57 -беттің -сі казақстан республикасы білім және ғылым министрлігі


ТТР жүруіне көптеген факторлар әсері



бет7/9
Дата12.06.2016
өлшемі1.68 Mb.
#130135
1   2   3   4   5   6   7   8   9

ТТР жүруіне көптеген факторлар әсері

Тотықтырғыш пен тотықсыздандырғыштың химиялық табиғаты, олардың активтіктері, рН, температура т.б.

ТТР жүру-жүрмеуін изобаралық-изотермиялық потенциалды (ΔG) есептеу арқылы анықтайды. ΔG=ΔH- TΔS немесе ΔG= -RT lnK.

ΔH, ΔS- энтальпия мен энтропия өзгеруі,

К – қайтымды реакцияның тепе-теңдік константасы,

R – универсалды газ тұрақтысы, 8,31 л∙кПа (моль∙К)

T – абсолютті температура, К

Осы дәріс материалымен танысқан соң, мына мағлұматтарды :

Тотықтырғыш, тотықсыздандырғыш, олардың эквиваленті, эквивалент массалары туралы ұғымдарды, тотығу-тотықсыздану потенциалы, теңдеулерді құру әдістері (электронды баланс әдісі, ионды-электронды әдіс) туралы ұғымдарды білу керек.
Өзін- өзі тексеру сұрақтары:

1.Тотығу дәрежесі деген не? Оны қалай анықтайды?

2.Реакция кезінде тотықтырғыштың және тотықсыздандырғыштың тотығу дәрежесі қалай өзгереді?

3.Периодтық жүйедегі қай топта және қай топшаларда тотықтырғыш пен тотықсыздандырғыш орналасқан?

4.Элементтердің тотығу-тотықсыздану қасиеттері:

а)период бойынша (солдан оңға қарай)

б)негізгі топшаларда (жоғарыдан төмен қарай) қалай өзгереді?

5.Эквиваленттің молярлық массасын тотықтырғыш және тотықсыздандырғыш үшін қалай есептейді?


Осы тақырып бойынша көрсетілген әдебиеттердің мына беттерін оқу керек:

1.Омаров Т.Т., Танашева М.Р. Бейорганикалық химия.Алматы: ЖШС РПБК «Дәуір», 2008. 437--445 беттер.

2.Кулажанов К.С., Сулейменова М.Ш. Неорганическая химия. Учебник для студентов специальностей 5В072700 и 5В072800, обучающихся по кредитной технологии/ Алматы: 2012. 183-190 стр.

3.Кабдулкаримова К.К., Омарова Н.М.,Абекова Р.С. Жалпы химия курсы бойынша есептер мен жаттығулар. – Семей,2012 – 59-63 беттер.

Гальваникалық элементтер, электродтық потенциалдар;
Электрохимия – ТТР нәтижесінде электр тогы пайда болуын (гальвани элементтері) және электр тоғы әсерінен ТТР-ларының (электролиз) жүру заңдылығын зерттейтін химияның бір бөлімі.

Металдар тотықсыздандырғыштар, бірақ әр металдың электрон бергіштігі әр түрлі. Металдардың тотықсыздандырғыш қабілетін Н.Н.Бекетов зерттеп, олардың бұл қабілетінің азаюына байланысты орналастырып, металдардың кернеулік қатарын құрған.

Металды суға батырғанда полюсті су молекулалары әсерінен металдардың беті ептеп ериді. Осынын нәтижесінде электрондар металл пластинкасының бетінде қалып, ал катиондар ерітіндіге көшеді. Бірақ металдардың еру процесі көпке бармайды, аздан кейін тепе-теңдік күй орнайды, яғни белгілі бір уақыт ішінде қанша катион ерітіндіге көшсе, сонша катион қайтадан металл пластинкасына ауысады: Ме + mH2O ↔ Men+ ∙ nH2O + nē

Металдардың бетінде қалған электрондардың есебінен металл пластинкасы теріс зарядталады, ал ерітіндіге көшкен металл катиондары оны оң зарядтайды. Судың орнына металдардың өз тұздарын да алуға болады. Бұл жағдайда активті металдар тұздар ерітінділеріне батырғанда еріп, теріс зарядталады, ал активтігі кем металдар тұздар ерітінділеріне батырғанда, металл ерімейді, керісінше, ерітінділердегі катиондар металдың бетіне көшеді де оны оң зарядтайды, ал қалған аниондар оң пластинкаға тартылып, ерітіндіні теріс зарядтайды. Сонымен, металл мен ерітіндінің жанасқан бетінде потенциалдар айырмасы пайда болады, оны металдардың электродтық потенциалы (Е0) деп атайды. Е0 мәні аз болған сайын, металдың тотықсыздандырғыш қабілеті көбірек болады. Е0 сандық мәні металдардың табиғатына (активтігіне), ерітіндідегі иондардың концентрациясына, температураға байланысты болады.

Е0 абсолюттік мәндерін тікелей өлшеу осы уақытқа дейін мүмкін болмай отыр, тек салыстырмалы потенциалдарын өлшейді. Салыстырмалы электрод ретінде стандартты сутектік электрод қолданылады да оның потенциалы нольге тең деп алынады.

Электродтық потенциал мына Нернст теңдеуі арқылы табылады:

Е= Е0 + (0,059/n) lgC Me n+

C Me n+ - металл иондарының молярлы концентрациясы

n- металл иондарының заряды.

Гальвани элементтері - химиялық электр энергиясының көзі, электр тогы ТТР нәтижесінде пайда болады. Гальваникалық элементтерде тотығу процессі бір электродта (анодта), тотықсыздану процесі екінші электродта (катодта) жүреді. Мұның өзі электродтарда әр түрлі потенциалдар айырмасы болып тұруын қамтамасыз етеді.

Электр қозғаушы күш және оның өлшем бірлігі

Элементтің электр қозғаушы күші (э.қ.к.)-де сол потенциалдар айырмасына байланысты болады. Анод ретінде электродтардың потенциал мәні төменірек металды алады: Еа < Ек.

Мысалы: мыс-мырыш элементінде немесе Даниель-Якоби элементтерінде

(-)Zn/Zn2+ ║Cu2+/Cu (+)

Cu- оң электрод, катод. Элементте мына процесс жүреді:

(A) Zn -2ē → Zn2+- тотығу процесі

(K) Cu +2ē → Cu0- тотықсыздану процесі

Zn- анод, электрондар көзі.

Э.Қ.К. табу үшін мәні үлкен электродтық потенциалдан (оң электродтың потенциалы) мәні кіші /терісірек/ потенциал алынады:

Э.Қ.К. = ΔЕ= Ек - Еа

ΔЕ=Е0Cu2+/Cu – E0Zn2+/Zn

Δ= 0,34 – (-0,76) =1,10 В

Сонымен мыс-мырыш гальвани элементі 1,10 В электр тогын береді. Екі бірдей электрод концентрациясы әр түрлі ерітінділерге салынған болса, концентрациялы гальвани элементін құрайды. Мысалы, мыс электродының концентрациясы әр түрлі (С1Cu2+< СІІCu2+) мыс сульфаты ерітіндісіне батырса, схеманы былай жазуға болады: (-)Cu/Cu2+С1 ║ Cu2+СІІ /Cu (+)

Осылай гальвани элементін алуға болады. Мұндай гальвани элементінде анод концентрациясы төмен ерітіндідегі электрод болады. Гальвани элементі жұмыс істегенде:

(А) Cu0 -2ē → Cu2+ (K) Cu2+ +2ē → Cu0

Концентрациялық гальвани элементінің электролит иондарының концентрациясының қатынасына байланысты: ΔЕ= (0,059/n) lgCІІІ

Химиялық тоқ көзі ретінде гальвани элементі техникада көп қолданылады. Бірақ гальвани элементтері өте аз уақыт жұмыс істейді, себебі электродтардың потенциалдары өзгереді, поляризациаланады. Мысалы, мырыш пен мыс пластиналары күкірт қышқылына батырылып жасалған Вольт элементтеріндегі мыс электроды потенциалының азаюы оның бетінде сутегінің адсорбцияланып, сутегі электроды сияқты жұмыс істеуіне байланысты, ал мырыш электроды потенциалының оңға қарай ауысуы, оның ерітіндідегі иондарының көбейіп, мырыштың еруінің азаюына байланысты. Электродтардың поляризациясын жою үшін оған әр түрлі заттар - деполяризаторлар қосады.

Осы дәріс материалымен танысқан соң, мына мағлұматтарды :

Сутекті электрод, оның қолданылуын, Нернст теңдеуін, Гальваникалық элементтер туралы, металдардың кернеу қатарын, оның практикадағы маңызын білу қажет.
Өзін -өзі тексеру сұрақтары:

1.Гальвани элементі мен стандартты сутек электрод схемаларын көрсетіп, қалай жұмыс істейтінін түсіндіріңдер.

2.Гальвани элементі жұмыс істеу үшін қандай реакциялар қолданылады?

3.Металл электродтарының потенциалына қандай факторлар әсер етеді?

4.Гальвани элементтерінің э.қ.к. қалай өлшенеді?

5.Концентрациялық гальвани элементі қалай жасалады?


Осы тақырып бойынша көрсетілген әдебиеттердің мына беттерін оқу керек:

1.Омаров Т.Т., Танашева М.Р. Бейорганикалық химия.Алматы: ЖШС РПБК «Дәуір», 2008. 442--445 беттер.

2.Кулажанов К.С., Сулейменова М.Ш. Неорганическая химия. Учебник для студентов специальностей 5В072700 и 5В072800, обучающихся по кредитной технологии/ Алматы: 2012. 193-201 стр.

3.Кабдулкаримова К.К., Омарова Н.М.,Абекова Р.С. Жалпы химия курсы бойынша есептер мен жаттығулар. – Семей,2012 – 63-67 беттер.
5.3 Электролиз. Катодтық және анодтық процестер.Электролиз заңдары.

Электролиттің балқымасы немесе электролиттің ерітіндісі арқылы тұрақты электр тоғы өткенде жеке электродтарда жүретін тотығу-тотықсыздану реакцияларын ЭЛЕКТРОЛИЗ дейді. Катодта (теріс электрод) тотықсыздану процесі, анодта (оң электрод) тотығу процесі жүреді.Электролиз жүргізуге көбінесе металл электродтары және металл емес электродтар да (мысалы графит) қолданылады. Металдан жасалған анодтар еритін (мысалы, мыстан, никельден жасалған) және ерімейтін (платинадан жасалған) болып бөлінеді.

Сұйытылған су ерітінділерінің электролизі кезінде КАТОДТЫҚ ПРОЦЕСС катионның электродтық потенциалымен анықталады.Оны судан тотықсызданатын сутегі ионының потенциалымен (-0,41 В) салыстырады:

1.Потенциалдары бұл саннан кем болса, металл ионы тотықсызданбайды. Катодта сутегі судан бөлінеді. 2 Н2О + 2 ē = Н2 + 2 ОН-

2.Потенциалдары бұл саннан көп болса, катодта металдар ионы тотықсызданады: Меn+ + nē → Me0

3.Металл потенциалы (-0,41 В) жақын болса, катодта сутегі де металл да тотықсызданады.



Анодтық процесс: Анод ерімейтін болса, онда анодта оттегісі жоқ қышқыл қалдығы (I-, Cl-, Br-, S2-, CN-) тотығады. Егер ерітіндіде оттегісі бар қышқыл қалдығы болса (SO42-, SO32-, NO3-, CO32-) онда анодта су молекуласы тотығады.

2 Н2О + 4 ē = О2 + 4 Н+

Егер анод еритін болса, онда анодтың өзі тотығады: Cu - 2ē= Cu2+. Электродта бөлініп шығатын заттардың массасын (m) Фарадей заңы бойынша, мына формуламен есептейді:

m= (I∙τ∙M (fэкв.B))/ F

I- тоқ күші, А; τ- электролит арқылы өткен тоқтың уақыты, с; M(fэкв.B)- затының эквивалентінің молярлық массасы, г/моль; F- Фарадей тұрақтысы, 96500 Кл/моль;

Электролиз кезінде электродта түзілген заттың мөлшері әр уақытта Фарадей заңдары бойынша алынуға тиісті теориялық мөлшерінен аз болады. Оның себебі электродтық ТТР қатар қосымша процестер де жүреді. Сондықтан электролиз кезінде негізгі өнімді алуға кеткен тоқ мөлшерін анықтау үшін тоқ бойынша шығым (Тш) деген түсінік қолданылады. Ол электролиз жағдайында алынған зат массасын (m1) Фарадей заңы бойынша алынуға тиісті массаға (m) қатынасына тең: Тш =m1/m∙100

Осы формула бойынша тоқтың неше проценті негізгі затты алуға жұмсалғаны анықталады.

Осы дәріс материалымен танысқан соң, мына мағлұматтарды :

Пирометаллургия, гидрометаллургия, бұл саладағы электролиздің маңызын, Фарадей заңдарының қолданылуын білу керек.
Өзін- өзі тексеру сұрақтары:

.Электролиз деген не?

2.Анод және катодта жүретін процестерді түсіндіріңдер.

3.Металды рафинадтау деген не? Ол қалай жүреді?

4.Электролиз заңдары.
Осы тақырып бойынша көрсетілген әдебиеттердің мына беттерін оқу керек:

1.Омаров Т.Т., Танашева М.Р. Бейорганикалық химия.Алматы: ЖШС РПБК «Дәуір», 2008. 442--445 беттер.

2.Кулажанов К.С., Сулейменова М.Ш. Неорганическая химия. Учебник для студентов специальностей 5В072700 и 5В072800, обучающихся по кредитной технологии/ Алматы: 2012. 201-209 стр.

3.Кабдулкаримова К.К., Омарова Н.М.,Абекова Р.С. Жалпы химия курсы бойынша есептер мен жаттығулар. – Семей,2012 – 67-69 беттер.
Коррозияның негізгі түрлері. Коррозия активаторлары және ингибиторлары

Коррозия деп металдардың және олардың құймаларының өзін қоршаған ортамен химиялық немесе электрохимиялық жолмен әрекеттесуі нәтижесінде бүлінуін айтады.

Коррозия процесінің механизмі химиялық және электрохимиялық болып екі топқа бөлінеді.

Жүйеде электр тоғы түзілмей металдардың бүлінуін химиялық коррозия дейді. Химиялық коррозия кезінде металдар өзін қоршаған әр түрлі газдармен, электролит емес заттармен әрекеттесіп, бүлінеді. Электрохимиялық коррозия металдар сумен, электролиттер ерітіндісімен не дымқыл ауамен жанасқанда жүреді. Техникада қолданылатын металдарда әр уақытта қоспалар болады. Сондықтан мұндай металдар электролитпен жанасқанда көптеген микрогальвани элементтер жұмыс істеп, активті металл электрондарын беріп, бүлінеді. Активті металл-анод, қоспа-катод болса, анодта тотығу процессі Ме- nē → Men+, катодта сутегінің не оттегінің тотықсыздануы жүреді: 2 Н++ 2ē → 2 Н0 – Н2, егер рН<7

О2+ 4ē +2 Н2О →4 ОН-, егер рН>7

Металдың бұзылу жылдамдығы электродтық потенциалдар айырмасы неғұрлым көп болған сайын және ауа дымқылдығы көп болған сайын тез жүреді. Металдар өте таза болса (метеориттік темір) коррозияға ұшырамайды.

2. Стимулятор мен активаторлар деп аталатын кей заттар (хлоридтер, фторидтер, сульфидтер, нитраттар, бромидтер, иодидтер) коррозияны тездетеді. Мысалы, теңіз суында хлорид болғандықтан өзен суы мен көл суынан көп есе коррозия тез жүреді.



Ингибиторлар керісінше коррозияны тежейді. Халық шаруашылығына металл коррозиясы өте көп зиян келтіреді. Коррозияны толық болдырмауға болмайды, бірақ оның жылдамдығын көпке азайтуға болады. Ол үшін мынандай әдістер қолданылады: ортаның құрамын өзгерту, түрлі затпен металдарды қаптау (металл мен металл емеспен), электрохимиялық қорғау, металдарға басқа металдар қосу.

Осы дәріс материалымен танысқан соң, мына мағлұматтарды :

Металдар коррозиясы(химиялық және электрохимиялық) және металдарды коррозиядан қорғау әдістерін білу керек.
Өзін- өзі тексеру сұрақтары:
1.Металдар коррозиясы деген не?

2.Коррозияның қандай түрлерін білесіңдер?

3.Электрохимиялық коррозияның химиялық коррозиядан айырмашылығы неде?

4.Коррозиялық микрогальвани элементтері неге пайда болады?

5.Қандай факторлар коррозия жылдамдығына әсер етеді?

6.Металдарды коррозиядан қорғау әдістері.Қысқаша әр әдісті сипатта.

7.Қандай заттарды ингибиторлар деп атайды?
Осы тақырып бойынша көрсетілген әдебиеттердің мына беттерін оқу керек:

1.Омаров Т.Т., Танашева М.Р. Бейорганикалық химия.Алматы: ЖШС РПБК «Дәуір», 2008. 442--445 беттер.

2.Кулажанов К.С., Сулейменова М.Ш. Неорганическая химия. Учебник для студентов специальностей 5В072700 и 5В072800, обучающихся по кредитной технологии/ Алматы: 2012. 201-209 стр.

3.Кабдулкаримова К.К., Омарова Н.М.,Абекова Р.С. Жалпы химия курсы бойынша есептер мен жаттығулар. – Семей,2012 – 67-69 беттер.

Модуль 6. Координациялық қосылыстар

6.1 Химиялық байланыстар, қасиеттері;

6.2 Комплексті қосылыстар

Дәрістер №14-15. Химиялық байланыстар, қасиеттері
Химияның негізгі мәселерінің бірі – химиялық байланыстың табиғаты жөніндегі мәселе. Химиялық қосылыстардың көп түрлілігін, түзілу мәнісін, құрамы мен құрылысын және қасиеттерін білу үшін түрлі элементтердің атомдарының бірімен-бірінің қосылып молекула түзілуінің, молекула мен молекуланың қосылуының себебін , яғни химиялық байланыстың табиғатын білу қажет. Химиялық байланыс түзуге валенттілік электрондар қатысады:

s- p- элементтерінде сыртқы, d- элементтерде сыртқы s пен қоса ішкі d –қабатшасындағы электрондар.

Химиялық қосылыстарда валенттілік электрондардың орналасу тәртібіне байланысты ковалентті, ионды, металдық байланыстар деп бөледі.

Коваленттік байланыс. Молекулалардың атомдардан электрондар жұбы арқылы (бір, екі, үш) түзілуін ковалентті байланыс деп атайды. Бұл айланыс екі түрлі механизм бойынша түзіледі: алмасу механизмі - әр элемент байланысқа өзінің эектронын береді, мысалы,сутегі молекуласы түзілгенде Н + Н  Н  Н; донорно-акцепторлық механизм - бір атомның электрон жұбы (донор) ортақ болады, ал екінші атомнан бос орбитал ( акцептор) болады: Н+ + NH3  NH+4 . Кез келген химиялық байланыс түзілгенде жүйенің энергиясы төмендейді. Химиялық байланыс түзілгенде атомдардың алғашқы және соңғы күйлерінің энергияларының айырымы байланыс энергиясы деп аталады, оның мәні 125-1050 кДж/моль арасында. Екі атом ядроларының арасы байланыс ұзындығы деп аталады - d. Ортақ электрондар жұбын сызықпен де белгілейді, байланыстың еселігі артқан сайын байланыс ұзындығы азайып, байланыс энергиясы артады: С – С, С =С , С  С сәйкесінше (нм және кДж) 0,154 және 348 ; 0,135 және 598; 0,120 және 838. Ковалентті байланыстың қасиеттері: қанығу, бағытталу және поляризациялану. Ковалентті байланыстың қанығуын элемент атомындағы жұптаспаған электрондардың болуымен түсіндіреді. Атомдағы жұптаспаған электрондар санымен не қозған кезде пайда болған жұптаспаған электрондар санымен анықталған валенттілікті спинваленттілік деп атайды. Сонымен валенттілік деген элементтің химиялық байланыс түзе алу қабілеті. Паули принципі бойынша АО – да тек екі электрон ғана бола алады, ал химиялық байланыс түзілгенде электрондар жұптасады, яғни бір ұяшықта тек 2 электрон болады (қанығады).

Молекула ішіндегі атомдардың химиялық байланыстарының бағытталуы деп қосылушы атомдардың валенттілік электрондары бұлттарының (орбитальдары) тұйықтасып бірін-бірі қаптау бағыттары. Электрон бұлттарының пішіні әр түрлі болатындықтан олардың өзара қауышуы әр түрлі әдістермен іске асады. Қауышу әдістеріне байланысты - , - , - байланыстар болады.

Сигма – байланыста ( -) атомдар қосылатын сызық бойымен электрон бұлттары қауышады. Пи – байланыс ( - ) атомдар қосылатын сызықтың екі жағынан электрон бұлттары қауышса, түзіледі. Дельта- байланыс (-) параллель жазықтықта орналасқан d – электрон бұлттарының барлық төрт қалқаншаларының қауышуымен түзіледі. Сонымен , s – орбитальдар тек  - байланыс, р – электрондар - және  - байланыстар, ал d – орбитальдар  - ,  - ,  - байланыстар түзеді.

Гибридті байланыстар . Элементтердің көпшілігі химиялық байланыс түзу үшін, энергетикалық күйі әр түрлі электрондарды пайдаланады. Мысалы, Ве, В, С атомдарының негізгі күйі мен қозған күйге көшкендегі сыртқы электрондық қабатының формулалары: Ве ... 2 s2 2p  Ве* ... 2 s1 2p1 ; В ... 2s2 2p1  B* 2s1 2p2; С ...2s2 2p2  C* …2s12p3 . Бұл электрондар әр күйде болғандықтан, олардың электрон бұлттары (орбитальдары) да әр түрлі, бірақ бұл жалқы электрондар басқа реакцияласатын атомдардың электрондарымен қосақтасып жаңа орбиталь түзгенде бір-біріне әсерінен алғашқы орбитальдардың пішіні өзгеріп, жаңа, бірақ барлығы бір түрлі орбитальдар түзеді.Осы өзгерісті гибридизация деп атайды. Гибридизация нәтижесінде түзілген химиялық байланыс берігірек болады, әр молекуладағы электрон тығыздығы симметриялы орналасқандықтан жалпы энергия ұтымы болады, сондықтан энергетикалық жағынан тиімді. sp - гибридтелу бериллий, мырыш, кадмий, сынап сияқты элементтер галогенидтер түзгенде байқалады, арасындағы бұрыш 180 болады. sp2 - гибридтелу бор қосылыстарында болады, байланыстар бір жазықтың бетінде үш жаққа бағытталған, арасындағы бұрышы 120 болады, ал sp3 - гибридтелуді СН4 молекуласында, түзілетін төрт гибрид бұлт кеңістікте симметриялы түрде орналасып, тетраэдрдың төрт ұшына қарай бағытталады, арасындағы бұрыш 109 тең .

Түзілген молекуланың ішінде ортақ электрон жұбының орналасу симметриясына байланысты ковалентті байланыстың екі түрі: полярлы (полюсті) және полярсыз (полюссіз), яғни таза ковалентті, байланыс болады. Полярсыз молекулаларда электрон жұптары ядролар арасында симметриялы орналасады: НН, СІСІ, ал полярлы молекулаларда ядроаралық электрондық тығыздық электртерістігі жоғарырақ атомға қарай ығысады: Н СІ, Н О Н. Зарядтардың ауырлық орталығы (+) және (-) сәйкес келмейді , екі мәндері бірдей, бірақ зарядтар белгісі қарама-қарсы жүйе (электр диполі) пайда болады: + және - , бұл зарядтардың ара қатынасы диполь ұзындығы l деп аталады. Байланыстың полярлылығының дәрежесін дипольдың электр моментінің мәнімен анықтайды () :  = q I . q – электрон заряды, мәні 1,6010-19 Кл.

Тәжірибе арқылы дипольдың электр моментін анықтап, сол мән бойынша диполь ұзындығын табады: l =  / q.

Диполь моменті – векторлық шама, яғни бағыттылығымен сипатталады (шартты түрде оң зарядтан теріс зарядқа қарай).

Ковалентті байланыстың поляризациялануы - сыртқы электр өрісі әсерінен полярлы болу қабілеттілігі.

Ионды байланыс. Ядроаралық электрон тығыздығы электртерістігі жоғары атомға қарай толық ығызса, диполь ұзындығы байланыс ұзындығына тең болады: l = d , сонда атомдар оң және теріс зарядты иондарға айналады, олардың араларында электростатикалық тартылу күші пайда болады. Осындай байланысты ионды деп атайды. Полярлылық дәрежесі не байланыс иондылығы ( і ) мына қатынаспен l/d анықталады: шеткі мәндері 0 мен 1 арасында, яғни таза ковалентті және таза ионды. Көп жағдайда ортадағы мәнде болады, мысалы, НСІ үшін d = 0.128 нм және l = 0,0225нм, сонда і = l/d = 0,0225/0,1280 = 0,18(0,2) . Сонымен, Н- СІ байланыс иондығы 20% ( 18%) , атомдардың эффективті заряды : +0,2 және -0,2.

Атомдар жұбы үшін электртерістік (ЭТ) мәндерінің айырымы , диполь ұзындығы және эффективті зарядтар мәні көп болған сайын , байланыс иондығы да көп болады. Толық, яғни 100% электрондық тығыздықтың ығысуы болмайды, себебі иондардың өзара поляризациясы әсер етеді, ең көп иондылық сілтілік металдардың галогандермен қосылыстарында.

Ионды байланыстың (ковалентті байланыстан айырмашылығы) 1) кесімді бағыты жоқ , ионды қосылыстарда иондарды шар тәрізді деп , олардың күш өрісі кеңістікте барлық жаққа біркелкі тараған деп , әрбір ион қарсы мәнді ионды қай жағынан келсе де өзіне тартып ала береді деп қарауға болады;

2) қанықпаған, қарсы мәнді екі ион кездескенде олардың күш өрістері бірін-бірі толығымен қанықтырмайды, сондықтан ол иондардың бос бағыттарының , қарсы мәнді басқа иондарды өзіне тарту қабілеті болады.



Осы дәріс материалымен танысқан соң, мына мағлұматтарды :

Ковалентті, ионды, металдық байланыстар; Ковалентті байланыстың қасиеттері: қанығу, бағытталу; поляризациялану. Ионды байланыстың қасиеттерін: қанықпау, бағытталмау; Донорлы-акцепторлы механизм; Валенттілік байланыс теориясы мен молекулярлық байланыс теориясы туралы түсініктерді білу қажет.
Өзін- өзі тексеру сұрақтары:
1.Химиялық байланыстың түзілу механизмдері;

2.Ковалентті байланыс, қасиеттері;

3.Иондық байланыс, қасиеттері;

4.Сутектік байланыс, оның тірі табиғаттағы ролі.

5.Химиялық байланыстың сандық сипаттамаларын - байланыс энергиясы, байланыс ұзындығы, валенттілік бұрышы, байланыс реті - мысалдармен түсіндіру керек;

6.Химиялық байланыстың негізгі типтерін көрсетіп, - , - байланыстарды мысалдар арқылы түсіндіру керек.


Осы тақырып бойынша көрсетілген әдебиеттердің мына беттерін оқу керек:

1.Омаров Т.Т., Танашева М.Р. Бейорганикалық химия.Алматы: ЖШС РПБК «Дәуір», 2008. 442--445 беттер.

2.Кулажанов К.С., Сулейменова М.Ш. Неорганическая химия. Учебник для студентов специальностей 5В072700 и 5В072800, обучающихся по кредитной технологии/ Алматы: 2012. 201-209 стр.

3.Кабдулкаримова К.К., Омарова Н.М.,Абекова Р.С. Жалпы химия курсы бойынша есептер мен жаттығулар. – Семей,2012 – 67-69 беттер.

Комплексті қосылыстардың құрлысы. Комплексті қосылыстардың жіктелуі және номенклатурасы

Комплексті қосылыстардың диссоциациясы , тұрақсыздық константасы
Коваленттік не иондық байланыс арқылы атомдардан молекулалық қосылыс түзілсе, олар бірінші ретті деп аталады. Бірінші ретті қосылыстардың электронейтрал молекулаларының өзара әрекеттесуінен түзілген көптеген қосылыстар болады. Оларды жоғары ретті молекулалар немесе комплексті қосылыстар деп атайды: NH3 + HCl → NH3•HCl → NH4Cl

Комплекс қосылыстағы химиялық байланыстың түзілу механизмін қарастырып, комплекс қосылысқа анықтама беруге болады. Мысалы: NH4Cl молекуласы қалай түзіледі

Барлық комплекс қосылыстарда донорлы-акцепторлы (д.-а.) байланыс болады. Комплексті қосылыстар дегеніміз донорлы-акцепторлы байланыс арқылы түзілетін жоғарғы ретті қосылыстар.

Комплексті қосылыстарда:

1.Комплекс түзуші, олар көбінесе оң зарядталған металл иондары болады, көбінесе d-элементтері жатады.

2.Комплекс түзушінің маңайында лигандтар орналасады, олар теріс зарядталған аниондар немесе электронейтрал молекулалар.

3.Лигандтар саны координациялық сан деп аталады.

4.Комплекс түзуші мен лигандтар комплексті қосылыстарының ішкі сферасын түзеді, ол квадрат жақшаға алынады.

5.Ішкі сфераға кірмеген иондар сыртқы сфераны құрайды.

2. Катионды комплексті қосылысты атағанда, алдымен катионның, одан соң анионның атын атайды. Ішкі сферада лигандалар түрінде электронейтрал молекулалар болса, олардың аттарын өзгеріссіз атайды. Мысалы: С6Н6- бензол, С2Н4- этилен, N2Н4- гидразин, Н2О- аква, NН3-аммин. Саны бірнешеу болса, олардың санын грек тілінде көрсетеді: 2-ди, 3-три, 4-тетра, 5-пента, 6-гекса, 7-гепта, 8-окта. Ішкі сфераға кіретін анион- лигандтарының аттарын атау үшін олардың әрқайсысының аттарына «О» жұрнағы қосылып айтылады. Мысалы, бромо-Br-, О2—оксо, N3—нитридо, ОНгидроксо, СNциано, СО32—карбонато, РО43—фосфато, S2O32--тиосульфато, С2О42—оксалато т.б.

Осыдан кейін комплекс түзушінің атын ілік септігінде атап, оның атынан кейін рим сандарымен жақша ішінде комплекс түзушінің зарядын көрсетеді. Ең соңында сыртқы сфераның анионның атына «ы» деген жалғау қосып айтылады.

[Ag(NH3)2]Cl- диаммин күміс (І) хлориді;

[Cu(H2O)4]SO4∙H2O- тетрааква мыс (ІІ) сульфат гидраты;

[Pt(H2O)(NH3)2OH]NO3- гидроксодиамминаква платина (ІV) нитраты;

[Ru(SO2)(NH3)4Cl]Cl- хлоротетраммин күкірт диоксид рутений (ІІ) хлориді.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет