра*)


Как уже указывалось, дискретный спектр -излучения обусловлен дискретностью энер­гетических уровней ядер атомов. Однако, как следует из соотношения неопределен­ностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах Eh/t, где t — время жизни ядра в возбужденном состоянии. Следовательно, чем меньше t, тем больше неопределенность энергии E возбужденного состояния. E=0 только для основного состояния стабильного ядра (для него t). Неопределен­ность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10–13 с, естест­венная ширина энергетического уровня примерно 10–2 эВ.

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состоянии ядра, приводит к немонохроматичности -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии -излучения.

При прохождении -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение -излучения ядрами: ядро поглощает -квант той же частоты, что и частота излучаемого ядром -кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый -квант имеет энергию Е несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:



где Ея кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е -квант должен иметь энергию



где Ея энергия отдачи, которую -квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг от­носительно друга на величину 2Ея (рис. 344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы -кванта и ядра должны быть равны, получим

(260.1)

Например, возбужденное состояние изотопа иридия Ir имеет энергию 129 кэВ, а время его жизни порядка 10–10 с, так что ширина уровня Г 410–5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 510–2 эВ, т. е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.



Резонансное поглощение -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Нобелевская премия 1961 г.). Он исследовал излучение и поглощение -излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) -квант, а всей кристал­лической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и по­глощения -излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) -квантов атомными ядрами, связан­ными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра. При рассмотренных условиях линии излучения и поглощения -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г. Эффект Мёссбауэра был открыт на глубоко охлажденном Ir (с понижением температуры колебания решетки «замораживаются»), а впос­ледствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).

Мёссбауэр вооружил экспериментальную физику новым методом измерений неви­данной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/E=10–1510–17, поэтому во многих облас­тях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали -линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движения в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезнове­нию эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравита­ционное красное смещение», предсказанный общей теорией относительности Эйнштейна.

Методы наблюдения и регистрации радиоактивных излучений и частиц


Практически все методы наблюдения и регистрации радиоактивных излучений (, , ) и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а -кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистриро­вать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.

Приборы, применяемые для регистрации радиоактивных излучений и частиц, де­лятся на две группы:

1) приборы, позволяющие регистрировать прохождение частицы через определен­ный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);

2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).



1. Сцинтилляционный счетчик. Наблюдение сцинтилляций — вспышек света при по­падании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистриро­вать -частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэле­ктронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обыч­но в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для -частиц; NaI-Tl, CsI-Tl — для -частиц и -квантов) или органических (антрацен, пластмассы — для -квантов) веществ.

Сцинтилляционные счетчики обладают высоким разрешением по времени (10–10—10–5 с), определяемым родом регистрируемых частиц, сцинтиллятором и раз­решающим временем используемой электронной аппаратуры (оно доведено сейчас до 10–8—10–10 с). Для этого типа счетчиков эффективность регистрации—отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для -квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.



2. Черенковский счетчик. Принцип его работы и свойства излучения Вавило­ва — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счет­чиков разрешение по скоростям (иными словами, по энергиям) составляет 10–3 —10–5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10–9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.

3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизацион­ная камера представляет собой заполненный газом электрический конденсатор, к элек­тродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вто­ричную ионизацию. Следовательно, в ионизационной камере на ее электродах непо­средственно собираются ноны, возникшие под действием заряженных частиц. Иониза­ционные камеры бывают двух типов: интегрирующие (в них измеряется суммарный ионизационный ток) и импульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).

4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора).

В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоя­тельному разряду, в которой выходной импульс пропорционален первичной иониза­ции, т. с. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызыва­емые отдельными частицами, усиливаются в 103 —104 раз (иногда и в 106 раз).

Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выход­ной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряже­ния, достаточное для прерывания разряда. Временное разрешение счетчиков Гей­гера—Мюллера составляет 10–3—10–7 с. Для газоразрядных счетчиков эффектив­ность регистрации равна примерно 100% для заряженных частиц и примерно 5% для -квантов.

5. Полупроводниковый счетчик — это детектор частиц, основным элементом кото­рого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10–9 с. Полупроводниковые счетчики обладают высокой надежностью, мо­гут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измере­ния высокоэнергетических частиц.

6. Камера Вильсона* (1912) — это старейший и на протяжении многих десятиле­тий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного рас­положения фотографируются стереоскопически, т. е. под разными углами. По харак­теру и геометрии треков можно судить о типе прошедших через камеру частиц (например, -частица оставляет сплошной жирный след, -частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.

Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возмож­ности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, состав­ляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последу­ющему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.



7. Диффузионная камера (1936) это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлажда­емому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

8. Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.

9. Ядерные фотоэмульсии (1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнару­живаются в виде цепочки зерен металлического серебра. Taк как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0,05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускори­телях сверхвысоких энергий и в космических лучах. В практике исследований высокоэнергетических частиц используются также так называемые стопы — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом.

В настоящее время методы наблюдения и регистрации заряженных частиц и излуче­ний настолько разнообразны, что их описание выходит за рамки курса.

Большое значение начинают играть сравнительно новые (1957) приборы — ис­кровые камеры, использующие преимущества счетчиков (быстрота регистрации) и тре­ковых детекторов (полнота информации о треках). Говоря образно, искровая каме­ра — это набор большого числа очень мелких счетчиков. Поэтому она близка к счет­чикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.

Ядерные реакции и их основные типы


Ядерные реакции — это превращения атомных ядер при взаимодействии с элементар­ными частицами (в том числе и с -квантами) или друг с другом. Наиболее распрост­раненным видом ядерной реакции является реакция, записываемая символически сле­дующим образом:

где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением . С каждым видом взаимодействия частицы с ядром связывают свое эффек­тивное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффек­тивное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN число этих частиц, вступающих в ядерную реакцию в слое толщиной dx. Эффективное сечение имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция.

Единица эффективного сечения ядерных процессов — барн (1 барн= 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук­тов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло пред­положение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

(262.1)

Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 210–15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или -частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d10–15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v107 м/с) характер­ное ядерное время =10–15 м/107 м/с=10–22 с. С другой стороны, доказано, что время жизни составного ядра равно 10–16—10–12 с, т. е. составляет (106—1010) . Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нук­лонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому харак­тер распада составного ядра (испускание им частицы b) вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии.

Если испущенная частица тождественна с захваченной (bа), то схема (262.1) описывает рассеяние частицы: упругое — при Еbа, неупругое — при ЕbЕа. Если же испущенная частица не тождественна с захваченной (bа), то имеем дело с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нук­лонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, -частиц); реакции под действием -квантов;

2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием -квантов и заряженных частиц (протоны, -частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер — реакции на легких ядрах (А< 50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А> 100);

4) по характеру происходящих ядерных превращений — реакции с испусканием ней­тронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько -квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бом­бардировке ядра азота -частицами, испускаемыми радиоактивным источником:


Позитрон. +-Распад. Электронный захват


П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона — позитрона.

Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К. Андерсеном (американский физик (р. 1905); Нобелевская премия 1936 г.), обнаружившим позитрон в составе космического излуче­ния. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так, как отклоняется движущийся положительный заряд. Опыты показали, что позитрон е — частица с массой покоя, в точности равной массе покоя электрона, и спином ½ (в единицах ), несущая положительный электрический заряд +е.

Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя раз­личные ядра -частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие -распад, а реакции на В, Аl и Mg привели к искусствен­но-радиоактивным ядрам, претерпевающим +-распад, или позитронный распад:

(Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.

Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искус­ственная радиоактивность, а с другой — впервые обнаружен позитронный радиоактив­ный распад.

Энергетический +-спектр, как и -спектр (см. § 258), непрерывен. +-Распад подчиняется следующему правилу смещения:



Процесс +-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино:



(263.1)

причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении -распада (см. § 258). Так как масса покоя протона меньше, чем у нейтрона, то реакция (263.1) для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной.

Вскоре после опытов К. Андерсена, а также обоснования +-распада было устано­влено, что позитроны могут рождаться при взаимодействии -квантов большой энер­гии (Е > 1,02 МэВ = 2meс2) с веществом (см. также § 259). Этот процесс идет по схеме

(263.2)

Электронно-позитронные пары были действительно обнаружены в помещенной в маг­нитное поле камере Вильсона, в которой электрон и позитрон, имеющие проти­воположные по знаку заряды, отклонялись в противоположные стороны.

Для выполнения соотношения (263.2) помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны ½ . Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах ).

При столкновении позитрона с электроном происходит их аннигиляция:



(263.3)

в ее процессе электронно-позитронная пара превращается в два -кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух -квантов следует из закона сохранения импульса и энергии. Реакция (263.3) подтверждена прямыми экспериментами под руководством российского ученого Л. А. Арцимовича (1909—1973). Процессы (263.2) и (263.3) — процессы возникновения и превращения электронно-позитронных пар — являются примером взаимосвязи различных форм ма­терии: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля, и наоборот.

Для многих ядер превращение протона в нейтрон, помимо описанного процесса (263.1), происходит посредством электронного захвата, или е-захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т. д.), испуская нейтрино:

Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е-захвата:



т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде.

Электронный захват обнаруживается по сопровождающему его характеристичес­кому рентгеновскому излучению, возникающему при заполнении образовавшихся ва­кансий в электронной оболочке атома (именно так е-захват и был открыт в 1937 г.). При е-захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е-захват (часто его называют третьим видом -распада) существенно отличается от -распадов, при которых вылетают две части­цы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия Ве в стабильное ядро Li:


Открытие нейтрона. Ядерные реакции под действием нейтронов


Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов (см. § 267).

Краткая история открытия нейтрона такова. Немецкие физики В. Боте (1891—1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, -частицами, обнаружили возникновение излучения очень большой проникающей спо­собности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие -лучи с энер­гией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выби­вает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые -кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ!

Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не -кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:

Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (, n) B и В (, п) N).

Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы: медленные и быстрые. Область энергий медленных нейтронов включает в себя область ультрахолодных (с энергией до 10–7 эВ), очень холодных (10–7 — 10–4 эВ), холодных (10–4 — 10–3 эВ), тепловых (10–3 — 0,5 эВ) и резонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнести быстрые (104 — 108 эВ), высокоэнергетичные (108 — 1010 эВ) и релятивистские (1010 эВ) нейтроны.

Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT.

Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, )). Реакция (п, ) приводит к образованию нового изотопа исходного вещества:

например


Часто в результате (n, )-реакции образуются искусственные радиоактивные изо-топы, дающие, как правило, -распад. Например, в результате реакции



образуется радиоактивный изотоп Р, претерпевающий -распад с образованием стабильного изотопа серы:



Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц—протонов и -частиц (под действием тепловых нейтронов):



(используется для обнаружения нейтронов) или



(используется для получения трития, в частности в термоядерных взрывах; см. § 268).

Реакции типа (n, р) и (n,), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, так как в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и -частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию -активных ядер.

Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме



где вылетающий из ядра нейтрон обозначен как п', поскольку это не тот нейтрон, который проник в ядро; п' имеет энергию, меньшую энергии п, а остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием -кванта.

Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2n). Например, в результате реакции

образуется -активный изотоп U, претерпевающий распад по схеме



U Np + е.

Реакция деления ядра


К началу 40-х годов работами многих ученых—Э. Ферми (Италия), О. Гана (1879—1968), Ф. Штрассмана (1902—1980) (ФРГ), О. Фриша (1904—1979) (Великобри­тания), Л. Мейтнер (1878—1968) (Австрия), Г.Н. Флерова (р. 1913), К.Н. Петржака (Россия) — было доказано, что при облучении урана нейтронами образуются элементы из середины Периодической системы — лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа — реакциям деления ядра, заключа­ющимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.

Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд -превращений, сопровож­даемых испусканием -квантов. Так как -распад сопровождается превращением нейтрона в протон (см. (258.1)), то после цепочки -превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабиль­ному изотопу. Например, при делении ядра урана U



(265.1)

осколок деления Хе в результате трех актов -распада превращается в стабильный изотоп лантана La:



Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная приводящая к делению U. Возможна, например, реакция



Большинство нейтронов при делении испускается практически мгновенно (t  10–14 с), а часть (около 0,7%) испускается осколками деления спустя некоторое время после деления (0,05 с  t  60 с). Первые из них называются мгновенными, вторые — запаздывающими. В среднем на каждый акт деления приходится 2,5 ис­пущенных нейтронов. Они имеют сравнительно широкий энергетический спектр в пре­делах от 0 до 7 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ.

Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В самом деле, удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ (см. § 252). Следовательно, при делении тяжелого ядра на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на один нуклон.

Эксперименты подтверждают, что при каждом акте деления действительно выделя­ется огромная энергия, которая распределяется между осколками (основная доля), нейтронами деления, а также между продуктами последующего распада осколков деления.

В основу теории деления атомных ядер (Н. Бор, Я. И. Френкель) положена капель­ная модель ядра (см. § 254). Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, в подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлета­ющиеся с огромной энергией.

Вероятность деления ядер определяется энергией нейтронов. Например, если высокоэнергетичные нейтроны (см. § 264) вызывают деление практически всех ядер, то нейтроны с энергией в несколько мегаэлектрон-вольт — только тяжелых ядер (А>210). Нейтроны, обладающие энергией активации (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ, вызывают деление ядер урана U, тория Th, протактиния Ра и плутония Pu. Тепловыми нейтронами делятся ядра U, Pu и U, Th (два последних изотопа в природе не встречаются, они получаются искусственным путем). Например, изотоп U получается в результате радиационного захвата (реакции (n, ), см. § 264) нейтронов ядром Th:



(265.2)

Цепная реакция деления


Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k ней­тронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деле­ния является требование k  1.

Оказывается, что не все образующиеся вторичные нейтроны вызывают последу­ющее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в ак­тивной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для дан­ного изотопа — от его количества, а также размеров и формы активной зоны. Мини­мальные размеры активной зоны, при которых возможно осуществление цепной реак­ции, называются критическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакция, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а N — число нейтронов в данном поколении. В следующем поколе­нии их число равно kN, т. е. прирост числа нейтронов за одно поколение dN = kNN = N(k1). Прирост же числа нейтронов за единицу времени, т. е. ско­рость нарастания цепной реакции,



(266.1)

Интегрируя (266.1), получим



где N0 — число нейтронов в начальный момент времени, а N — их число в момент времени t. N определяется знаком (k—1). При k>1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k=1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяет­ся. При k<1 идет затухающая реакция.

Цепные реакции делятся на управляемые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней U (или Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближают­ся, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах (см. § 267).

В природе имеется три изотопа, которые могут служить ядерным топливом (U: в естественном уране его содержится примерно 0,7%) или сырьем для его получения (Th и U: в естественном уране его содержится примерно 99,3%). Th служит исходным продуктом для получения искусственного ядерного топлива U (см. реакцию (265.2)), a U, поглощая нейтроны, посредством двух последовательных -распадов — для превращения в ядро Pu:



(266.2)

Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспроиз­водства ядерного горючего в процессе цепной реакции деления.


Понятие о ядерной энергетике


Большое значение в ядерной энергетике приобретает не только осуществление цепной реакции деления, но и управление ею. Устройства, в которых осуществляется и поддер­живается управляемая цепная реакция деления, называются ядерными реакторами. Пуск первого реактора в мире осуществлен в Чикагском университете (1942) под руководством Э. Ферми, в России (и в Европе) — в Москве (1946) под руководством И. В. Курчатова.

Для пояснения работы реактора рассмотрим принцип действия реактора на тепло­вых нейтронах (рис. 345). В активной зоне реактора расположены тепловыделяющие элементы 1 и замедлитель 2, в котором нейтроны замедляются до тепловых скоростей. Тепловыделяющие элементы (твэлы) представляют собой блоки из делящегося матери­ала, заключенные в герметичную оболочку, слабо поглощающую нейтроны. За счет энергии, выделяющейся при делении ядер, твэлы разогреваются, а поэтому для охла­ждения они помещаются в поток теплоносителя (3 — канал для протока теплоноси­теля). Активная зона окружается отражателем 4, уменьшающим утечку нейтронов.



Управление цепной реакцией осуществляется специальными управляющими стерж­нями 5 из материалов, сильно поглощающих нейтроны (например, В, Cd). Параметры реактора рассчитываются так, что при полностью вставленных стержнях реакция заведомо не идет, при постепенном вынимании стержней коэффициент размножения нейтронов растет и при некотором их положении принимает значение, равное единице. В этот момент реактор начинает работать. По мере его работы количество делящегося материала в активной зоне уменьшается и происходит ее загрязнение осколками деления, среди которых могут быть сильные поглотители нейтронов. Чтобы реакция не прекратилась, из активной зоны с помощью автоматического устройства постепенно извлекаются управляющие (а часто специальные компенсирующие) стержни. Подобное управление реакцией возможно благодаря существованию запаздывающих нейтронов (см. § 265), испускаемых делящимися ядрами с запаздыванием до 1 мин. Когда ядерное топливо выгорает, реакция прекращается. До нового запуска реактора выгоревшее ядерное топливо извлекают и загружают новое. В реакторе имеются также аварийные стержни, введение которых при внезапном увеличении интенсивности реакции немед­ленно ее обрывает.

Ядерный реактор является мощным источником проникающей радиации (нейтро­ны, -излучение), примерно в 1011 раз превышающей санитарные нормы. Поэтому любой реактор имеет биологическую защиту — систему экранов из защитных матери­алов (например, бетон, свинец, вода), располагающуюся за его отражателем, и пульт дистанционного управления.

Ядерные реакторы различаются:

1) по характеру основных материалов, находящихся в активной зоне (ядерное топливо, замедлитель, теплоноситель); в качестве делящихся и сырьевых веществ используются U, Pu, U, U, Th, в качестве замедлителей — вода (обычная н тяжелая), графит, бериллий, органические жидкости и т. д., в качестве теплоноси­телей — воздух, вода, водяной пар, Не, СО2 и т. д.;

2) по характеру размещения ядерного топлива и замедлителя в активной зоне: гомогенные (оба вещества равномерно смешаны друг с другом) и гетерогенные (оба вещества располагаются порознь в виде блоков);

3) по энергии нейтронов (реакторы на тепловых и быстрых нейтронах; в последних используются нейтроны деления и замедлитель вообще отсутствует);

4) по типу режима (непрерывные и импульсные);

5) по назначению (энергетические, исследовательские, реакторы по производству новых делящихся материалов, радиоактивных изотопов и т. д.).

В соответствии с рассмотренными признаками и образовались такие названия, как уран-графитовые, водо-водяные, графито-газовые реакторы и др.

Среди ядерных реакторов особое место занимают энергетические реакторы-размножители. В них наряду с выработкой электроэнергии идет процесс воспроизводства ядерного горючего в результате реакции (265.2) или (266.2). Это означает, что в реак­торе на естественном или слабообогащенном уране используется не только изотоп U, но и изотоп U. В настоящее время основой ядерной энергетики с воспроизвод­ством горючего являются реакторы на быстрых нейтронах.

Впервые ядерная энергия для мирных целей использована в СССР. В Обнинске под руководством И. В. Курчатова введена в эксплуатацию (1954) первая атомная электро­станция мощностью 5 МВт. Принцип работы атомной электростанции на водо-водяном реакторе приведен на рис. 346. Урановые блоки 1 погружены в воду 2, которая служит одновременно и замедлителем, и теплоносителем. Горячая вода (она находится под давлением и нагревается до 300°С) из верхней части активной зоны реактора поступает через трубопровод 3 в парогенератор 4, где она испаряется и охлаждается, и возвращается через трубопровод 5 в реактор. Насыщенный пар 6 через трубопровод 7 поступает в паровую турбину 8, возвращаясь после отработки через трубопровод 9 в парогенератор. Турбина вращает электрический генератор 10, ток от которого поступает в электрическую сеть.



Создание ядерных реакторов привело к промышленному применению ядерной энергии. Энергетические запасы ядерного горючего в рудах примерно на два порядка превышает запасы химических видов топлива. Поэтому, если, как предполагается, основная доля электроэнергии будет вырабатываться на АЭС, то это, с одной стороны, снизит стоимость электроэнергии, которая сейчас сравнима с вырабатываемой на тепловых электростанциях, а с другой — решит энергетическую проблему на несколько столетий и позволит использовать сжигаемые сейчас нефть и газ в качестве ценного сырья для химической промышленности.

В СНГ помимо создания мощных АЭС (например, Нововоронежской общей мощностью примерно 1500 МВт, первой очереди Ленинградской с двумя реакторами по 1000 МВт) большое внимание уделяется созданию небольших АЭС (750—1500 кВт), удобных для эксплуатации в специфических условиях, а также решению задач малой ядерной энергетики. Так, построены первые в мире передвижные АЭС, создан первый в мире реактор («Ромашка»), в котором с помощью полупроводников происходит непосредственное преобразование тепловой энергии в электрическую (в активной зоне содержится 49 кг U, тепловая мощность реактора 40 кВт, электрическая—0,8 кВт).

Огромные возможности для развития атомной энергетики открываются с созданием реак­торов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровож­дается производством вторичного горючего—плутония, что позволит кардинально решить проблему обеспечения ядерным горючим. Как показывают оценки, 1 т гранита содержит пример­но 3 г U и 12 г Th (именно они используются в качестве сырья в реакторах-размножителях), т. е. при потреблении энергии 5108 МВт (на два порядка выше, чем сейчас) запасов урана и тория в граните хватит на 109 лет.

Техника реакторов на быстрых нейтронах находится в стадии поисков наилучших инженерных решений. Первая опытно-промышленная станция такого типа мощностью 350 МВт построена в г. Шевченко на берегу Каспийского моря. Она используется для производства электроэнергии и опреснения морской воды, обеспечивая водой город и прилегающий район нефтедобычи с населением порядка 150 000 человек. Шевченковская АЭС положила начало новой «атомной отрасли» — опреснению соленых вод, которая в связи с дефицитом пресноводных ресурсов во многих районах может иметь большое значение.

Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций


Источником огромной энергии может служить реакция синтеза атомных ядер — обра­зование из легких ядер более тяжелых. Удельная энергия связи ядер (см. рис. 342) резко увеличивается при переходе от ядер тяжелого водорода (дейтерия Н и трития Н) к литию Li и особенно к гелию Нe, т. е. реакции синтеза легких ядер в более тяжелые должны сопровождаться выделением большого количества энергии, что действительно подтверждается расчетами. В качестве примеров рассмотрим реакции синтеза:

(268.1)

где Q энерговыделение.

Реакции синтеза атомных ядер обладают той особенностью, что в них энергия, выделяемая на один нуклон, значительно больше, чем в реакциях деления тяжелых ядер. В самом деле, если при делении ядра U выделяется энергия примерно 200 МэВ, что составляет на один нуклон примерно 0,84 МэВ, то в реакции (268.1) эта величина равна 17,6/5 МэВ  3,5 МэВ.

Оценим на примере реакции синтеза ядер дейтерия Н температуру ее протекания. Для соединения ядер дейтерия их надо сблизить до расстояния 210–15 м, равного радиусу действия ядерных сил, преодолевая при этом потенциальную энергию оттал­кивания 0,7 МэВ. Так как на долю каждого сталкивающегося ядра приходится половина указанной энергии, то средней энергии теплового движения, равной 0,35 МэВ, соответствует температура, приблизительно равная 2,6109 К. Следователь­но, реакция синтеза ядер дейтерия может происходить лишь при температуре, на два порядка превышающей температуру центральных областей Солнца (примерно 1,3107 К).

Однако оказывается, что для протекания реакции синтеза атомных ядер достаточно температуры порядка 107 К. Это связано с двумя факторами: 1) при температурах, характерных для реакций синтеза атомных ядер, любое вещество находится в состоя­нии плазмы, распределение частиц которой подчиняется закону Максвелла; поэтому всегда имеется некоторое число ядер, энергия которых значительно превышает среднее значение; 2) синтез ядер может происходить вследствие туннельного эффекта (см. § 221).

Реакции синтеза легких атомных ядер в более тяжелые, происходящие при сверх­высоких температурах (примерно 107 К и выше), называются термоядерными реак­циями.

Термоядерные реакции являются, по-видимому, одним из источников энергии Солнца и звезд. В принципе высказаны два предположения о возможных способах протекания термоядерных реакций на Солнце:

1) протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 К):



2) углеродно-азотный, или углеродный, цикл, характерный для более высоких температур (примерно 2107 К):



В результате этого цикла четыре протона превращаются в ядро гелия и выделяется энергия, равная 26,7 МэВ. Ядра же углерода, число которых остается неизменным, участвуют в реакции в роли катализатора.

Термоядерные реакции дают наибольший выход энергии на единицу массы «горю­чего», чем любые другие превращения, в том числе и деление тяжелых ядер. Например, количество дейтерия в стакане простой воды энергетически эквивалентно примерно 60 л бензина. Поэтому заманчива перспектива осуществления термоядерных реакций искусственным путем.

Впервые искусственная термоядерная реакция осуществлена в нашей стране (1953), а затем (через полгода) в США в виде взрыва водородной (термоядерной) бомбы, являющегося неуправляемой реакцией. Взрывчатым веществом служила смесь дей­терия и трития, а запалом — «обычная» атомная бомба, при взрыве которой возникает необходимая для протекания термоядерной реакции температура.

Особый интерес представляет осуществление управляемой термоядерной реакции, для обеспечения которой необходимо создание и поддержание в ограниченном объеме температуры порядка 108 К. Так как при данной температуре термоядерное рабочее вещество представляет собой полностью ионизованную плазму (см. § 108), возникает проблема ее эффективной термоизоляции от стенок рабочего объема. На данном этапе развития считается, что основной путь в этом направлении — это удержание плазмы в ограниченном объеме сильными магнитными полями специаль­ной формы.

Начало широкого международного сотрудничества в области физики высокотемпературной плазмы и управляемого термоядерного синтеза положено работами И. В. Курчатова.

Под руководством Л. А. Арцимовича коллектив ученых Института атомной энергии (ИАЭ) им. И. В. Курчатова осуществил широкий круг исследований, результатом которых явился пуск летом 1975 г. в ИАЭ крупневшей в мире термоядерной установки «Токамак-10» (Т-10).

В Т-10, как и во всех установках этого типа, плазма создается в тороидальной камере, находящейся в магнитном поле, а само плазменное образование — плазменный шнур — также имеет форму тора. В Т-10 плазма с температурой примерно (78)106 К и плотностью примерно 1014 частиц/см3 создается в объеме, приблизительно равном 5 м3, на время около 1 с. Однако следует отметить, что до осуществления критерия Лоусона* — условия, необходимого для начала самоподдерживающейся термоядерной реакции, — еще остается значительный «путь»: примерно 20 раз по n (произведение плотности частиц на время удержания плазмы) и примерно 10 раз по температуре. Результаты, полученные на Т-10, вместе с результатами, ожидаемыми на создаваемых установках (например, Т-20), по мере решения разного рода инженерно-технологи­ческих проблем служат базой для создания термоядерного реактора «Токамака».

Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой «кладо­вой» ядерной энергии, заключенной в легких элементах. Наиболее заманчивой в этом смысле является возможность извлечения энергии из дейтерия, содержащегося в обычной воде. В самом деле, количество дейтерия в океанской воде составляет примерно 41013 т, чему соответствует энергетический запас 1017 МВтгод. Другими словами, эти ресурсы не ограничены. Остается только надеяться, что решение этих проблем — дело недалекого будущего.




Достарыңызбен бөлісу:
1   ...   18   19   20   21   22   23   24   25   ...   31




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет