В. М. Цейслер Основы региональной геотектоники



бет8/11
Дата15.07.2016
өлшемі4.85 Mb.
#200065
түріРеферат
1   2   3   4   5   6   7   8   9   10   11

6.4. Северный Ледовитый океан


Впадина Северного Ледовитого океана - самая маленькая среди океанических впадин. Располагаясь в Арктической области северного полушария, она ограничивается Евразиатским и Северо-Американским континентальными массивами с очень широкой зоной шельфа (см. рис.1). Палеозойские и раннемезозойские складчатые сооружения Арктического, Урало-Монгольского и Северо-Атлантического поясов, протягивающиеся по побережью Евразии и Северной Америки, обрезаны континентальным склоном, имеющим преимущественно кайнозойский возраст.

Протяженное субмеридиональное поднятие подводного хребта Ломоносова делит впадину Северного Ледовитого океана на две области - Евразийскую и Амеразийскую, имеющие ряд особенностей рельефа и геологического строения. Евразийская область, меньшая по площади, но более погруженная (3-4 км), разделена подводным поднятием хр. Гаккеля на две вытянутые котловины - Амундсена, приближенную к хр. Ломоносова, и Нансена, примыкающую к подножию Евразиатского материка. Подводный хребет Гаккеля, возвышающийся над дном котловин на 1-2,0 км, служит северным продолжением Северо-Атлантического хребта. Амеразийская область, примыкающая к Канадскому архипелагу и шельфу Чукотского и Восточно-Сибирского морей, имееет большие размеры и меньшую глубину дна. Подводный хребет Менделеева, приближенный к полюсу и почти параллельный хребту Ломоносова, делит эту часть океана на две котловины - меньшую Подводников и большую Канадскую. С Канадской котловиной соединяется котловина моря Бофорта.

Строение Евразийской области обычно рассматривается в связи с хребтом Гаккеля, имеющим природу срединно-океанических хребтов (зона спрединга). Хребет Гаккеля выполаживается у подножия континентального склона шельфа моря Лаптевых. Зона хребта рассечена частой сеткой параллельных разломов с амплитудами сдвигов не более 20-30 км. Считается, что начало разрастания океанической коры в Евразийской области соответствует концу позднего мела - палеоцену. Океаническая кора имеет преимущественно палеогеновый возраст. Основание надбазальтового слоя погружается от хр. Гаккеля в сторону континентального подножия и хребта Ломоносова. Мощность осадочного слоя обычно составляет 1-2 км, но вблизи континентального склона котловины Нансена увеличивается до 7,5 км.

Амеразийская область характеризуется более сложным строением. Хребет Ломоносова, который также следует включать в эту область, отличается глыбовой природой и корой континентального типа. Предполагается, что в пределах хр. Менделеева, пересекающего центральную часть океана, кора также континентального типа. Континентальная кора свойственна Чукотскому поднятию, расположенному на юго-западе Канадской котловины. В то же время обширная Канадская котловина имеет кору субокеанического типа.

Подошва осадочного чехла в котловине Подводников (котловина Макарова - Толля) погружается к континентальному подножию Азиатского материка, где мощность осадков достигает 8 км. В Канадской котловине основание чехла погружается от хр. Менделеева к Аляске и о-вам Канадского архипелага до отметок -10 км. Главные особенности впадины Северного Ледовитого океана: небольшие размеры, наличие протяженных зон поднятий с континентальной корой в центре океана, приближенность срединно-океанического хребта к одному краю впадины, молодой возраст океанической коры.

6.5. Тихий океан


Впадина Тихого океана - крупнейшая отрицательная структура поверхности планеты. Она отделяет восточные окраины материков Евразии и Австралии от западных окраин Северной и Южной Америки. На юге впадина ограничена Антарктидой. Впадина океана окружена фанерозойскими складчатыми областями, составляющими окраины континентов и образующими в целом Тихоокеанский подвижный складчатый пояс, или Тихоокеанское кольцо (рис. 26). Возраст складчатых структур Тихоокеанского пояса последовательно омолаживается при приближении к океану. Наиболее молодая часть Тихоокеанского пояса соответствует зоне активной тихоокеанской окраины, рассматриваемой обычно в качестве современной геосинклинальной области.

Внешней границей впадины Тихого океана почти на всем протяжении служат глубоководные желоба, отделяющие тихоокеанские окраины от океана. Только на юге впадина ограничена пассивными окраинами вдоль побережья Антарктического материка. Около половины площади дна впадины Тихого океана располагаются на глубине 5-6 км, на юго-востоке имеются крупные участки с глубинами в 3-4 км.

Осевой линии дна океана соответствует система сводовых вулканических поднятий, протягивающихся в северо-западном направлении. Эта система включает Северо-Западный хребет, поднятия Гавайский островов, островов Центральной Полинезии, Туамото. На юге на широте о-ва Пасхи эта система смыкается с Восточно-Тихоокеанским поднятием (срединно-океаническим хребтом), которое смещено к юго-восточной части океана. В отличие от других срединно-океанических хребтов, в его осевой части отсутствует центральная рифтовая долина. Обладая большой шириной, поднятие воздымается над окружающими котловинами на 2-3 км.

Рис. 26. Морфоструктурные элементы дна Тихого океана.

1 - контуры континентальной суши; 2 - граница континентов и океанических впадин по подножию континентального склона; 3 - области со структурами океанических окраин (впадины окраинных морей, островные дуги, глубоководные желоба); 4 - внешние глубоководные желоба; 5 - глубоководные рвы; 6 - окраинно-океанические валы;

7 - контуры океанских котловин; 8 - вулканические поднятия; 9 - поднятия различного происхождения; 10 - погруженные блоки с корой материкового типа; 11 - поднятия с утолщенной корой океанического типа; !2 - осевые зоны срединно-океанических хребтов с рифтоовой долиной; 13 - то же, без рифтовой долины; 14 - древние срединно-океанические хребты; 15 – крупнейшие разрывы.


Восточно-Тихоокеанское поднятие подходит на севере к побережью Северной Америки и сменяется рифтом Калифорнийского залива. Калифорнийский залив, подобно Аденскому, относится к структуре, где океанический рифт переходит в внутриконтинентальный, тем самым, свидетельствуя об их генетической близости. Скорость раздвигания Калифорнийского рифта составляет 5 см/год.

Вблизи Южно-Американского побережья установлено два ответвления срединно-океанического хребта - Западно-Чилийское и Галапагосское поднятия, которые формировались как зоны растяжения в миоцене. На склонах Восточно-Тихоокеанского поднятия полосовые магнитные аномалии имеют кайнозойский возраст.

Трансформные разломы рассекают Восточно-Тихоокеанское поднятие, определяя его главные черты строения, и продолжаются далеко за пределы хребта в область океанических котловин. Многие трансформные разломы северо-западной ориентировки в южной части хребта пересекают также окраины континентов, ограничивают блоки континентальной коры в южной части океана и сопровождаются крупными приразломными глубоководными желобами. Протяженность многих разломов в Тихом океане составляет 1500-2000 км.

Восточно-Тихоокеанское поднятие и поперечная к его центральной части система осевых вулканических хребтов делят дно Тихого океана на три крупные области - западную, северо-восточную и юго-восточную. Западная и северо-восточная области расположены в пределах Тихоокеанской литосферной плиты, юго-восточная - объединяет плиты Наска, Кокос и часть Антарктической.

Западная область, примыкающая к Азиатско-Австралийской активной окраине, характеризуется наиболее сложным, разнородным строением и отличается наибольшей древностью осадочного слоя океанической коры. Она включает три крупных котловины - Западную, Центральную и Южную, а также многочисленные вулканические поднятия, валы и своды, осложняющие их строение. Возраст нижней части осадочного слоя в западной области юрско-меловой. Только на северном склоне Восточно-Тихоокеанского поднятия кора имеет кайнозойский возраст.

К восточной области относятся подводные «Великие равнины» с глубинами 5-6 км, разделенных широтными уступами дна вдоль разломов (Мендосино, Меррей, Молокаи, Кларион, Клиппертон и др.), которые рассматриваются как трансформные разломы с большими сдвиговыми перемещениями. Вдоль разломов установлены протяженные внутриокеанические глубоководные желоба, образование которых связано со сдвиговыми нарушениями. Возраст океанической коры этой области позднемеловой - кайнозойский. Омоложение происходит по направлению к побережью Северной Америки.

Юго-восточная область расположена к юго-востоку от осевой части Восточно-Тихоокеанского поднятия. Она состоит из нескольких глубоководных котловин (Беллинсгаузена, Чилийская, Перуанская и др.), разобщенных поперечными поднятиями - ответвлениями Восточно-Тихоокеанского поднятия и вулканическими хребтами. Возраст океанической коры преимущественно кайнозойский. Блоки позднемеловой коры наблюдаются только на юге области.

Судя по магнитному полю, земная кора в западной и северо-восточной областях к северу от Восточно-Тихоокеанского поднятия весьма неоднородна. Здесь выделяются участки с двумя типами полей - полосовым и спокойным магнитным полем. Зона полосовых магнитных аномалий прослеживается в обрамлении Восточно-Тихоокеанского поднятия и вдоль западного побережья Северной Америки до Алеутского желоба. Вторая зона полосовых аномалий пересекает центральную часть Тихого океана, следуя западнее Полинезии и Гавайских островов. Эти зоны разделяют участки спокойного выровненного магнитного поля. Предполагается, что магнитные аномалии восточной полосы имеют позднемеловой-эоценовый возраст, более западной – позднеюрско-раннемеловой.

Для западной области Тихого океана типично наличие многочисленных приподнятых блоков с утолщенной корой океанического типа, континентальной корой, многочисленных вулканических хребтов, линейных внутриокеанических глубоководных желобов. Особый интерес представляют многочисленные вулканические конусы, возвышающиеся над дном котловин на 2-3 км с плоскими вершинами, увенчанными рифовыми постройками мелового и палеогенового возраста (гайоты). Расположение гайот в западной части Тихого океана позволило Г.Менарду обосновать местоположение крупного океанического палеоподнятия юрско-мелового возраста, которое в кайнозое было раздроблено и погружено на большие глубины. В этом районе с помощью глубоководного бурения вскрыты мелководные отложения возраста от поздней юры до эоцена.

Мощность надбазальтового слоя во впадине Тихого океана обычно не превышает 1 км. Она увеличивается на поднятиях за счет вулканических образований, а также вблизи континентального подножия во впадине Беллинсгаузена (более 5 км), вблизи Чилийского желоба и в ряде других мест. Моноклинальное залегание надбазальтового слоя с пологим наклоном к западу и северо-западу в западной и северо-восточной областях осложнено наличием ступеней, отдельных поднятий и прогибов второго порядка.


6.6. Основные черты сходства и различия в строении дна океанов

Океанические впадины как крупнейшие отрицательные структуры поверхности земной коры имеют целый ряд особенностей строения, позволяющих противопостять их положительным структурам (континентам) и сравнивать между собой.

Главное, что объединяет и отличает все океанические впадины, это низкое положение поверхности земной коры в их пределах и отсутствие геофизического гранит-метаморфического слоя, характерного для континентов.

Через все океанические впадины протягиваются подвижные пояса - горные системы срединно-океанических хребтов с высоким тепловым потоком, приподнятым положением мантийного слоя, что не типично для континентов. Система срединно-океанических хребтов, самая протяженная на поверхности Земли, пронизывает и соединяет тем самым все океанические впадины, занимая в них центральное или краевое положение.

Осадконакопление в океанических впадинах подчинено общей климатической и циркум-континентальной зональности, определяется батиметрией дна и вулканическими процессами. Характерно также, что тектонические структуры океанического дна нередко тесно связаны со структурами континентов. Прежде всего, эти связи выражаются в наличии общих разломов, в переходах рифтовых долин срединно-океанических хребтов в континентальные рифты (Калифорнийский и Аденский заливы), в наличии крупных погруженных блоков континентальной коры в океанах, а также впадин с безгранитной корой на континентах, в переходах трапповых полей континентов на шельф и ложе океана.

Океанические впадины также существенно отличаются друг от друга. Обращает на себя внимание их размеры, по которым они подразделяются на три группы. К первой относится впадина Тихого океана (площадь 178 684 тыс.кв.км), ко второй - впадины Атлантического (91 б55 тыс.кв.км) и Индийского (76 174 тыс.кв.км) океанов, к третьей - впадина Северного Ледовитого океана(-14 699 тыс.кв.км).

Океанические впадины различаются по типам сопряжения с материковыми блоками, по типам океанических окраин. Обычно резко противопоставляются активные окраины Тихого океана пассивным окраинам Атлантического, Индийского и Северного Ледовитого океанов. Пассивные окраины, как правило, обрезают структуры материков. Ниже континентального склона складчатые структуры континентов не прослеживаются. Контуры побережья трех указанных океанов являются секущими по отношению к внутренней структуре материковых массивов - древним платформам, фанерозойским подвижным поясам. Вторичность границ океанов свидетельствует о молодости океанических впадин. Контуры впадины Тихого океана, наоборот, вписываются в контуры структур обрамляющих материков, с расположенным на них Тихоокеанским складчатым поясом. Это позволяет относить впадину Тихого океана к реликту изначально существовавшей океанической впадины, возникшей еще в докембрии.

Внутренняя структура океанических впадин также различна. По положению зоны современного спрединга можно противопоставить впадину Атлантического океана с медианным положением Срединно-Атлантического хребта всем остальным океанам, в которых т.н. срединный хребет смещен к одному из краев.

Сложна внутренняя структура впадины Индийского океана. В западной части она напоминает структуру Атлантического океана, в восточной - более близка к западной области Тихого океана. Сравнивая строение западной области Тихого океана с восточной частью Индийского, обращает внимание их определенное сходство: глубины дна, возраст коры (Кокосовая и Западно-Австралийская котловины Индийского океана, Западная котловина Тихого океана). В обоих океанах эти части отделены от континента и впадин окраинных морей системами глубоководных желобов и островных дуг. Создается впечатление, что система активных окраин с характерными для нее структурами является не столько принадлежностью Тихого океана, сколько особенностью юго-восточного окончания Евразиатского материка в месте, где молодые складчатые области Средиземноморско-Индонезийского и Тихоокеанского поясов подходят к краю материка. Связь активных окраин океанов с молодыми складчатыми структурами материков наблюдается в Центральной Америке, где Атлантический океан отделен от Карибского моря глубоководным желобом и островной дугой.

Тесная связь глубоководных желобов, отделяющих впадины океанов от континентальных массивов со структурами материковой земной коры, прослеживается на примере северного продолжения Зондского глубоководного желоба, переходящего в Предараканский краевой прогиб.



6.7. Вопросы для самопроверки.

  1. Как соотносятся впадины океанов с литосферными плитами?

  2. Какому элементу поверхности земной коры соответствует граница смены коры материкового и океанического типов?

  3. Какие литосферные плиты обладают только океаническим типом коры?

  4. Какие типы структур выделяются во впадине Атлантического океана, каким элементам рельефа его дна они соответствуют и где расположены?

  5. Какие типы структур выделяются во впадине Индийского океана, каким элементам рельефа его дна они соответствуют и где расположены?

  6. Какие типы структур установлены во впадине Тихого океана, каким элементам рельефа его дна они соответствуют и где расположены?

  7. Какие типы структур имеются во впадине Северного Ледовитого океана, каким элементам рельефа его дна они соответствуют и где расположены?

  8. Какие имеются сведения о возрасте океанов?

  9. Где в океанах имеются участки с корой материкового типа?

  10. Чем отличается строение зон сочленения материковых массивов и океанических впадин в обрамлении Тихого и Атлантического океанов?

Заключение

Используемые принципы тектонического районирования и методы тектонической картографии отражают различные подходы авторов к анализу современной структуры верхних оболочек Земли и оценки ее неоднородностей на различные глубины.

Структурно-морфологический принцип районирования учитывает структурные неоднородности самой верхней части осадочного слоя коры. Их можно видеть непосредственно на геологической карте. Анализ вертикальных рядов формаций и структурных этажей, на котором основывается историко-геологический принцип, позволяет выявить неоднородности за большой промежуток времени и как бы “проникнуть” в более глубокие части коры. Неоднородности в строении земной коры в целом выявляются с привлечением геофизических методов, обосновывающих отличия типов кор. Переход на выявление вещественных неоднородностей на уровне литосферы с выделением зон активного мантийного и нижнекорового магматизма, высокой сейсмичности (границы плит) и площадей относительно стабильных (площади литосферных плит) требует привлечения совокупности методик (геофизических, петрологических, структурных). Чем глубже в недра мы пытаемся проникнуть при тектоническом районировании, тем более широкий спектр методов исследований вынуждены применять и тем более неопределенными и многозначными оказываются конечные результаты. Об этом свидетельствуют материалы, полученные при бурении Кольской сверхглубокой скважины, изменившие представления о природе структурно-вещественных неоднородностей, устанавливаемых геофизическими методами.

Обзор возрастных объемов складчатых комплексов в подвижных поясах, возрастных рубежей структурных перестроек на платформах, проявления процессов тектоно-магматической активизации на разных континентальных массивах – все это свидетельствует о четкой периодичности и глобальности проявления эпох тектонической активности. Процессы деструкции коры и активного рифтообразования в глобальном плане одновозрастны или очень сближены во времени с процессами горообразования.

Материалы региональной геотектоники постоянно осмысливаются и переосмысливаются. Использование новых методик геофизических исследований и увеличение их разрешающей способности, изучение Земли из космоса с помощью дистанционных методов, бурение и геофизические исследования в океанах, бурение сверхглубоких скважин на континентах, внедрение компьютерных технологий - все это приводит к изменениям существующих и созданию новых моделей строения и эволюции оболочек Земли, а также позволяет увидеть на поверхности Земли результаты процессов, уходящих корнями в нижние горизонты мантии.

Анализ сотношения структур материковых массивов, внутриматериковых и окраинноматерковых подвижных поясов с океанскими котловинами позволяет думать, что бытующие представления о каждом подвижном поясе на ранних этапах как структуре, подобный современнм океанам, весьма дискуссионны.

Мощные толщи морских терригенных накоплений флишевого типа, приуроченные к подножьям континентальных склонов котловин Атлантики, островодужные пары структур с характерными типами вулканогенных, кремнистых и граувакковых формаций присущи Тихоокеанским окраинам. Поэтому логично среди древних толщ, относимых к геосинклинальным формациям, видеть накопления океанических окраин.

Однако, с подобными типами отложений мы встречаемся и во впадинах внутренних морей, морей новообразованных, впадины которых возникли в кайнозое (Средиземное море). Нетрудно представить возможность накопления такого же типа отложений внутри системы сближенных рифтовых трогов во внутриконтинентальных бассейнах.

Соотношение структур молодых подвижных поясов (Средиземноморско-Индонезийского и Тихоокеанского) с океанскими котловинами свидетельствует о том, что в мезозое – кайнозое эти структуры сосуществовали и развивались параллельно. На всем протяжении подвижные пояса отделены от океанских котловин системами глубоководных желобов, сопровождающихся зонами сверхглубинных разломов и глубокофокусных землетрясений. Имеются участки, где подвижный пояс с обеих сторон отделен от океанских впадин глубоководными желобами и занимает “межокеаническое” положение. Это Карибский и Южно-Сандвичевый секторы Тихоокеанского пояса. Нигде не обнаруживается перехода структур океанских котловин в структурные формы континентов. Котловины “обрезают” палеозойские структуры подвижных поясов. Одновременно структурные формы подвижных поясов пространственно тесно связаны со структурами континентальных блоков. Островные дуги на континенте сменяются крупными сводовыми поднятиями, а глубоководные желоба – неоген-четвертичными краевыми прогибами, отделяющими наиболее молодую часть подвижного пояса от смежных платформенных структур.

Современные срединно-океанические хребты, представляющие собой глобальную систему внутриокеанических горных поднятий, также можно рассматривать в качестве подвижных поясов. На широте Калифорнийского залива Восточно-Тихоокеанское поднятие на север продолжается сводовым поднятием Кордильер с молодыми рифтовыми структурами и активным вулканизмом. К сожалению, нет достоверных сведений о том, что располагается под базальтами акустического фундамента осадочного слоя земной коры на океанических пространствах и, вероятно, здесь нас ожидает много открытий, по влияющих на общие геотектонические концепции.

Как и любая другая наука, геотектоника ныне активно развивается на направлениях, где она тесно смыкается со смежными науками и направлениями, обладающими собственными методиками (геофизика, петрология, геоморфология, седиментология, планетология и проч.). Для региональной геотектоники особое значение имеет сравнительный исторический анализ и сравнительный планетологический анализ, поскольку Земля является одной из планет Солнечной системы и происходящие на ней процессы взаимосвязаны и взаимообусловлены общими планетарными явлениями.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет