Учебно-методический комплекс дисциплины «Климатология и метрология» для специальности 5М060800 «Экология» учебно-методические материалы



бет25/62
Дата11.07.2016
өлшемі8.34 Mb.
#192433
түріУчебно-методический комплекс
1   ...   21   22   23   24   25   26   27   28   ...   62

4. Электричество облаков и осадков.


Капли облаков и туманов, как и твердые элементы в них, чаще бывают электрически заряженными, чем нейтральными. В основном в туманах капли несут заряды одного знака, но примерно в 25% случаев они заряжены разноименно. Средний заряд капель в туманах имеет порядок от десятков до тысяч элементарных зарядов (элементарным зарядом называют заряд электрона). К условиям в туманах, по-видимому, близки и условия в мелкокапельных облаках, не дающих осадков.

В кучево-дождевых облаках, содержащих крупные капли, а также и значительные по размерам кристаллы, возникают особенно сильные электрические заряды. О них можно судить по зарядам выпадающих осадков. Твердые элементы облаков и осадков заряжены так же, как капли, или еще сильнее.

Дожди значительно чаще выпадают на земную поверхность с положительными, чем с отрицательными зарядами. Со снегом дело обстоит менее определенно.

Разделение зарядов в кучево-дождевых облаках, т.е. скопление электричества одного знака в одной части облака и другого знака в другой, приводит к огромным значениям напряженности электрического поля атмосферы в облаках и между облаками и землей.

Причины электризации элементов облаков и осадков, а также разделения зарядов обоих знаков в облаках недостаточно ясны. Существует много различных теорий. Указывают такие причины, как захват ионов каплями и кристаллами, особенно при выпадении осадков; столкновение крупных и мелких капель; дробление (разбрызгивание) капель; сублимация, дробление и испарение кристаллов; замерзание переохлажденных капель на кристаллах и др.

4.1. Гроза.

1). Типичное развитие кучево-дождевых облаков и выпадение из них осадков связано с мощными проявлениями атмосферного электричества, а именно с многократными электрическими разрядами в облаках или между облаками и землей. Такие разряды искрового характера называют молниями, а сопровождающие их звуки – громом. Весь процесс, часто сопровождаемый еще и кратковременными усилениями ветра – шквалами, называется грозой.

По происхождению грозы делятся на внутримассовые и фронтальные.

Внутримассовые грозы наблюдаются в холодных воздушных массах, перемещающихся на теплую земную поверхность, и над прогретой сушей летом (местные, или тепловые грозы). В обоих случаях развитие грозы связано с мощным развитием облаков конвекции, а следовательно, с сильной неустойчивостью стратификации атмосферы и с сильными вертикальными перемещениями воздуха.

Фронтальные грозы связаны главным образом с холодными фронтами, где теплый воздух вытесняется вверх продвигающимся вперед холодным воздухом. Но летом над сушей они нередко связаны и с теплыми фронтами. Континентальный теплый воздух, поднимающийся летом над поверхностью теплого фронта, может оказаться очень неустойчиво стратифицированным, а потому над поверхностью фронта может возникнуть сильная конвекция.

Продолжительность грозы в каждом отдельном месте обычно невелика: от нескольких минут до нескольких часов. Число молний при сильной грозе измеряется десятками в 1 мин. Как правило, гроза сопровождается ливневыми осадками, иногда градом.

2). Грозы особенно часты над сушей в тропических широтах: здесь есть районы, где в году 100–150 дней и более с грозами. На океанах в этой зоне гроз гораздо меньше, примерно 10–30 дней в году. Тропические циклоны всегда сопровождаются жестокими грозами, однако сами эти возмущения наблюдаются редко.

В субтропических широтах, где преобладает высокое давление, гроз гораздо меньше: над сушей 20–50 дней с грозами в году, над морем 5–20 дней. В умеренных широтах 10–30 дней с грозами над сушей и 5–10 дней над морем. В полярных широтах грозы – уже единичное явление.

Такое убывание гроз от низких широт к высоким понятно. Для осуществления грозы требуется не только большая неустойчивость стратификации и сильная конвекция, но и большая водность облаков; а водность облаков убывает с широтой вследствие убывания температуры.

В тропиках и субтропиках грозы чаще всего наблюдаются в дождливый период. В умеренных широтах над сушей наибольшая повторяемость гроз летом, когда сильно развивается конвекция в местных воздушных массах. Зимой грозы над сушей в умеренных широтах очень редки. Но над океаном грозы, возникающие в холодных воздушных массах, нагревающихся снизу от теплой воды, имеют максимум повторяемости зимой.

На крайнем западе Европы (Британские острова, побережье Норвегии) зимние грозы также часты.

Подсчитано, что на земном шаре одновременно происходит 1800 гроз и возникает примерно 100 молний в каждую секунду. В горах грозы наблюдаются чаще, чем на равнинах.



4.2. Молния и гром.

1). Необходимым условием грозы является возникновение очень больших разностей электрического потенциала в облаках, или между облаками, или между облаками и земной поверхностью. Это возможно при сильной электризации облаков. Облачные элементы по тем или иным причинам получают электрические заряды разного знака, и происходит разделение этих зарядов: заряды одного знака накапливаются в одной части облака, заряды другого знака – в другой. В кучево-дождевых облаках этот процесс настолько интенсивен, что создаются огромные разности потенциалов. При этом напряженность поля, т. е. разность потенциалов на единицу длины, иногда измеряется сотнями тысяч вольт на каждый метр.

Т
Рисунок 38 – Молнии
ак как электропроводность воздуха вообще очень мала, то быстро возникающие разности потенциалов не выравниваются постепенно, путем тока проводимости. Когда напряженность поля достигает некоторого критического значения, равного (25–50) 103/В/м и более, разности потенциалов выравниваются посредством искровых разрядов молний – между разноименно заряженными облаками или частями облаков или между облаком и землей (рисунок 38). На пути в несколько километров (обычная длина молнии) разность потенциалов может достигать сотен миллионов вольт, а сила тока в молнии будет порядка десятков тысяч ампер. Одна молния переносит за доли секунды несколько кулонов электричества (по некоторым данным, в среднем около 30 Кл).

2). Молния состоит из нескольких, иногда многих последовательных разрядов (импульсов), следующих по одному и тому же пути, называемому каналом молнии. Этот канал извилистый и разветвленный, потому что разряды происходят в области наименьшего электрического сопротивления в атмосфере, а следовательно, там, где плотность атмосферных ионов особенно велика. Канал молнии виден потому, что воздух в нем раскаляется до ослепительного розово-фиолетового свечения. Температура в канале достигает 25 000–30 000°С. Интервалы между отдельными импульсами составляют примерно 0,05 с, а продолжительность всей молнии – десятые доли секунды.

Каждый разряд начинается с лидера, т.е. с предварительного разряда, который как бы прокладывает канал молнии, увеличивая в нем плотность ионов и тем самым повышая его проводимость. Этот процесс происходит по типу электронной лавины. Относительно небольшое сначала число свободных электронов, распространяясь от облака (или соответствующей его части с большим отрицательным зарядом), ионизирует на своем пути молекулы воздуха. Вследствие этого создаются все новые свободные электроны, в свою очередь увеличивающие ионизацию канала. Сразу же после того, как канал проложен, по нему происходит сильный главный разряд. Повторные разряды бывают слабее.

При разрядах между облаками и землей (к ним относится примерно 40% молний) к земле переносится преимущественно отрицательное электричество. Причина состоит в том, что в нижней части грозового облака обычно накапливаются отрицательные заряды, а земная поверхность под облаком заряжается при этом положительно путем индукции. При грозовом разряде происходит, таким образом, пополнение общего отрицательного заряда земной поверхности.

3). Быстрое и сильное нагревание и, следовательно, быстрое расширение воздуха в канале молнии производит взрывную волну, которая создает звуковой эффект – гром. Так как звук от различных точек пути молнии доходит до наблюдателя неодновременно, а также вследствие отражения звука от облаков и от земли, гром имеет характер длительных раскатов.

Освещение облаков невидимыми молниями при отдаленной грозе (когда не слышен и гром) носит название зарниц.



Ш
Рисунок 39 – Шаровая молния
аровая молния. Огни Святого Эльма.
1). Шаровая молния – светящийся шар диаметром в десятки сантиметров, перемещающийся вместе с ветром или вообще с током воздуха, если попадает внутрь помещения (рисунок 39). При соприкосновении с наземными предметами он может взорваться, что сопровождается разрушениями и ожогами (бывают и человеческие жертвы). Явление шаровой молнии еще недостаточно изучено. Возможно, что она возникает в раскаленном воздухе канала обычной молнии и состоит из неустойчивых соединений азота и кислорода, образование которых сопровождается поглощением большого количества тепла. При охлаждении до некоторой критической температуры вещество шаровой молнии мгновенно распадается на азот и кислород с выделением всей поглощенной энергии, что и создает взрыв.

2


Рисунок 40 – Огни Святого Эльма (http://www.geoglobus.ru/earth/geo5/earth10.php)
). При наличии достаточно больших разностей потенциалов в атмосфере, кроме искровых разрядов, наблюдается истечение электричества с остроконечных предметов (с остриев), которое иногда сопровождается свечением. Эти тихие (или сопровождающиеся слабым треском) разряды называют огнями Святого Эльма (рисунок 40). Они могут наблюдаться и в отсутствии грозовых облаков, особенно при метелях и пыльных бурях, наиболее часто в горах. Объясняются они следующим образом.

Если напряженность поля вообще велика, то над выдающимися и остроконечными предметами она может стать еще больше. Тогда непосредственно возле остриев напряженность может приблизиться к критической. В таких случаях воздух в непосредственной близости к остриям становится проводящим, и с них происходит заметное истечение электричества. При особенно сильной напряженности это истечение становится видимым, как светящиеся нити, кистями расходящиеся от острия вверх (кистевые разряды).

Истечение электричества с остриев играет роль в сохранении отрицательного заряда Земли. Наблюдения показывают, что в результате такого истечения земная поверхность чаще отдает положительные заряды.



Достарыңызбен бөлісу:
1   ...   21   22   23   24   25   26   27   28   ...   62




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет