С начала развития централизованного хозяйственно-питьевого водоснабжения длительное время (примерно до 1960 г.) технический аспект оставался главным по ряду причин. Во-первых, отбираемые из крупных рыбопромысловых рек расходы были сравнительно малы и, следовательно, водозаборы не оказывали пагубного влияния на жизнедеятельность рыбы. Во-вторых, применяемые типы водозаборов (в основном русловые и береговые) и инженерные решения по их размещению и технологии отбора воды, связанные с защитой от наносов и шуги, косвенно исключали массовое вовлечение рыб в водоприемники и, таким образом, не вступали в противоречие с экологическим аспектом.
Сейчас, когда многократно возрос отбор воды, в том числе на зарегулированных участках рек, большое распространение получили водозаборы ковшового, припло-тинного и других типов, экологический аспект приобрел первостепенное значение. В связи с этим возникли новые задачи, в решении которых потребовалось участие не только технических специалистов, но и специалистов-ихтиологов. Многие задачи уже успешно решены, что позволяет обеспечивать потребность коммунального водоснабжения без ущерба для рыбного хозяйства. Таким образом, по современным требованиям, тот или иной водозабор, являясь технологическим элементом системы водоснабжения и отвечая требованиям ее надежности, должен одновременно функционировать как природоохранный объект.
Отсюда вытекают главные требования к рыбозащит-ным устройствам (РЗУ): гарантированный (бесперебойный) пропуск воды; эффективная рыбозащита; надежность действия при доступных средствах эксплуатации (простота конструкции, автоматическое действие и т. д.). Строительство и эксплуатация водозаборов без рыбоза-щитных мер не допускаются. На протяжении более двух десятилетий ведутся биологические исследования рыбы в различных условиях, связанные с изучением ее поведения и факторов воздействия. Главными критериями поведения рыбы являются ориентация головой на течение и движение против потока воды (реореация). Минимальная (пороговая) скорость течения, при которой не происходит сноса рыбы, не одинакова для разного вида и размера рыбы. Установлен [27] обобщающий показатель критической скорости течения укр~15...20 см/с. Сложные закономерности перемещения рыбы по глубине и ширине потока на различных участках рек, озер и водохранилищ в разное время года обусловливают необходимость подробной ихтиологической характеристики источников на стадии проектирования водозаборов и разработки рыбозащитных устройств.
Существует несколько классификаций методов, устройств и всевозможных средств рыбозащиты [22, 33]. По характеру воздействия на рыб все РЗУ разделяются на гидравлические, экологические, поведенческие. На основе поведенческих реакций рыбы и особенностей ее ориентации в потоке наиболее полно разработаны и продолжают разрабатываться три принципиально отличающиеся группы способов (направлений) защиты рыб от попадания в водоприемные сооружения.
Экологические способы (рыбоотгораживающие) основаны на выделении в источнике нежилых для рыб зон, путей миграции, мест скопления и на соответствующем размещении водозаборов. При этом в необходимых случаях могут применяться специальные устройства (запани, стационарные и нестационарные зонные ограждения), отгораживающие акваторию водозабора от зоны пребывания рыб (рис. 30). При этом способе защиты должна быть обеспечена возможность прекращения отбора воды в период ската молоди.
В основе механических способов лежит задержание рыбы непосредственно перед водоприемником с помощью рыбозаградительных экранов (мелкоячеистых сеток, перфорированных щитов и др.) с последующим отводом ее в водоем (рис. 31). Скорость потока в ячейках экрана должна быть значительно ниже скорости обтекающего его потока, что обеспечивает снос задержанной рыбы в рыбоотвод.
Сущность поведенческих способов заключается в воздействии на рыбу различных раздражителей, в использовании реакции рыбы и ее поведения под воздействием этих раздражителей.
Эффективность действия РЗУ, т. е. возможность сохранять жизнеспособность попадающих в зону воздействия водозабора рыб, оценивается коэффициентом К.э=A/В [где А — число жизнеспособных рыб, отведенных от водозабора и отловленных по прохождении РЗУ в створе II — II (рис.31); В — число жизнеспособных рыб, подлежащих защите и отловленных в створе I — I перед прохождением РЗУ].
В. М. Синявской [33] предложена система классификации РЗУ по конечному результату (пропуск воды, эффективная рыбозащита, надежность), которая наиболее полно охватывает все требования и системы в их взаимосвязи. Из этой классификации следует, что только гидравлические РЗУ отвечают всем конечным требованиям. В большом числе рыбозащитных устройств преобладают сетчатые и фильтрующие РЗУ, примененные в основном на крупных водозаборах ирригационных и теплоэнергетических систем водоснабжения.
Наиболее совершенным считается РЗУ, показанное на рис. 32, отвечающее конечным требованиям, но являющееся все же далеко не простым и дорогостоящим устройством. Данное РЗУ рекомендуется для крупных водозаборов энергетических и других промышленных объектов (с забором воды до 100 м3/с, с секционными водоприемниками пропускной способностью до 5 м3/с каждый).
Укрводоканал проектом, запроектировано фильтрующее поворотное рыбозащитное устройство (рис. 34) для береговых водозаборов на р. Северский Донец системы водоснабжения промпредприятий Северодонецка. Производительность водозаборов 200.. .300 тыс. м3/сут. РЗУ представляют собой металлические сетчатые кассеты, заполненные фильтрующим материалом — керамзитом. Отличительной особенностью их является то, что кассеты, имея шарнирную пяту и поплавок, меняют свое положение в зависимости от уровня воды в источнике, обеспечивая тем самым постоянство фильтрующей площади и, следовательно, скорости фильтрования (уф = = 0,1 м/с). Такое решение позволило избежать увеличения ширины водоприемного фронта, чего нельзя было достичь без строительства ковша.
Возможность рыбозащиты на водоприемных оголовках без устройства специальных РЗУ А. С. Образовский рекомендует [25] оценивать как соотношение скоростей
va/K2 > vв<vкр,
где va — средняя скорость течения в реке, м/с; Kz — ихтиологический параметр; /С2=уа/ав = 3...4; vb — скорость втекания воды в сжатом сечении водоприемного отверстия, м/с; икр — критическая скорость течения в реке, м/с; vKp = K1lp (K1 — ихтиологический параметр, K1 = vKP/lp = 5...15; lр — расчетная длина тела рыб, lр = 15... 20 мм).
Требования рыбозащиты на водозаборах систем коммунального водоснабжения в ряде случаев могут быть удовлетворены при выполнении следующих рекомендаций [23]:
на реках со скоростью течения vа>0,3 м/с следует применять водоприемники с входными скоростями в 3...4 раза меньшими, чем скорость течения в реке, и устанавливать на водоприемных окнах жалюзийные решетки;
на реках с va<0,3 м/с и водохранилищах — применять затопленные фильтрующие ряжевые оголовки со съемными кассетами с загрузкой из щебня, керамзита, полимерных материалов, а также с пороэластовыми и керамзитобетонными кассетами. На водохранилищах водоприемники дополнительно оборудовать системой водовоздушной защиты;
на приплотинных водозаборах устанавливать конусные сетки со сбросом сора и молоди рыбы в нижний бьеф, а также применять затопленные водоприемники с вихревыми камерами и импульсной обратной промывкой;
на водоприемных ковшах обычного типа — устраивать запани. Самопромывающиеся ковши, обеспечивающие наиболее надежный отбор воды при сложных гидрологических и геоморфологических условиях на реках, позволяют комплексно решить задачу защиты водоприемников от наносов, шуги и захвата молоди рыбы.
4. Русловые процессы и защита водозаборов от наносов
Рис. 35. Типизация русловых процессов (по ГГИ)
1 — ленточно-грядовый тип; 2 — побочневый тип; 3 — ограниченное меандрирование; 4 — свободное меандрирование; 5 — незавершенное меандрирование; 1а — русловая многорукавность; 5а — пойменная многорукавность (стрелка указывает направление нарастания транспортирующей способности потока)
Чтобы при проектировании и эксплуатации водозаборов оценить воздействие на них наносов, необходимо учитывать характер развития русла реки и поймы на выбранном участке и, следовательно, знать основные типы русловых процессов. Согласно разработанной Государственным гидрологическим институтом (ГГИ) типизации, выделяют 7 типов русловых процессов — макроформ (рис. 35): ленточно-грядовый; побочневый; ограниченное меандрирование; свободное меандрирование; незавершенное меандрирование; русловая многорукавность; пойменная многорукавность. Следует учитывать, что наряду с явно выраженными русловыми процессами могут происходить переходные или смешанные процессы: например, ограниченному меандрированию может сопутствовать побочневый тип, русловой многорукавности — ленточно-грядовый и др. Знание характера руслового процесса позволяет правильно оценить воздействие наносов на работу водозаборов и применить наиболее рациональные средства защиты. Ниже дано краткое описание основных типов русловых процессов.
Ленточно-грядовый тип. Цепи гряд наносов вытянуты по ширине русла и движутся постоянно, приостанавливаясь только в период низкой межени, и тогда вершины гряд, обнажаясь, образуют отдельные осеред-ки. Расстояние между гребнями гряд (шаг гряд) в 4... 8 раз превышает ширину русла в бровках меженных берегов. Данный тип наблюдается в верховьях рек при отсутствии поймы; на других участках он может сопутствовать незавершенному (в спрямляющих протоках) или свободному меандрированию (в начальных стадиях).
Побочневый тип. Ленточные гряды, перекошенные в плане, в противоположных направлениях сползают в половодье. Размываемые участки берегов прикрываются сползающими побочнями, гребни которых периодически размываются при спаде паводка и восстанавливаются в половодье. Шаг гряд превышает ширину русла. В межень побочни, а частично и гряды обнажаются, образуя песчаные отмели, за ними тянутся подводные косы, создающие затоны. Пойма выражена слабо.
Ограниченное меандрирование. В результате размыва пойменных массивов излучины сползают вниз по течению без существенного изменения плановых очертаний и профиля дна. Перекаты, образующиеся на перегибах русла, размываются в межень и восстанавливаются в периоды паводков. Плесы, наоборот, размываются в половодья и заносятся в межень. Пойменные процессы (намывы, размывы) протекают активно, массив поймы нарастает в высоту. При высоком половодье на пойме возможны транзитные течения.
Свободное меандрирование. Излучины получают замкнутый цикл развития — от искривления русла до отторжения петли. Углы разворота потока увеличиваются, излучины сползают, вытягиваются, перешеек сужается, и наконец образуется прорыв, спрямляющий русло. Перекаты на перегибах русла представляют собой перекошенные в плане гряды, переходящие в пляж выпуклого берега нижерасположенной излучины. Русло од-норукавное. Плесовая ложбина у сильноразвитых излучин разделена перевалом. Пойма широкая с гривистым рельефом и старицами подковообразных очертаний.
Незавершенное меандрирование. Излучины на промежуточной стадии развития (до получения формы петли) спрямляются протоком в результате глубокого затопления поймы и большого совпадения динамических осей потока в половодье и в межень. По спрямленному руслу протока интенсивно транспортируются наносы, в нем последовательно устанавливается побочневый, ленточно-грядовый или осередковый тип руслового процесса. В результате перемещения наносов в главное русло (ниже по течению протока) меандрирование его дополняется образованием сползающих гряд и побочней.
Русловая многорукавность. Осередки и гряды интенсивно деформируются и сползают, перемещаются границы русла вследствие меандрирования протоков и интенсивного обрушения берегов (явление дей-гиша). Поток перегружен донными наносами. В песчаных руслах с большим уклоном рельеф дна может полностью изменяться в течение нескольких часов, воздействию дейгиша могут быть подвергнуты многокилометровые участки. В руслах из гравийно-галечниковых отложений деформации происходят лишь при высоких паводках, но протекают они очень интенсивно. Пойма имеет основной характер. Наблюдается русловая многорукавность чаще всего в предгорных и устьевых участках рек.
Пойменная многорукавность. Спрямление охватывает многочисленные излучины с образованием длинных пойменных протоков без четко выраженных признаков основного русла. Главные протоки соединены вторичными и создают на пойме единую водную сеть. В протоках самостоятельно развиваются различные формы русловых процессов. Пойма широкая, затапливается на большую глубину.
Рис. 36. Связь уровней воды (1) и отметок дна
(2) р. Куры
а — на плесе; б — на перекате
При устройстве и эксплуатации водозаборов важно знать также локальные особенности перемещения наносов на плесах и перекатах при всех типах русловых процессов. При подъеме уровня воды в периоды паводков плесы обычно подвергаются размыву за счет более интенсивного, чем на перекатах, возрастания скорости потока. На перекатах же, наоборот, происходит отложение наносов (рис.36), могущее достигать на крупных реках, например на Волге, Дону, Днепре, 5...6 м.
При всех типах руслового процесса в руслах рек образуются мелкие песчаные гряды — микроформы, при движении которых происходит периодическое изменение донного рельефа с активным перемещением наносов в придонном слое. Водозаборные сооружения, размещенные без учета этого, будут подвергаться отрицательному воздействию наносов: частичному или полному перекрытию водоприемных отверстий отложениями, снижению пропускной способности самотечных или сифонных трубопроводов, накоплению наносов в береговых колодцах и т. д., что подтверждается приведенными ниже примерами.
Защитить оголовки на действующих водозаборах от воздействия наносов не менее сложно, чем от внутривод-ного льда. К тому же последствия от наносов оказываются более продолжительными и тяжелыми: наносы отлагаются в оголовках и самотечных линиях, береговых колодцах, камерах реакций и отстойниках водоочистных станций, вызывая осложнения в работе не только водозаборов, а в целом головных сооружений водопроводов. Надежность защиты водозаборов от наносов достигается при комплексном решении задач на основе глубокого изучения особенностей поверхностных источников.
Примером неудачного расположения водозабора в отношении воздействия наносов может служить водозабор на р. Суре, построенный в 50-х годах. Еще до окончания строительства выявилась угрожающая подвижка вышерасположенного побочня, имеющего длину около 2,5 км. Из расчета размыва ухвостья побочня у водозабора были установлены хворостяные полузапруды, но это не дало ожидаемого эффекта. Затем в побочне была выполнена прорезь, которая быстро заносилась. На основе моделирования была построена донная струенаправ-ляющая стенка (порог) в виде свайного ростверка высотой 0,6 и длиной 40,8 м. Но только применение земснарядов позволяло поддерживать работу водозабора и то непродолжительный период. В последующем на этом водозаборе была построена струенаправляющая дамба, обеспечившая улучшение режима наносов у водоприемника. Однако в результате интенсивного размыва берега на вышерасноложенном участке в 1978 г. (рис. 37) и вызванного этим активного перемещения побочня на водозаборе вновь возникла аварийная ситуация и необходимость расчистки русла земснарядами. И только со строительством нового (приплотинного) водозабора обеспечена требуемая надежность забора воды.
Особенно интенсивное перемещение наносов в виде подводных гряд происходит в нижних бьефах плотин в результате изменения руслоформирующих процессов. Например, на Волге скорость движения песчаных гряд достигает 1...3 км в год, а протяженность участков с активным перемещением наносов 200 км. Гряды крайне неравномерно распределяются по дну реки; наибольших размеров они достигают в местах сопряжения склонов побочней и осередков с плесовыми лощинами.
Отрицательное воздействие руслоформирующих процессов проявляется в отложении наносов у водоприемников, в повышении отметки дна реки у водоприемных окон до уровня порога и даже выше и вовлечении наносов внутрь водозаборных сооружений. Другим проявлением руслоформирующих процессов может быть размыв русла с подмывом водоприемников и самотечных линий, что бывает значительно реже.
Рис. 37. Размыв берега р. Сура у водозабора Пензы
По мере отложения наносов у водоприемных окон могут образоваться воронки, по стенкам которых сползает песок. Равновесное состояние при этом легко нарушается, и окна оказываются частично, а нередко и полностью завалены песком. Аналогичная ситуация была в 1977 г. на Чемском водозаборе из Новосибирского водохранилища. Первоочередной мерой обеспечения подачи воды при этом должна быть расчистка водоприемника с использованием эжекторов и гидромониторов, которую выполняют водолазы. В последующем должна быть расчищена значительная часть акватории водозабора с помощью земснарядов, гидромониторных судов и др.
На ковшовых водозаборах старой конструкции большая часть наносов отлагается в периоды паводков во входной части ковша, в водоворотной зоне, образуя отмель. При спаде паводка отмель обнажается, выступает из воды и перекрывает (частично или полностью) вход в ковш, создавая аварийные ситуации, имевшие место на ковшах в Рубцовске, Искитиме, Барнауле и других городах. На рис. 38 показана универсальная плавучая машина УПМ-2 на разработке отмели в ковше на р. Алей.
Рис. 38. Расчистка входа в ковш на р. Алей с использованием универсальной плавучей машины УПМ-2
В усовершенствованных, самопромывающихся ковшах А. С. Образовского, например, на р. Кубань в Армавире наносы размываются и удаляются речным потоком. Несвоевременная или неполная чистка ковша может повлечь дополнительные осложнения в период ледостава из-за перекрытия входа шуголедовой массой, что имело место ра одном из ковшей на Оби в Барнауле, где для расчистки входа в аварийной обстановке был применен взрывной метод с использованием накладных зарядов. Наиболее характерными в отношении влияния наносов на работу оголовков являются водозаборы Канска, Томска, Тары, Хабаровска, Кирова, Волгограда и др.
При обследовании водолазами оголовка Канского водопровода выявлено, что примерно 50 % поверхности площади его водоприемных окон занесено песком, а самотечные линии подмыты на значительной длине. В данном случае заносу оголовка благоприятствовало неудачное размещение его в русле — ниже острова по течению реки в зоне аккумуляции наносов. Работавший в аналогичных условиях оголовок водопровода Тары (р. Иртыш) неоднократно полностью заносился песком. Работа водозабора резко осложнилась со времени зарегулирования стока вышерасположенной плотиной ГЭС, изменившей гидрологический режим потока на выбранном участке реки. Дальнейшая эксплуатация этого оголовка стала невозможной.
Нарушение естественного гидрологического режима реки явилось также основной причиной осложнений в работе водозабора Томска. Выемка гравия в большом объеме для строительных целей из русла Томи ниже по течению от этого водозабора повлекла снижение уровня воды в реке на 1,4 м на участке расположения трех оголовков. Происходило ежегодное (последовательное) снижение уровней, что вызвало недопустимое уменьшение глубины речного потока у водозабора и вмерзание в ледяной покров одного из оголовков. В период весенней подвижки льда один конец этого оголовка был приподнят на 0,6 м и были сорваны верхние венцы ряжа. В летнюю межень верх оголовка стал обнажаться, у водоприемных окон образовывались водоворотные воронки, через которые подсасывался воздух и происходил срыв вакуума насосов. Вызванные этим перебои в работе водозабора были устранены установкой над водоприемными окнами плавающих щитов.
Снижение уровней, вызвавшее увеличение скоростей потока у водозабора, повлекло также изменение режима наносов, в результате чего второй оголовок был полностью занесен песком и гравием. На первом и третьем оголовках происходили, кроме того, интенсивный размыв грунта со стороны примыкания самотечных линий и отложение наносов у водоприемных окон, из-за этого самотечные линии на участке длиной до 20 м оказались подмытыми. Потребовались срочные меры по защите оголовков и самотечных линий от разрушения.
Ниже дан ряд примеров из опыта Сибирского управления Росводоканалналадки (И. Д. Козлов, О. Н. Дегтярев) по защите водозаборов от наносов.
Водозабор на Амуре представлен двумя русловыми оголовками с вихревыми аванкамерами и потолочным приемом воды, двумя самотечными линиями, водоприемным колодцем, совмещенным с насосной станцией I подъема. От уреза воды при ГМВ оголовки удалены соответственно на 200 и 230 м и затоплены на 7...8 м. С самого начала эксплуатации они подвергались интенсивному воздействию наносов, так как, будучи расположенными ниже по течению устья протоки, они оказались вблизи ухвостья осередка в зоне интенсивных руслоформирующих процессов с грядовым движением наносов. К тому же, учитывая значительное содержание донных наносов в месте расположения оголовков, высота порога водоприемных окон (1,5 м) оказалась недостаточной. Оголовки аналогичной конструкции, работающие в подобных условиях на Волге и Каме, имеют высоту порога 3...4 м и не испытывают таких осложнений отвоз-действия наносов.
Помимо затруднений на водозаборе песчаные наносы на Амуре резко увеличили износ насосов станции I подъема, ухудшили технологию осветления воды.
Рис. 39. Дополнительный оголовок на водозаборе из Амура
1 — самотечный трубопровод; 2 — оголовок; 3 — патрубок; 4 — опорная рама
Очистка сооружений от наносов потребовала больших трудозатрат, только из камер реакции и отстойников было удалено более 8 тыс. м3 песка. Замеры содержания наносов в речном потоке в створе водозабора и наблюдения за руслоформирующими процессами показали, что наиболее благоприятные условия в отношении наносов имеются в том же створе, но примерно на 100 м ближе к берегу.
В соответствии с техническими разработками Сибирского управления Росводоканалналадки Гипрокоммун-водоканалом в кратчайшие сроки был выполнен проект нового оголовка с расчетной производительностью 125 тыс. м3/сут и площадью водоприемных окон 7,64 м2. Конструкция его (рис. 39), форма и размеры приняты исходя из следующих условий: простота изготовления, использование стандартных элементов, минимальное сопротивление потоку, максимальное возвышение над дном реки. Оголовок был установлен в феврале 1977 г. со льда с помощью автокрана. На месте установки водолазами с помощью гидромониторов был разработан котлован, на вскрытом самотечном трубопроводе d=1400 мм выполнено отверстие размером 2X0,5 м, установлен патрубок, на котором смонтирован оголовок. Для увеличения жесткости сделана опорная металлическая конструкция. После монтажа оголовка котлован был замыт местным грунтом, дно вокруг него укреплено каменной наброской, а отверстия действующего оголовка заглушены металлическими листами.
С подключением нового оголовка поступление наносов в водозаборные сооружения сократилось в 2,8 раза. Вместе с тем перемещение места отбора воды положительно сказалось на фракционном составе отложений. Если раньше в наносах, отлагавшихся в водоочистных сооружениях, преобладали песчаные частицы d=0,25 мм, то после установки нового оголовка отложения в камерах реакции на 30...40 % состоят из илистых частиц, в отстойники же песчаные частицы не проникают совсем.
В последующем (1978 г.) такой же оголовок был установлен на второй самотечной линии, что позволило достичь требуемой надежности работы водозабора. Экономическая эффективность от снижения затрат на очистку только отстойников и камер реакции составила 29,4 тыс. руб.
Водозабор на Вятке руслового типа с тремя водоприемными оголовками, как и на Амуре, оказался в мае 1976 г. (в период спада паводка) на грани остановки. Обильное вовлечение наносов привело к снижению пропускной способности самотечных линий, к преждевременному износу запорной и регулирующей арматуры, насосов, отрицательно сказалось на работе очистных сооружений и в конечном итоге привело к снижению производительности водопровода.
На расстоянии 1200 м выше по течению от водозабора сформировавшийся в русле Вятки песчаный осередок делит ее на два рукава. Ближе к водозабору русло расширяется, достигая в его створе 240...260 м, скорость потока при ГМВ снижается до 0,3...0,5 м/с, происходит обильное выпадение наносов и уменьшение глубины потока в межень до критической. Построенные в 1975 г. у противоположного от водозабора берега четыре затапливаемые при паводках полузапруды позволили увеличить глубину у оголовков, но одновременно активизировали русловый процесс — перемещение песчаных наносов в виде гряд высотой 1,2...1,5 м. Вовлекаясь в водоприемные окна, наносы эти отлагались по всему водозаборному тракту и в количестве до 10 м3/сут проникали на водоочистные сооружения.
Для ликвидации аварийной обстановки все три оголовка были реконструированы с переходом от бокового приема воды к потолочному. С этой целью перед водоприемными отверстиями на всю высоту оголовка были установлены металлические короба из листового железа толщиной 3 мм, изогнутого в виде полуокружностей радиусом 1,5 м и усиленного ребрами жесткости. Крепле-лие коробов осуществлено к вбитым в дно реки сваям. Сверху короба оборудованы сороудерживающими решетками с прозорами 50 мм, что обеспечивает скорость .входа воды в водоприемные отверстия 0,2. ..0,3 м/с. Установке коробов предшествовали обследование оголовков водолазами, расчистка их от топляков и углубление дна у водоприемных окон струей гидромонитора. Благодаря такой реконструкции порог водоприемных окон был под-лят на 1,7 м и поступление наносов в оголовки прекратилось. Аналогичным образом ранее был реконструирован один из водозаборов на Волге в системе волгоградского водопровода. В отличие от предыдущего здесь короб выполнен в форме самого оголовка (но больших размеров) и затем надет на него. Изменяя порог водоприемника и осуществляя другие меры по защите водозаборов ют наносов в условиях грядового их движения, нужно учитывать параметры гряд, обеспечивая забор воды с минимальной мутностью (рис.40). При этом результаты натурных измерений, производимых, как правило, в период летней межени, необходимо уточнять теоретическими расчетами также для других сезонов года.
Высоту гряд, м, установившегося профиля в межень определяют по формуле В. С. Кнороза
где Н — глубина потока на участке расположения водоприемника, м; vа — средняя скорость потока, м/с; vap — неразмывающая скорость, м/с, определяемая по формуле vap = l,3Vgdlg 14,7 H/d0,15 (g — ускорение силы тяжести, м/с2; d — средний диаметр донных отложений, м).
При H>1 м по формуле Б. Ф. Снищенко и 3. Д. Ко-палиани:
где Fr=va/VgH — число Фруда; онр — неразмывающая скорость по В. Н. Гончарову, м/с; vap = 3(Hd/d9Q% )0,2(d+0,0014)0,3.
Рис. 40. Изменение мутности воды некоторых рек Сибири (среднемесячные показатели)
При отсутствии необходимых для расчета данных высота гряд может быть определена по приближенным зависимостям Б. Ф. Снищенко при
Н<1 м, h
г = 0,25Я, при H> 1 м,
hГ= (0,2...О,1)H. При прохождении половодья высота гряд
h'r в полосе активного движения наносов увеличивается и достигает ориентировочно h
г=2,5h'
г.
Длина гряд 1Т, м, установившегося профиля в межень может определяться по формулам Б. Ф. Снищенко:
где С — коэффициент Шези, м0,5/с,
или для приближенных расчетов lГ=4,2H, а в половодье — lг = 2,5 lг.
Скорость смещения микроформ Сг, м/с, следует определять по формуле Б. Ф. Снищенко и 3. Д. Копалиани
Сг = 0,019иарг3.
5. Повышение надежности работы водозаборов
Результаты обследования большого числа водозаборов свидетельствуют о том, что известные на практике методы и средства повышения надежности их работы используются еще недостаточно полно, а задача эта решается нередко путем строительства новых водоприемных сооружении без достаточного на то основания
Водозаборы рассчитываются, как известно на эксплуатацию не только в обычных, но и в редко повторяющихся (экстремальных) условиях: при образовании заторов и зажоров, переформировании русла реки развитии зоо- и биопланктона, изменении гидрологического режима источника вследствие зарегулирования стока перераспределения его в многорукавном русле и т д Наконец, могут быть и скрытые на самих водозаборных сооружениях причины осложнений: неплотности во всасывающих трубопроводах, зарастание их внутренних поверхностей и засорение, повреждение подводных сооружении и коммуникаций и т. д.
Указанные факторы нередко (особенно в суровых климатических условиях Сибири и Крайнего Севера) проявляются на одном и том же водозаборе в совокупности: чаще всего (это снижение уровня, шуголедовые процессы и наносы) предельно осложняя отбор воды из источника Примером может служить водозабор на р. Правая Паужетка (п-в Камчатка), донный водоприемник которого после шугохода неоднократно оказывался закупоренным гравийно-галечниковой смесью
По методике А. С. Образовского еще на стадии изыскании и проектирования необходимо всесторонне оценивать условия забора воды (табл. 9), место расположения водозабора, характер источника, конструкцию водоприемника и технологию отбора воды; давать прогноз возможных изменений режима реки на весь период работы водозабора, санитарных и других условий и на этой основе выбирать технологическую схему водозабора 1таол. Ю). Схема а — секционированный водозабор устраиваемый в одном створе; схема б — секционированный водозабор, устраиваемый в одном створе но при Двух и более водоприемниках, размещенных как отдельные сооружения или скомпонованные как водоприемник усовершенствованного комбинированного типа- схема в — водозабор, расчлененный на два узла, устроенных в Двух створах, удаленных на расстояние, исключающее возможность одновременного возникновения осложняющей обстановки.
Таблица 9. Условия забора воды из рек
Характеристика условий забора
ВОДЫ
|
Показатели, характеризующие условия
|
наносы, устойчивость берегов и дна
|
шуга и лед
|
другие факторы
|
Легкие
|
Незначительное количество наносов; вполне устойчивое ложе водоема
|
Слабое внутри-водное ледообразование. Ледостав умеренной (0,8 м) мощности, устойчивый
|
Отсутствие в источнике обраста-телей (ракушек, водорослей). Малое количество загрязнений и сора.
|
Средние
|
Взвешенные наносы с р=1,5 кг/м3 (средняя за паводок) . Русло и берега устойчивые с небольшими сезонными деформациями
|
Обильное внутри-водное ледообразование, прекращающееся с установлением ледостава, обычно без значительного шу-гозаполнения русла и образования шугозажоров. Ледостав обычно устойчивый, мощностью <1,2 м, формирующийся с полыньями
|
Наличие сора, водорослей, обра-стателей в количествах, не вызывающих существенных помех данному водопотреби-телю. Лесосплав, молевой и плотами. Судоходство
|
Тяжелые
|
Взвешенные наносы с р> 1,5 кг/м3. Русло подвижное с эпизодическими значительными переформированиями берегов и дна, вызывающими изменение отметок дна до 1...2 м
|
Неустойчивый ледяной покров с неоднократными шу-гоходами и значительным шугоза-полнением русла при ледоставе, в отдельные годы с образованием шугозажоров и ледяных заторов. Участки нижнего бьефа ГЭС в зоне неустойчивого ледостава
|
То же, но в количествах, существенно затрудняю» щих работу водозабора и сооружений водопровода
|
Очень тяжелые
|
Взвешенные наносы р>5 кг/м3. Русло неустойчивое, систематически и случайно изменяющее плановые и высотные формы
|
Формирование ледяного покрова только при шуго-зажорах, вызывающих подпор; транзит шуги под ледяным покровом в течение большей части зимы. Возможность наледей и перемерза-ний русла. Ледоход с заторами и большими навалами льда на берега
|
—
|
|
Надо заметить, что данная методика рекомендуется для осредненных природных условий и в основном применительно к водозаборам средней производительности (1...6 м
3/с). Следовательно, принятый по этой методике тип водозабора меньшей производительности будет иметь более высокую степень надежности, а большей производительности, наоборот, меньшую надежность. Очевидно, в последнем случае должны предусматриваться дополнительные эксплуатационные меры по повышению надежности работы водозабора.
Наряду с правильным выбором типа водоприемника надежность работы водозабора обеспечивается также секционированием отдельных элементов: водоприемников, самотечных и сифонных подводящих трубопроводов, приемных и всасывающих камер береговых колодцев. Секционирование является обязательным для водозаборов I и II категорий надежности подачи воды.
Всесторонняя оценка условий позволяет еще на стадии проектирования обоснованно принять степень надежности забора воды:
Степень надежности Режим отбора забора воды
I........ Бесперебойный отбор расчетного расхода воды
II........ Отбор расчетного расхода с возможностью кратковременных перерывов или временного снижения
III........ Отбор расчетного расхода с возможностью прекращения подачи воды до суток
В определяющей степени все это должно быть подчинено обеспечению требуемой надежности подачи воды:
Категория надежно- Режим подачи
сти подачи воды
I....... Допустимо снижение подачи не более 30 %
расчетного расхода в течение до 3 сут, перерыв в подаче или снижение ниже указанного предела до 10 мин.
II.......Допустимо снижение подачи не более 30 %
до 15 сут, перерыв в подаче или снижениениже указанного предела до 6 ч
III....... Допустимо снижение подачи не более 30 %
до 15 сут, перерыв в подаче или снижение ниже указанного предела до суток.
Таблица 10. Надежность работы водозаборов из поверхностных источников
Степень надежности забора воды
|
Типы водоприемных устройств
|
Категории надежности подачи воды в условиях
|
легких
|
средних
|
1 тяжелых
|
Схемы водозабора
|
а
|
6
|
в
|
а
|
б
|
в
|
а
|
б
|
|
I
|
Береговые незатапливаемые водоприемники с водоприемными отверстиями, всегда доступными для обслуживания, с необходимыми ограждающими и вспомогательными сооружениями и устройствами
|
I
|
|
|
I
|
|
|
II
|
I
|
I
|
II
|
Затопленные водоприемники всех типов, удаленные от берега, практически недоступные в отдельные периоды года
|
I
|
—
|
—
|
II
|
I
|
—
|
III
|
II
|
I
|
III
|
Нестационарные водоприемные устройства: плавучие фуникулерные
|
II
|
I
|
|
III
|
III
|
II-
|
|
|
|
III
|
II
|
—
|
—
|
—
|
—
|
—
|
—
|
—
|
Проверку соответствия водозаборов требуемой категории надежности подачи воды следует производить по табл. 10.
Для надежности отбора воды важное значение имеет исполнение затопленных (подводных) сооружений водозабора в строгом соответствии с нормативами строительства: возвышение низа водоприемных отверстий должно-быть не менее 0,5 м над дном реки, расположение верха оголовков не менее 0,2 м ниже уровня ледостава, заглубление самотечных и сифонных линий в дно реки и т. д.
Реальные природно-климатические и другие условия» нередко бывают сложнее тех схематизированных, которые рассматриваются на стадии проектирования, вследствие чего даже на обоснованно выбранном типе водозабора полностью не исключаются аварийные ситуации.
Из практики эксплуатации водозаборов на меандри-рующих и многорукавных реках известно немало примеров, когда из-за отторжения (частичного или полного) излучин и проток нарушается режим работы водоприемных устройств. Такие случаи чаще встречаются на малых и средних реках (например, Алей), но известны и на крупных (Иртыш, Лена и др.), где этому иногда способ-ствуют русловыправительные мероприятия, осуществляемые в интересах судоходства. В 1975 — 1978 гг. при расчистке одной из проток Иртыша и перемещения в нее судового хода протока, используемая для водоснабжения, стала мелеть, быстро заноситься наносами и водозабор оказался отрезанным от основного русла реки. В результате земснарядами пришлось разрабатывать подводящий канал.
Ю. С. Демьяненко описывает случай, когда на вновь построенном водозаборе создалась угрожающая ситуация из-за интенсивного размыва и спрямления русла реки (рис. 41). Частичное, а затем и полное отторжение вышерасположенной излучины интенсифицировало размыв берега и создало условия для разрушения перешейка основной излучины, на которой размещен водозабор.
Рис. 41.
Водозаборы на меандриру-ющей реке
1 — действующий водозабор; 2 — участок интенсивного размыва берега; 3 — спрямляющий канал; 4 — отторгнутая излучина; 5 — проектируемый водозабор
По мере отторжения излучины скорость потока в ней уменьшалась, изменился гидрологический режим, происходило интенсивное осаждение наносов, и, наконец, излучина превратилась в старицу. Тенденция к этому же создалась и на основной излучине. В качестве профилактических мер по обеспечению работы водозабора было рассмотрено два варианта: укрепление берега на перешейке основной излучины и спрямление русла путем строительства канала через перешеек смежной излучины. Оба варианта давали лишь временное улучшение условий забора воды с неизбежными большими эксплуатационными затратами по поддержанию режима источника в последующем. В конечном итоге было признано целесообразным построить новый водозабор у коренного берега на вышележащем устойчивом участке реки. К тому же этот участок, хотя и более сложный для строительства, был менее отдален от водопотребителей. Очевидно, такое расположение водозабора при первоначальном выборе места для него позволило бы существенно снизить стоимость водопровода.
В последние годы все чаще приходится решать задачи повышения надежности работы водозаборов при снижении уровня воды в источнике, вызванном углублением его русла в связи с добычей песчано-гравийных строительных материалов. Выемка грунта из русел рек (например, Оки, Оби, Томи и др.) для строительных целей достигает иногда таких размеров, что уровень воды снижается на 2 м и более. Характерными в этом отношении можно считать водозаборы на Томи и Оби. Русло реки на одном из водозаборов из Оби для Новосибирска врезается до коренных пород, скорость руслового потока во время ледостава 0,9...1 м/с. До зарегулирования реки продолжительность периода формирования ледяного покрова составляла 5...16 сут, после зарегулирования — 35 сут. Формирование устойчивого ледяного покрова заканчивается к 5...10 декабря, но вскоре у водозабора вновь образуется полынья. Работа водозабора в шуголе-довые периоды стала все более и более осложняться. Одной из главных причин этого явилось чрезмерное снижение ГНВ в предледоставный период, когда слой воды над верхом оголовка составлял всего 0,75...! м и плывущая шуга слоем толщиной 1,5...2 вовлекалась в водоприемные окна. Снижение ГНВ ниже расчетного, как показали наблюдения, является следствием размыва русла реки в нижнем бьефе ГЭС и отбора большого количества грунта без учета условий работы водозабора. С 1960 по 1975 г. отбор грунта из русла Оби для строительных целей составил около 20 млн. м3, в результате чего на участке расположения водозабора ГНВ при шугоходе через 18 лет (1957 — 1975 гг.) оказался ниже проектного на 0,7 м. Этому способствовала также барьерная роль плотины ГЭС, уменьшившей поступление наносов в нижний бьеф: до строительства ГЭС твердый сток у Новосибирска составлял 6,5 млн. м3/год, а к 1975 г. снизился до 4,5 млн. м3/год.
Для поддержания требуемого уровня (1,4 м над верхом оголовка), при котором уменьшается воздействие шуги на работу водозабора, осуществляется непроизводительный сброс воды на ГЭС, что ведет к преждевременной сработке водохранилища. Следовательно, при проектировании водозаборов на зарегулированных участках рек надо учитывать возможную посадку уровней воды не только за счет изменения режима сброса и размыва русла, но и за счет возможного расширения масштабов отбора грунта из реки. Разумеется, необходимо упорядочить также отбор грунта в зоне наибольших русловых переформирований с учетом нужд всех водопользователей.
6. Повышение устойчивости работы насосных станций I подъема
Условия работы насосных станций на водозаборах (станции I подъема) сложнее, чем станций на очистных сооружениях, сетях и др., где воду забирают из промежуточных емкостей. Резкие колебания уровня воды в источнике (особенно в нижних бьефах ГЭС), увеличение сопротивления в решетках из-за их засорения или обледенения, снижение пропускной способности подводящих трубопроводов — все это сопровождается снижением уровня воды в водоприемном колодце и, следовательно, увеличением высоты всасывания насосов. Очень часто это приводит к срыву вакуума насосов, их остановке и перерывам в подаче воды. Чтобы избежать этого, в проектах все чаще применяют насосные станции I подъема с расположением насосов под заливом, что влечет за собой дополнительные капиталовложения.
Рис. 42. Схемы аварийного переключения коммуникаций и дополнительного оборудования водозаборов
1 — водоприемная камера; 2 — камера всасывания; 3 — плавающий щит; 4 — напорный трубопровод к эжектору; 5 — дополнительный всасывающий трубопровод; 6 — вакуум-котел; 7 — сифонный трубопровод; 8 — герметичное перекрытие; 9 — вакуум-насос
Как известно, предельная вакуумметрическая высота всасывания (6...7 м вод. ст.) обеспечивается лишь в некоторых конструкциях центробежных насосов. Большинство же из них имеет значительно меньшую высоту всасывания; с превышением ее происходят не-только срывы в работе насосов, но и возникает кавитация, сопровождающаяся ухудшением показателей работы насосов и разрушением отдельных их деталей.
Практикой эксплуатации проверен ряд методов и средств повышения устойчивости работы насосов при увеличении высоты всасывания (рис. 42): установка вакуум-котлов, погружных насосов, оборудование всасывающих раструбов диафрагмами и плавающими щитами; соединение всасывающих трубопроводов насосов с самотечными линиями; оборудование всасывающих патрубков эжекторами; вакуумирование камер всасывания в береговых колодцах.
Вакуум-котлы обеспечивают удаление воздуха, выделяющегося из воды во всасывающей системе трубопроводов, и тем самым предотвращают срыв работы насосов. Установка вакуум-котлов целесообразна на подводящих сифонных трубопроводах, а также на всасывающих трубопроводах большой протяженности (особенно при раздельно расположенных насосной станции I подъема и берегового колодца) и прежде всего, когда всасывающие трубопроводы уложены выше оси насоса. Применительно к вновь проектируемым водозаборам установка вакуум-котла позволяет уменьшить заглубление сифонных и всасывающих трубопроводов и тем самым снизить стоимость их строительства.
На действующих водозаборах горизонтальные насосы заменяют погружными, когда другие методы и средства обеспечения устойчивости работы насосных станций оказываются неэффективными. Устанавливают погружные насосы непосредственно в камеры всасывания; особенно они применимы при реконструкции водозаборов. На вновь проектируемых водозаборах, как уже отмечалось, погружные насосы применяют в условиях большой амплитуды колебания уровня воды в источнике (например, на водохранилищах), когда возникает необходимость заглубления берегового колодца до 20 м и более. Установка погружных насосов позволяет в данном случае уменьшить размеры насосной станции и тем самым сократить капиталовложения.
Дополнительные переключения в коммуникациях водозаборов (например, соединение всасывающих трубопроводов насосов с самотечными линиями) рассматривают иногда не только как противоаварийное мероприятие, но и как средство увеличения производительности водозаборов при благоприятных условиях. Расчет водозаборов ведется на экстремальные условия, однако в отдельные периоды, например устойчивого ледостава, условия забора воды существенно облегчаются, что позволяет временно осуществлять забор воды в форсированном режиме.
Одним из способов повышения устойчивости работы водозаборов в условиях чрезмерного снижения уровня воды в источнике (в водоприемном колодце) является увеличение вакуумметрической высоты всасывания насосов, в частности, за счет создания высоконапорной струи воды во всасывающем трубопроводе насоса. На основе специальных исследований, выполненных во ВНИИ ВОДГЕО В. Ф. Тольцманом, изучены гидравлические явления и установлены закономерности взаимодействия основного потока всасывания и потока струи, которая создается соплом, устанавливаемым во всасывающем трубопроводе. Для получения положительного эффекта сопло надо устанавливать на расстоянии от насоса не менее пяти диаметров трубопровода.
Увеличение допустимой высоты всасывания насосов рекомендуется при этом определять по формуле ДЯ-=C(dc/D)m(va/2g),
где опытный коэффициент С = 4,07, показатель степени m = 7/3; dc — диаметр сопла, мм; v — скорость потока струи на выходе из сопла, м/с; D — диаметр всасывающего трубопровода, мм; g — ускорение силы тяжести.
Для практических целей ДЯ удобнее определять с помощью номограммы (рис. 43). Допустим, требуется увеличить высоту всасывания на водозаборе . на 2 м (ДЯ=2 м) при диаметре всасывающего трубопровода D = 500 мм и напоре насоса (напоре истечения струи) H = v2/2g=70 м. Соединив на номограмме соответствующие точки шкал и продолжив линию до пересечения с третьей шкалой, получим dc/D = 0,12 и, следовательно, dc = 0,12 D = 60 мм. Описанный метод увеличения высоты всасывания рекомендуется применять не только для действующих, но в некоторых случаях и для вновь проектируемых водозаборов, так как он позволяет уменьшить заглубление насосных станций I подъема и тем самым снизить их стоимость.