Учебное пособие основы полета (аэродинамика самолета Боинг-757-200) Москва -2013г



бет4/15
Дата03.03.2016
өлшемі2.75 Mb.
#35054
түріУчебное пособие
1   2   3   4   5   6   7   8   9   ...   15

Особые виды взлета


 

Взлет при боковом ветре.

Допустим, что взлет самолета выполняется при левом боковом ветре (рис. 9).

                                                                                                                                                           

Рис.13
При разбеге с боковым ветром воздушный поток набегает на самолет под некоторым углом β. Следовательно, относительно воздуха самолет движется со скольжением под углом β. Результирующая скорость набегающего потока V при наличии стреловидности крыла раскладывается на составляющие V1 и V2. Составляющая V1, которая определяет величину аэродинамических сил, у левого крыла больше, а у правого меньше. Вследствие этого подъемная сила Y1+ βY  и сила лобового сопротивления X1+ βX1 левого крыла больше, чем Y2 βY2 и X2– βX2 правого.

В результате разности подъемных сил (Y1+ βY1 >Y2– βY2) у самолета возникает кренящий момент на правое крыло (по ветру), а в результате разности лобовых сопротивлений ( X1+ βX1 > X2+ βX2 ) возникает разворачивающий момент, под действием которого самолет разворачивается влево, т.е. против ветра. Разворачивающий момент также создается боковой силой Zβ, возникающей вследствие скольжения самолета в набегающем потоке. Эта же сила создает дополнительный кренящий момент самолета по ветру.

Таким образом, в процессе разбега при взлете с боковым ветром самолет стремится развернуться против ветра и накрениться по ветру. При увеличении скорости на разбеге угол скольжения самолета β в набегающем потоке, кренящие и разворачивающие моменты уменьшаются. При подъеме передней опоры угол атаки самолета увеличивается, подъемная сила растет, причем на левой половине крыла она достигает величины, равной половине веса самолета до скорости отрыва. Поэтому при дальнейшем увеличении скорости самолет начинает крениться на правое полукрыло и отрыв его происходит с креном на это полукрыло. После отрыва появляется снос самолета по ветру.

На протяжении всего взлета самолет, двигаясь в воздушном потоке со скольжением, испытывает большее лобовое сопротивление, чем при отсутствии бокового ветра, что способствует некоторому увеличению длины разбега.

Учитывая изложенное, взлет с боковым ветром должен выполняться следующим образом.

Направление на разбеге выдерживается с помощью управления колесами передней опоры шасси и отклонением руля направления вправо. С увеличением скорости на разбеге эффективность руля направления возрастает и расход педалей уменьшится.

Кренящий момент самолета уравновешивается моментом элеронов путем отклонения штурвала в наветренную сторону, причем по мере увеличения скорости эффект элеронов увеличивается и угол отклонения штурвала следует уменьшать с таким расчетом, чтобы отрыв самолета от ВПП был без крена.

Разгон самолета после отрыва осуществляется с углом упреждения в сторону ветра, равным углу сноса по ветру, не допуская крена. По мере увеличения скорости самолета угол сноса постепенно уменьшается, поэтому для сохранения направления взлета угол упреждения следует также уменьшать.

Взлет с мокрой полосы


При расчете максимально-допустимой взлетной массы, в случае продолженного взлета, используется уменьшенная высота условного препятствия (screen height) 15 футов, вместо 35 футов для сухой ВПП. В связи с этим нельзя в расчет взлетной дистанции включать полосу, свободную от препятствий(Clearway).

При расчетах прерванного взлета разрешается учитывать эффект реверса двигателей.


Взлет с полосы, покрытой слоем осадков (contaminated)


На взлет с ВПП, покрытой слоем осадков (вода, снег, слякоть), накладывается ряд ограничений:

  1. Запрещается использовать технологию увеличения градиента набора высоты (improved climb).

  2. Запрещается уменьшать режим работы двигателя на взлете, используя технологию имитации температуры наружного воздуха (assumed temperature).

  3. Антиюз (Antiskid) должен быть включен и исправен.

При взлете с мокрых, покрытых слоем воды или слякоти и обледеневших ВПП, необходимо учитывать, что самолет до выхода двигателей на взлетный может не удерживаться на тормозах. Поэтому синхронный вывод двигателей до взлетного режима следует производить в процессе начала разбега, выдерживая направление рулем направления, передней опорой и плавным, несколько несинхронным, растормаживанием колес даже при слабом боковом ветре. Сложность взлета с боковым ветром со скользкой ВПП, особенно в начале разбега, заключается в трудности выдерживания направления, так как руль направления, колеса передней опоры и тормоза малоэффективны. Техника выдерживания направления на разбеге такая же, как и при боковом ветре на сухой ВПП, но движение педалями должны быть более плавными, упреждающими рысканье самолета.

Наличие осадков на ВПП влияет на изменение длины разбега, причем она может как уменьшаться, так и увеличиваться. Так, на влажной полосе вследствие уменьшения коэффициента сцепления сила трения колес уменьшается, ускорение самолета увеличивается, а длина разбега уменьшается. Значительное влияние на длину разбега оказывает толщина слоя осадков d и их относительная плотность  – отношение плотности осадков ос к плотности воды ∆, т.е. =ос/∆.

Из определения ∆ следует, что для воды =1, для слякоти или снега <1 (для сухого снега =0,2, для слякоти в зависимости от количества снега и воды 0,2<<1). При большой толщине (8...12 мм) и относительной плотности осадков длина разбега увеличивается (в 1,2 раза), так как кроме обычных сил сопротивления, действующих на самолет (X + Fтр), появляется гидродинамическая сила, действующая на колеса шасси, Rгл (рис.14). Ее составляющая Xгл увеличивает общее сопротивление самолета, уменьшается запас тяги и ускорение самолета. При большой толщине осадков на больших скоростях (меньших Vотр) Хгл достигает большого значения, запас тяги и ускорения самолета могут стать равными нулю, самолет может не достигнуть скорости отрыва, взлет станет невозможен.

Рис.14


На скорости  (Vгл – скорость глиссирования, Pш – давление в пневматиках колес) вертикальная составляющая гидродинамических сил всех колес ∆Yгл в сумме с подъемной силой самолета Y станут равны весу самолета Y+∆Yгл=G и произойдет отрыв колес от ВПП, между поверхностью колес и ВПП будет слой воды, по которому происходит скольжения колес – глиссирование. Колеса шасси в этом случае теряют контакт с ВПП и их эффект для выдерживания направления теряется. По этой причине может появиться раскачка самолета в виде рыскания, разворот на ветер или снос самолета с ВПП по ветру. Направление на разбеге в этом случае можно выдерживать только рулем направления.

Появление гидродинамической силы Rгл и ее составляющих Yгл и Xгл можно объяснить следующим. При наличии слоя воды или слякоти в процессе разбега самолета впереди колес появляется гидродинамическая волна, создающая гидродинамическое давление на поверхности колес. При большей толщине слоя воды и большей скорости (до Vгл) гидродинамическая волна больше и контактная площадь колес с поверхностью воды увеличивается, что вызывает увеличение гидродинамической силы Rгл. Гидродинамическая сила Rгл увеличивается пропорционально контактной площади колес с поверхностью волны, пропорционально относительной плотности осадков и квадрату скорости разбега. Под действием гидродинамической силы происходит деформация колес (особенно с малым давлением Pш), контактная площадь воды и колес увеличивается, что дополнительно увеличивает гидродинамическую силу. Величина силы Rгл зависит также от формы пневматиков и вида поверхности их протектора.

В начале глиссирования зазор между колесами и ВПП небольшой, а относительная скорость скольжения колес по слою воды большая. Вследствие сил вязкости пограничного слоя воды у поверхности колес при длительном скольжении происходит значительный нагрев их поверхности. Нагрев настолько большой, что вода от контакта с колесами превращается в пар. Большая температура и гидродинамическое давление вызывают плавление резины протектора колес, которые оставляют белесый след на ВПП, подтверждающий наличие глиссирования. Иногда по этому следу судят о моменте отрыва самолета при взлете или моменте касания самолета при посадке. Это не совсем правильно. Дело в том, что при увеличении скорости разбега увеличивается подъемная сила крыла, что способствует увеличению зазора между колесами и поверхностью ВПП, волна воды уменьшается и уменьшается гидродинамическая сила Rгл и ее составляющие Yгл и Xгл, причем ∆Yгл уменьшается на величину прироста подъемной силы, сохраняя Y+∆ Yгл = G. К моменту отрыва самолета подъемная сила Y становится равной весу самолета, колеса выходят на поверхность воды, гидродинамическая волна и гидродинамическая сила Rгл (и ее составляющие Yгл и Xгл) исчезают. Учитывая это, можно сделать вывод, что по мере приближения скорости разбега к скорости VR и Vотр слой воды между поверхностью колес и ВПП увеличивается, а прогрев ее у поверхности ВПП уменьшается и указанный след исчезает еще за несколько секунд до отрыва самолета.

Большую опасность при взлете и посадке представляет неравномерное покрытие ВПП осадками, что может стать причиной выкатывания самолета за обочину ВПП.

Для самолета Боинг-757-200 Vгл составляет:


Самолет

Основные стойки, PSI

Vp, узел

Б-757-200

117 — 181

93 — 116


Взлет самолета с использованием неполной взлетной тяги двигателя

В условиях, когда максимально-допустимый взлетный вес значительно превышает фактический, рекомендуется выполнять взлет с неполной взлетной тягой двигателей. Это позволяет повысить надежность работы двигателей, экономить расходы по эксплуатации двигателей, создает меньше шума, способствует комфорту пассажиров за счет более плавного изменения параметров полета, особенно если вскоре после взлета придется переходить в горизонтальный полет. Особенно это желательно делать при взлетах в жаркую погоду, поскольку резко уменьшается вероятность превышения максимально допустимой температуры газов за турбиной в процессе разгона на взлете.

Существует два способа уменьшения тяги:


  • ступенчатый перевод двигателя на нижнюю ступень тяги (derate).

  • имитация температуры наружного воздуха (assumed temperature).

Общеизвестно, что с увеличением температуры воздуха максимально-допустимая взлетная масса уменьшается. Это связано в первую очередь с уменьшением располагаемой тяги двигателей. Как и в любой тепловой машине, в реактивном двигателе мощность напрямую зависит от количества тепла переданного рабочему телу (воздуху). Верхний предел температуры газов ограничен прочностью турбины, поэтому при повышении температуры воздуха, входящего в двигатель, разница температур (а значит и мощность) падает.

Кроме этого, при увеличении температуры воздуха падает его плотность, что приводит к увеличению скоростей на взлете и, следовательно, уменьшению допустимого взлетного веса при неизменных параметрах аэродрома вылета.

Метод имитации температуры наружного воздуха состоит в том, чтобы задать FMC такую температуру, при которой фактический взлетный вес являлся бы максимально-допустимым (для всех остальных фактических условий: ВПП, препятствия и т. д.).

Рис.15


Применение данного метода имеет ряд ограничений. Согласно нормам, нельзя уменьшать тягу данным методом более, чем на 25 %. Использование данного метода запрещено, при:

  1. Взлете с ВПП, покрытой слоем осадков (contaminated RW).

  2. Взлете с попутным ветром.

  3. При неработающей FMC.

  4. При ожидаемом сдвиге ветра на взлете.

  5. При отказе антиюза

Оба метода уменьшения взлетной тяги не противоречат друг другу и их можно применять одновременно. Вместе с тем есть принципиальное отличие по их влиянию на взлетные характеристики.

При использовании Derate новый установленный максимум тяги нельзя превышать (как будто у вас стоит менее мощный двигатель).

При использовании assumed temperature пилоты могут в любой момент увеличить тягу до максимальной. Исходя из этого строится расчет VMCG. Соответственно при использовании assumed temperature — VMCG не меняется, а при использовании Derate — уменьшается за счет уменьшения разворачивающего момента от двигателя, выдающего меньшую тягу.

Данное свойство Derate может помочь в увеличении максимально-допустимой взлетной массы при взлетах с коротких ВПП и с ВПП, покрытых слоем осадков. Это происходит потому, что вес в данном случае ограничивается необходимостью на взлете достичь VMCG, а затем при необходимости остановиться в пределах ВПП.



Особенности взлета при попутном ветре.

Допустимая скорость попутного ветра при взлете не более 5 м/с. Это ограничение вызвано не техникой пилотирования при взлете, а экономическими причинами. Так как при попутном ветре увеличивается длина разбега и взлетной дистанции, то при определении максимально допустимого взлетного веса и скорости принятия решения V1 по номограммам вносится поправка на попутный ветер, усиленный в 1,5 раза в РДР, РДВ и РДПВ, в результате которой значительно уменьшается максимально допустимый взлетный вес и скорость принятия решения. Это вызывает уменьшение коммерческой нагрузки, но гарантируется безопасность взлета. Поправка на попутный ветер вносится и при расчете потребной дистанции взлета при всех работающих двигателях. Техника выполнения взлета при попутном и попутно-боковом ветре остается такой же, как и при безветрии или встречном ветре. Следует только учитывать, что при попутном ветре путевая скорость отрыва, скорость подъема передней опоры и скорость принятия решения увеличиваются на величину скорости ветра по сравнению с приборной и истинной скоростью.



Особенности взлета при малой плотности воздуха

(высокая температура, пониженное атмосферное давление, высокогорный аэродром).

Техника выполнения взлета при малой плотности воздуха обычная, но длина разбега и взлетная дистанция при определенном весе увеличиваются. Истинная скорость отрыва увеличивается, поэтому для обеспечения безопасности взлета начало подъема передней опоры, а значит и отрыв самолета производить по приборной скорости соответственно взлетному весу самолета. Кроме того, следует точно определить максимально допустимый взлетный вес и скорости.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет