Учебное пособие для самостоятельной работы студентов Направление подготовки бакалавров 020400 Биология


Тема 4. Оценка достоверности результатов исследования. Применение параметрических методов



бет19/45
Дата09.02.2022
өлшемі2.78 Mb.
#455240
түріУчебное пособие
1   ...   15   16   17   18   19   20   21   22   ...   45
Posobie.biologi.proverka-здеть критерий стьюдента

Тема 4. Оценка достоверности результатов исследования. Применение параметрических методов

Параметрическими называют количественные методы статистической обработки данных, применение которых требует обязательного знания закона распределения изучаемых признаков в совокупности и вычисления их основных параметров.

При вычислении показателей довольно часто используют не всю генеральную совокупность, а только какую-то часть ее (например, при выборочном исследовании). Для того, чтобы по части явления можно было судить о явлении в целом, о его закономерностях, необходима оценка достоверности результатов исследования. Мерой достоверности показателя является его ошибка - ошибка представительности (репрезентативности). Ошибка показывает насколько результат, полученный при выборочном исследовании, отличается от результата, который мог бы быть получен при сплошном исследовании всей генеральной совокупности. Средняя ошибка средней арифметической (m) равняется отношению среднеквадратического отклонения к квадратному корню из числа наблюдений. Средняя ошибка относительных показателей рассчитывается путем извлечения квадратного корня из величины показателя, умноженного на разницу 100% и величины данного относительного показателя, деленного на число наблюдений. m = , где Р – соответствует величине относительного показателя, q =100 – P, если р выражено в процентах, 1000 – Р, если показатель вычислен в промилле и т.д. С увеличением числа наблюдений достоверность выборочного результата увеличивается, но это не значит, что следует стремиться бесконечно увеличивать число наблюдений. Это не нужно, а иногда и практически неосуществимо. Относительно небольшой, но качественно однородный статистический материал дает достаточно надежные выводы.

В тех случаях, когда уровень относительного показателя превышает величину основания (общий уровень заболеваемости составил 1300 случаев на 1000 человек), определение ошибки представительности по указанной выше формуле становится невозможным, и если показатель находится в пределах от 1,0 до 1,5 в среднем на одного человека, то ошибку представительности следует определять по формуле: m = , где М – среднее число заболеваний на одного человека (при заболеваемости 1300‰ – М = 1,3), n –общее число наблюдений.

Оценить достоверность результатов исследования — значит, установить вероятность прогноза, с которой результаты исследования на основе выборочной совокупности можно перенести на генеральную совокупность или другие исследования. Ошибка представительности (репрезентативности) позволяет определить пределы, в которых с соответствующей степенью вероятности безошибочного прогноза находится истинное значение искомого параметра, т.е. доверительные границы. Pген = Pвыб ± tm (для относительных показателей), Мген = Мвыб ± tm (для средних величин), где Рген и Мген - искомые генеральные параметры частоты и среднего уровня, Рвыб и Мвыб – найденные выборочные показатели, m – ошибка представительности, t – доверительный критерий. Определенной степени вероятности безошибочного прогноза соответствует константное значение доверительного критерия, величина которого определяется по таблице интеграла вероятностей (при n>30, приложение, табл. 1) или по таблице критерия t (при n<30, приложение, табл. 2). При использовании таблицы критерия t число степеней свободы для доверительных границ составляет n -1. В медико-биологических исследованиях минимальной достаточной вероятностью безошибочного прогноза является 95% (Pt =0,95), что допускает вероятность ошибки р = 0,05. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы, вероятность безошибочного прогноза возрастает до 99% (Pt =0,99, или р = 0,01) и даже до 99,9% (Pt =0,999, р = 0,001).

В качестве примера расчета доверительных границ средних показателей рассмотрим изменения средней длины тела мышей-полёвок. В результате проведенного исследования было установлено, что при n = 34 длина тела характеризуется: M = 101.6 мм, = 15.0 мм.

Подставляем известные значения в формулу:

m = мм, Мген = Мвыб ± tm = 101,6 ±2×2,57 мм

В результате проведённых вычислений мы, конечно, не узнали "истинное" значение средней длины тела у самцов в рассматриваемой популяции, однако теперь с 95 % вероятностью можно утверждать, что оно находится в пределах 101.6 ± 2×2,57 мм, то есть от 96.5 до 106.7 мм.

Вычисленные таким способом доверительные интервалы будут эффективно отражать анализируемое явление, когда распределение исходных вариантов соответствует нормальному. Величина t показывает, во сколько раз необходимо увеличить стандартную ошибку выборочного статистического параметра для того, что бы при определенном уровне вероятности судить о тех пределах, в которых располагается генеральное значение. Использование этой таблицы не требует особых вычислений, поскольку величина t напрямую зависит лишь от уровня вероятности P и числа степеней свободы n'. В большинстве биологических исследований принимают P=0.95 (то есть 95 случаев из 100), в наиболее ответственных случаях - 0.99 или 0.999. Число степеней свободы n при нахождении доверительных интервалов для M равно: n' = n - 1.

Наиболее распространенным методом оценки достоверности разности между сравниваемыми выборочными результатами является критерий Стьюдента, предложенный В. Госсетом. Критерий t позволяет производить сравнение только между двумя выборочными величинами. Если необходимо сравнить между собой несколько однородных выборочных величин, то они сравниваются поочередно. Критерий достоверности (Стьюдента) определяется как величина разности средних величин или относительных показателей, деленная на извлеченную из квадратного корня сумму квадратов ошибок средних арифметических или относительных показателей. t = t =

Разница между сравниваемыми выборочными величинами существенна и статистически достоверна при вероятности безошибочного прогноза 95%, т.е. величина критерия Стьюдента должна быть равна или больше 2 (при n >30). Только при этих условиях прогноз считается безошибочным, свидетельствующим о надежности используемого нового метода (лекарственного препарата, гигиенических характеристик).

Например, в процессе специальных исследований было установлено, что у стариков до лечения инсулином среднее содержание белков в крови составляло 81,04 ± 1.7, а после лечения - 79,33 ± 1.6. Нетрудно видеть, что полученные величины неодинаковы. Но достоверно ли это различие, закономерно ли оно? Можно ли на его основании утверждать, что лечение инсулином понижает содержание белков в крови? Ответ на этот вопрос может дать критерий достоверности различий средних арифметических. = 0.7.

Поскольку полученное значение (0.7) меньше двух, различия между средними величинами статистически недостоверны (незначимы). Следовательно, влияние инсулина на содержание белков в крови приведенными выше данными не подтверждается и остается недоказанным, возможно, из-за недостаточного числа определений.

Приведем другой пример: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у водителей сельскохозяйственных машин через 1 часа после начала работы составила 80 ударов в минуту; m = ± 1 удар в мин. Средняя частота пульса у этой же группы водителей до начала работы равнялась 75 ударам в минуту; m = ± 1 удар в минуту. Нужно оценить достоверность различий средних значений пульса у водителей сельскохозяйственных машин до и после 1 часа работы.





Вывод. Значение критерия t = 3,5 соответствует вероятности безошибочного прогноза Р > 99%, следовательно можно утверждать, что различия в средних значениях пульса у водителей сельскохозяйственных машин до и после 1 часа работы не случайно, а достоверно, существенно, т.е. обусловлено влиянием воздействия шума и низкочастотной вибрации.

Для малых по объему выборок лучшим способом определения достоверности различий разнообразия признаков является критерий F Фишера.



где - дисперсии первой и второй выборки соответственно. Как уже было отмечено, показателем степени разнообразия служит основное отклонение — σ (сигма). Еще более чувствительным показателем степени разнообразия (варьирования, дисперсии, разброса данных) служит σ2 (варианса, девиата, дисперсия) — сумма квадратов отклонений, деленная на число степеней свободы:

Так как, согласно условию вычисления критерия, величина числителя должна быть больше или равна величине знаменателя, то значение F всегда будет больше или равно единице. Число степеней свободы определяется также просто:

k1=n1- 1 для первой выборки (т.е. для той выборки, величина дисперсии которой больше) и k2=n2 - 1 для второй выборки.

В приложении, табл.5 критические значения критерия Фишера находятся по величинам k1 (верхняя строчка таблицы) и k2 (левый столбец таблицы). Если tэмп>tкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.





Достарыңызбен бөлісу:
1   ...   15   16   17   18   19   20   21   22   ...   45




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет