Изучение состояния зубов и тканей пародонта. Пародонт является опорно-удерживающим аппаратом зубов, его функциональное состояние обусловлено аномалиями зубов, зубных рядов, прикуса, что необходимо учитывать при планировании ортодонтического лечения и определении продолжительности ретенционного периода.
Для изучения состояния опорных тканей зубов используют электро-
одонтодиагностику, гнатодинамо-метрию, периотестометрию, реопа-родонтографию. Наиболее информативным методом диагностики является периотестометрия, которую можно проводить с помощью компактного прибора «Периотест», состоящего из двух частей: приборного блока компьютерного анализа и наконечника, соединенных между собой кабелем (рис. 13.33).
Компьютерный анализатор включает в себя источник питания, 4 микропроцессора, логические схемы сравнения. Два микропроцессора служат для обработки информации, 3-й — содержит программу управления, в 4-й заложена речевая программа. Программа аппарата предусматривает автоматическое перкутирование коронки зуба 16 раз (со скоростью 4 удара в секунду). Результаты измерения выдаются в звуковом виде и в виде цифровой информации на дисплее. При каждом измерительном импульсе аппарат издает короткий звуковой сигнал, а после окончания измерения следует длинный звуковой сигнал. Затем на цифровом индикаторе появляется соответствующий индекс, который сопровождается звуковой речевой информацией.
541
рис. 13.34. Мастика-циограф и мастикацио-граммы.
Рис. 13.33. Аппарат «Периотест». Объяснение в тексте.
Рабочим элементом в наконечнике является боек, включающий пье-зоэлемент, работающий в двух режимах — генераторном и приемном. Первый режим — возбуждение механического ударного импульса и передача его бойку, второй — прием ответного сигнала механической системы и передача его для анализа в микропроцессорную часть. Нажимая кнопку на наконечнике, преобразуют электрический импульс в механический.
Удар бойком проводят по вестибулярной поверхности зуба через 250 мс. За этот период возбужденный ударом импульс проходит по зубу, передается тканям периодонта и отражается от них. В зависимости от состояния периодонта, его волоконного аппарата отраженный сигнал существенно изменяется. Чем выше эластичность волокон периодонта, тем выше демпфирующие (амортизирующие) свойства периодонталь-ного связочного аппарата [Копей-кин В.Н., 1980] и тем короче время взаимодействия бойка с зубом. Микрокомпьютер прибора регистрирует характеристики взаимодействия бойка с зубом, рассчитывает характеристику демпфирующих свойств периодонта за 16 ударов, контролирует правильность полученных результатов, которые после каждой серии ударов отображаются в виде индекса.
542
Одним из обязательных условий при проведении исследования является определенное положение головы пациента, а также должно быть исключено смыкание зубов. При исследованиях группы верхних фронтальных зубов голову пациента следует слегка наклонить вниз, при исследовании группы нижних передних зубов голову его отклоняют назад. При изучении состояния опорных тканей пародонта боковых зубов на верхней челюсти пациент отклоняет голову влево или вправо.
При изучении состояния периодонта перкуссию исследуемого зуба проводят бойком наконечника, который должен быть направлен горизонтально и под прямым углом к середине вестибулярной поверхности коронки зуба и располагаться от него на расстоянии 0,5—2 мм. Перкуссию постоянного зуба проводят на уровне между режущей поверхностью зуба и экватором, так как зубы исследовались на различной стадии прорезывания и формирования их корневой части. Отклонение наконечника от указанного положения приводит к искажению звукового сигнала, отсутствию индекса на цифровом индикаторе и звуковой речевой информации.
Регистрация движения нижней челюсти — гнатография проводится по методу Рубинова. Получаемые с помощью прибора мастика-циограммы позволяют судить о характере движения нижней челюсти во время функции жевания (рис. 13.34). Для подсчета жевательных движений при проведении функциональных проб используют метод Персина (рис. 13.35).
13.6. Методы лечения зубочелюстных аномалий
Для лечения зубочелюстных аномалий применяют следующие методы: аппаратурный, хирургический, Фи" зиотерапевтический и лечебную гимнастику.
Рис. 13.35. Устройство для подсчета количества жевательных движений нижней челюсти.
1 — фиксирующее устройство; 2 — шарнир; 3 — магнит; 4 — рама; 5 — датчик герконо-вый; 6 — прибор для подсчета нижней челюсти во времени.
13.6.1. Аппаратурный метод лечения
Ортодонтические аппараты используют для лечения зубочелюстных аномалий, сохранения результата после его окончания и профилактики осложнений. Основным методом лечения аномалий зубочелюст-ной системы является аппаратур-
ный. Ортодонтические аппараты бывают внеротовыми, внутрирото-выми (одно- и двучелюстные). В зависимости от способа крепления их делят на съемные и несъемные.
Лечебные аппараты составляют самую большую группу. Действие их основано на использовании сил давления и тяги. В зависимости от источника нагрузок различают лечебные аппараты механического, функционального и комбинированного действия, а также моноблоковые и активаторы. Аппараты механического действия создают нагрузки на зубочелюстную систему благодаря свойствам используемого материала или конструкции. Для механических аппаратов характерно наличие винта, проволоки, лигатуры, резинового кольца. В них используют силу ортодонтического винта, упругие свойства проволоки и лигатуры, эластичные свойства резинового кольца. Благодаря собственному источнику усилия эти аппараты также называют активными. Величину и интенсивность нагрузки регулирует врач.
Функциональные аппараты действуют при сокращении мышц ЧЛО, т.е. во время функции, поэтому их называют пассивными. С помощью накусочных площадок, на-
543
клонных плоскостей сила сокращения жевательных мышц передается на неправильно расположенный зуб, деформированный участок зубного ряда или челюсти. Аппараты комбинированного действия сочетают в себе активный и пассивный источники нагрузки.
Применяемые в ортодонтических аппаратах силы характеризуются величиной, направлением и длительностью действия. Также важно место (точка) приложения силы. Развиваемая аппаратом или жевательной мускулатурой сила распределяется на разные участки зубочелю-стной системы, определяя таким образом величину нагрузки на единицу площади. Вопрос о количественном значении необходимой для ортодонтического лечения силы впервые в эксперименте на животных решил A.M. Шварц (1932). Он установил, что ортодонтическое давление не должно превышать капиллярное (20—26 г/см2). Оптимальным является давление (3,5:20-103 г/см2). При нагрузке 67 г/см2 обнаруживается травматическое сдавление пародонта. Однако в клинических условиях не удается измерить площадь пародонта перемещаемых зубов и давление на единицу площади. Поэтому о величине развиваемых нагрузок врач судит по своим оценкам и ощущениям пациента. У ребенка должно появиться чувство легкого неудобства, но не боли. В то же время отсутствие боли не является критерием физиологичности аппарата.
Перемещение зуба под действием одной приложенной в области коронки силы может быть поступательным и вращательным, в зависимости от места приложения и направления силы. Сила, направленная по продольной (вертикальной) оси зуба, приводит к внедрению или вытяжению. Приложение силы к коронке по касательной к ней обеспечивает поворот зуба вокруг вертикальной оси. Сила, приложен-
544
ная в области коронки перпендикулярно к продольной оси зуба (горизонтально), наклоняет коронку в направлении действия силы в сторону рта, преддверия, мезиально или дистально. При этом корень зуба отклоняется в противоположном направлении. Происходит вращательное перемещение зуба, которое в ортодонтии принято называть «наклонно-вращательным» [Калве-лисД.А., 1961].
Поступательное перемещение зуба в горизонтальной плоскости, или так называемое корпусное, можно осуществить с помощью двух параллельных противоположно направленных сил, а также силы и противоположно направленного вращательного момента, приложенных к коронке зуба, и аппаратами, которые создают с помощью тяги перемещение зуба по направляющей.
Существенна также продолжительность действия аппаратов. Одни из них действуют непрерывно, длительно или постоянно, другие — прерывисто (кратковременно). К первым относятся активные аппараты, поскольку они действуют до того времени, пока пружина или эластичное кольцо не потеряет упругости. Ко вторым принято относить функциональные аппараты, так как они действуют прерывисто, только в момент сокращения мышц. Однако такое деление не всегда истинно. По мнению Д.А. Калвелиса и других исследователей, использование малых и прерывистых сил более целесообразно.
Съемные и несъемные аппараты имеют преимущества и недостатки. Преимущества съемных аппаратов — удобство ухода за ними, соблюдение гигиены рта, возможность снять аппарат и проверить результаты лечения. Кроме этого, возможность многочисленных модификаций и комбинирования с внерото-выми аппаратами, техническая простота изготовления. Важно и то, что опорой может быть не только зуб,
н0 и альвеолярный отросток. Съемные аппараты легко дозировать, они позволяют осуществлять визуальный контроль. Недостатками их являются раздражающее действие базиса аппарата на слизистую оболочку вплоть до появления аллергической реакции, а также подверженность кариесу при несоблюдении гигиены рта. Кроме того, если ребенок не дисциплинирован, то съемный аппарат он может легко снять.
При применении съемных ортодонтических аппаратов следует помнить:
-
последовательность воздействия на зубочелюстную систему и объем необходимых перемещений зубов, групп зубов планируется в начале лечения;
-
успех лечения зависит от опорной части аппарата, которая противодействует активной (действующей силе) части аппарата;
-
расширение одного зубного ряда может привести к значительному нарушению окклюзии зубных рядов;
-
пластиночные аппараты не должны иметь много активных элементов, так как применение сил одновременно в различных направлениях может привести к их взаимному гашению;
-
наряду с изменением формы и размера зубных рядов происходит изменение миодинамического равновесия мышц-антагонистов и синергистов.
Конечной целью расширения зубных рядов является нормализация их формы, создание места для аномально расположенных зубов, и самое главное — создание оптимальной окклюзии.
Преимущество несъемных аппаратов заключается в невозможности снять их без разрешения врача. Недостаток их в том, что под коронками, каппами, кольцами может рассасываться фосфат-це-
мент, задерживаться пища и развиваться кариес. Кариозный процесс может возникнуть в местах прилегания лигатур к коронкам зубов. Лигатуры могут раздражать межзубные сосочки, вызывать гингивит, краевой периодонтит.
В ортодонтических лечебных аппаратах различают действующую и опорную части, укрепляющие и вспомогательные элементы. Действующей частью механических аппаратов являются лигатура, пружины различных модификаций, часть базиса с винтом, прилегающая к деформированному участку, резиновое кольцо; в функциональных аппаратах — наклонная плоскость, накусочная площадка и другие элементы. Для крепления съемных аппаратов используются кламмеры разных конструкций: Адамса, круглые, многозвеньевые, стреловидные Шварца.
Несъемные аппараты укрепляют на зубах с помощью коронок, колец, капп. Поскольку аппараты фиксируются временно, опорные зубы не препарируют, что приводит к дизок-клюзии зубных рядов. По показаниям можно срезать жевательную поверхность или режущий край коронки, превратив ее в кольцо. Поскольку шейка ортодонтической коронки или кольца шире шейки зуба, край ортодонтических коронок, колец, капп не должен касаться десны, чтобы не повреждать ее. Коронки, кольца являются хорошей опорой для ортодонтических аппаратов. Ор-тодонтические коронки отличают от ортопедических. Зубы под ортодон-тические коронки не препарируются, граница коронки — до физиологической шейки зуба. Ортодонти-ческие коронки можно изготавливать путем их штамповки из гильз. Чаще всего используются ортодон-тические кольца, которые заводским путем изготавливают фирмы по типоразмерам. В наборы входят кольца, которые различают в зави-
545
симости от стороны зубного ряда (левая или правая), а также от челюсти (верхней или нижней). Коронки (кольца) обычно фиксируются на висфат-цемент или иономер-це-мент. При плотном расположении зубов в зубном ряду для создания промежутков между зубами проводят ортодонтическую лигатурную сепарацию.
Перед примеркой и фиксацией коронки (кольца) на цемент лигатуру разрезают и выводят из межзубного пространства.
Вспомогательными элементами ортодонтических аппаратов являются крючки, штанги, трубки и касательные направляющие. Чаще их припаивают к несъемным аппаратам, реже — вваривают в пластмассовый базис.
Под действием силы ортодонтических аппаратов зубные ряды, челюсти подвергаются сжатию, растяжению и перемещению в различных направлениях. Согласно третьему закону Ньютона, при действии аппарата на определенные отделы зубочелюстной системы возникает противоположно направленная сила — сила противодействия. Для достижения желаемого лечебного эффекта необходимо создать устойчивость опорной части аппарата. Она зависит от площади этой части аппарата, устойчивости опорных зубов и величины развиваемой аппаратом нагрузки. Все это выражается величиной нагрузки на единицу опорной площади. Для предотвращения смещения опорных и перемещения неправильно расположенных зубов нагрузка на единицу опорной площади должна быть в 2—3 раза меньше, чем на единицу площади приложения силы. Наименьшая нагрузка создается в пластиночных аппаратах благодаря большой площади базиса. В несъемных аппаратах, фиксирующихся на коронках, кольцах и каппах, нагрузка на единицу опорной площади значительно больше, поэтому
опорные зубы должны быть устойчивыми, что обеспечивается сфор-мированностью корней и неповрежденным пародонтом. В связи с этим существуют возрастные показания к использованию аппаратов: до 10—12 лет применяют, как правило, пластиночные аппараты, а после окончания формирования корней опорных зубов — любые.
13.6.1.1. Механически действующие (активные) аппараты
Активные аппараты подразделяются на внутри- и внеротовые.
Внеротовые съемные аппараты.
Внеротовым съемным активным аппаратом является подбородочная праща с головной шапочкой и резиновой тягой. Она применяется для задержки и изменения роста нижней челюсти при лечении мези-альной окклюзии зубных рядов. Опорой аппарата является затылок или шея. Аппарат применяется в 4—9-летнем возрасте, в период активного роста нижней челюсти в сагиттальном направлении.
Для лечения зубочелюстных аномалий тяжелой степени обычно используют головную шапочку или шейную опору с лицевой дугой, которая имеет внутри- и внеротовую части.
В зависимости от направления действующей силы возможно различное перемещение зубов. Действующая сила, направленная по са-гиттали, позволяет перемещать зубной ряд в дистальном направлении. Такая необходимость возникает при лечении сагиттальных аномалий окклюзии. Сила, направленная вертикально, способствует задержке вертикального роста верхней челюсти, зубоальвеолярному внедрению.
Сила, являющаяся равнодействующей двух сил (сагиттальной и вертикальной), направленная к козелку уха, создает вращательный мо-
мент для верхней челюсти и позволяет производить зубоальвеолярное внедрение боковых зубов.
Внутриротовые съемные аппараты можно применять в любом возрасте начиная с лечения молочных зубов, однако оптимальный вари-ант' _ период смены зубов и возраст до 12—14 лет. Благоприятный эффект дают ортодонтические аппараты при применении слабых, кратковременных сил средней величины прерывистого действия. Не рекомендуется действие непрерывной силы средней и большой величины.
Ортодонтические аппараты изготавливает техник по гипсовым моделям челюстей пациента, предоставляемым врачом. Заказ зубному технику осуществляют на бланке наряда. В наряде указывают номер заказа, дату заполнения, дату изготовления аппарата, дату примерки конструкции, фамилии пациента, врача и зубного техника. Затем необходимо заполнить в наряде клеточки, т.е. обозначить те или иные элементы, которые нужно изготовить. В графе «Виды ортодонтических аппаратов» нужно указать, какой аппарат необходимо изготовить. Перед началом изготовления ортодонтических аппаратов необходимо зафиксировать вид смыкания зубных рядов. Если модели складываются без проблем, то фломастером отмечают окклюзию в области первых моляров, клыков. Если нормальная окклюзия существенно изменена, то гипсовые модели складывают, применяя восковой шаблон. Предварительно пластинку воска разогревают над пламенем горелки, разогретый валик вводят в рот и укладывают на нижний зубной ряд. После этого пациента просят сомкнуть зубные ряды в привычном положении нижней челюсти (центральная окклюзия).
После затвердевания воск выводят изо рта, а затем гипсовые модели складывают с помощью восково-
го окклюзионного шаблона. Если нужно изменить положение нижней челюсти, а именно сместить ее влево, вправо, выдвинуть или, наоборот, сместить назад, следует определить и зафиксировать конструктивный прикус. Ориентирами для его определения являются смыкание первых моляров, клыков и резцов, а также направление средней линии между резцами.
Так, например, для лечения дис-тальной окклюзии зубных рядов, обусловленной дистальным положением нижней челюсти, необходимо стимулировать ее рост. Для этого изготавливают аппараты, позволяющие выдвинуть нижнюю челюсть и удерживать ее в правильном положении. Определяется ее новое конструктивное положение. На модели верхней челюсти техник изготавливает восковой шаблон с окклюзионными валиками в боковых участках зубного ряда. Задняя граница валика — середина коронки первого моляра. Это позволяет избежать ошибки при определении конструктивного прикуса, когда при смыкании воск выдавливается в позадимолярную область.
Окклюзионные валики размягчают разогретым шпателем, после чего восковой шаблон вводят в рот, прикладывают к верхней челюсти и удерживают пальцами левой руки со стороны преддверия рта. Врач просит пациента выдвинуть нижнюю челюсть и восковым шаблоном фиксирует ее положение по отношению к верхней челюсти, ориентируясь на соотношение моляров по 1-му классу Энгля, а также на соотношение клыков, обращая внимание на совмещение средней линии между резцами. После затвердевания восковой шаблон выводят изо рта и с его помощью складывают модели.
Конструктивный прикус можно определить также с помощью разогретого воскового окклюзионного валика (без изготовления зубным
<лк
S47
техником воскового шаблона), который врач вводит в полость рта, фиксирует на нижнем зубном ряду и просит пациента сомкнуть зубные ряды в конструктивном прикусе.
Конструктивный прикус целесообразно определять при изготовлении следующих пластиночных аппаратов:
-
пластинок на верхнюю или нижнюю челюсть с окклюзионными накладками на боковых участках;
-
пластинок на верхнюю челюсть с накусочной площадкой или наклонной плоскостью;
-
пластинок на нижнюю челюсть с наклонной плоскостью;
-
пластинок с заслонкой для языка.
В основе пластиночных аппаратов лежит базис, который располагается на небе (пластинка на верхнюю челюсть) или на альвеолярном отростке (пластинка на нижнюю челюсть). Базис пластинки изготавливают из пластмассы непосредственно на гипсовой модели (прямой способ) или моделируют из воска, после чего воск заменяют пластмассой (непрямой способ). В базис пластинки вводят все элементы ортодон-тического аппарата (винт, дуга, кламмер, пружина, петля) и фиксируют их в нем. Базис прилегает к язычным или небным поверхностям зубов. В переднем участке базис на 2 мм ниже режущего края резцов, а в боковых участках на 2—3 мм ниже жевательных поверхностей зубов.
Базис является местом фиксации всех элементов ортодонтического аппарата; опорной частью ортодонтического аппарата и противодействует силе активных элементов (винтов, пружин), воздействующих на перемещаемый зуб; опорной частью при передаче нагрузки на противоположный зубной ряд с помощью наклонной плоскости или накусочной площадки; ретенционным устройством после окончания активного ортодонтического лечения.
548
Активным элементом пластиночного аппарата может быть ортодон-тический винт. Активация винта на полный оборот (360 °) позволяет провести расширение или удлинение зубного ряда или перемещение зуба до 1 мм. Левую и правую половины пластинки перемещают от средней линии распила пластинки на 0,4—0,5 мм. Активация винта на /4 оборота (90 °) позволяет расширить зубной ряд на 0,1 мм (см. рис. 13.32) на каждой стороне, полная его активация — на 6—8 мм.
При равномерном сужении левой и правой половины зубного ряда целесообразно применять расширяющую пластинку с расположением винта на уровне срединного небного шва (рис. 13.36). При необходимости перемещения одного зуба или группы зубов в трансверсаль-ном направлении изготавливают пластину с секторальным распилом на верхнюю челюсть (рис. 13.37). При более значительном сужении переднего участка зубного ряда следует использовать расширяющую пластинку с петлей для ограничения расширения боковых участков зубного ряда (рис. 13.38).
Ортодонтический винт может быть использован при перемещении зубов по сагиттали. Так, при небном положении верхних передних зубов применяют пластинку с секторальным распилом на верхнюю челюсть. При этом создают место для аномально расположенных клыков (рис. 13.39).
В случае вестибулярного положения клыка, причиной которого явилось мезиальное перемещение боковых зубов, можно изготовить ортодонтический аппарат для их дистального перемещения (рис. 13.40).
При двустороннем мезиальном перемещении боковой группы зубов изготавливают пластинку с двумя винтами и тремя секторальными распилами (рис. 13.41). В этом случае жевательные зубы перемещают-
Рис. 13.36. Расширяющая пластинка на верхнюю челюсть.
Рис. 13.37. Пластинка на верхнюю челюсть с секторальным распилом для перемещения одного зуба или группы зубов.
ся дистально, а передние — в губном направлении.
Необходимо помнить, что положение винта определяет направление действия силы, а вид распила в пластинке — направление действия силы на определенную группу зубов. Число активаций винта и его оборотов определяют силу действия и расстояние, на которое перемещается
Достарыңызбен бөлісу: |