В предыдущей лекции мы говорили про три составляющих реляционной модели данных. Две из них - структурную и целостную составляющие - мы рассмотрели более или менее подробно, а манипуляционной части реляционной модели данных посвящается эта лекция.
Как мы отмечали в предыдущей лекции, в манипуляционной составляющей определяются два базовых механизма манипулирования реляционными данными - основанная на теории множеств реляционная алгебра и базирующееся на математической логике (точнее, на исчислении предикатов первого порядка) реляционное исчисление. В свою очередь, обычно рассматриваются два вида реляционного исчисления - исчисление доменов и исчисление предикатов.
Все эти механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями реляционных БД и результатом вычисления также являются отношения. В результате любое выражение или формула могут интерпретироваться как отношения, что позволяет использовать их в других выражениях или формулах.
Как мы увидим, алгебра и исчисление обладают большой выразительной мощностью: очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. Именно по этой причине именно эти механизмы включены в реляционную модель данных. Конкретный язык манипулирования реляционными БД называется реляционно полным, если любой запрос, выражаемый с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления, может быть выражен с помощью одного оператора этого языка.
Известно (и мы не будем это доказывать), что механизмы реляционной алгебры и реляционного исчисления эквивалентны, т.е. для любого допустимого выражения реляционной алгебры можно построить эквивалентную (т.е. производящую такой же результат) формулу реляционного исчисления и наоборот. Почему же в реляционной модели данных присутствуют оба эти механизма?
Дело в том, что они различаются уровнем процедурности. Выражения реляционной алгебры строятся на основе алгебраических операций (высокого уровня), и подобно тому, как интерпретируются арифметические и логические выражения, выражение реляционной алгебры также имеет процедурную интерпретацию. Другими словами, запрос, представленный на языке реляционной алгебры, может быть вычислен на основе вычисления элементарных алгебраических операций с учетом их старшинства и возможного наличия скобок. Для формулы реляционного исчисления однозначная интерпретация, вообще говоря, отсутствует. Формула только устанавливает условия, которым должны удовлетворять кортежи результирующего отношения. Поэтому языки реляционного исчисления являются более непроцедурными или декларативными.
Поскольку механизмы реляционной алгебры и реляционного исчисления эквивалентны, то в конкретной ситуации для проверки степени реляционности некоторого языка БД можно пользоваться любым из этих механизмов.
Заметим, что крайне редко алгебра или исчисление принимаются в качестве полной основы какого-либо языка БД. Обычно (как, например, в случае языка SQL) язык основывается на некоторой смеси алгебраических и логических конструкций. Тем не менее, знание алгебраических и логических основ языков баз данных часто бывает полезно на практике.
В нашем изложении мы в основном следуем подходу Дейта, примененному (хотя и не изобретенному) им в последнем издании книги "Введение в системы баз данных". Для экономии времени и места мы не будем вводить каких-либо строгих синтаксических конструкций, а в основном ограничимся рассмотрением материала на содержательном уровне.
5.1. Реляционная алгебра
Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
-
объединения отношений;
-
пересечения отношений;
-
взятия разности отношений;
-
прямого произведения отношений.
Специальные реляционные операции включают:
-
ограничение отношения;
-
проекцию отношения;
-
соединение отношений;
-
деление отношений.
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
5.1.1. Общая интерпретация реляционных операций
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
-
При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
-
Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.
-
Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение - первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.
-
При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
-
Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
-
При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.
-
При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
-
У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
-
Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
-
Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
5.1.2. Замкнутость реляционной алгебры и операция переименования
Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.
Заголовок отношения представляет собой множество пар <имя-атрибута, имя-домена>. Если посмотреть на общий обзор реляционных операций, приведенный в предыдущем подразделе, то видно, что домены атрибутов результирующего отношения однозначно определяются доменами отношений-операндов. Однако с именами атрибутов результата не всегда все так просто.
Например, представим себе, что у отношений-операндов операции прямого произведения имеются одноименные атрибуты с одинаковыми доменами. Каким был бы заголовок результирующего отношения? Поскольку это множество, в нем не должны содержаться одинаковые элементы. Но и потерять атрибут в результате недопустимо. А это значит, что в этом случае вообще невозможно корректно выполнить операцию прямого произведения.
Аналогичные проблемы могут возникать и в случаях других двуместных операций. Для их разрешения в состав операций реляционной алгебры вводится операция переименования. Ее следует применять в любом случае, когда возникает конфликт именования атрибутов в отношениях - операндах одной реляционной операции. Тогда к одному из операндов сначала применяется операция переименования, а затем основная операция выполняется уже безо всяких проблем.
В дальнейшем изложении мы будем предполагать применение операции переименования во всех конфликтных случаях.
5.1.3. Особенности теоретико-множественных операций реляционной алгебры
Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями.
Начнем с операции объединения (все, что будет говориться по поводу объединения, переносится на операции пересечения и взятия разности). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения произвольных двух отношений (с разными схемами), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т.е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.
Все эти соображения приводят к появлению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. Более точно, это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене.
Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения "почти" совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа соединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования.
Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является очевидно избыточным, поскольку известно, что любая из этих операций выражается через две других. Тем не менее, Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей потенциального пользователя системы реляционных БД, далекого от математики.
Другие проблемы связаны с операцией взятия прямого произведения двух отношений. В теории множеств прямое произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Поскольку отношения являются множествами, то и для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут являться не кортежи, а пары кортежей.
Поэтому в реляционной алгебре используется специализированная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, являющийся конкатенацией (или слиянием) одного кортежа первого отношения и одного кортежа второго отношения.
Но теперь возникает второй вопрос - как получить корректно сформированный заголовок отношения-результата? Очевидно, что проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами.
Эти соображения приводят к появлению понятия совместимости по взятию расширенного прямого произведения. Два отношения совместимы по взятию прямого произведения в том и только в том случае, если множества имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть сделаны совместимыми по взятию прямого произведения путем применения операции переименования к одному из этих отношений.
Следует заметить, что операция взятия прямого произведения не является слишком осмысленной на практике. Во-первых, мощность ее результата очень велика даже при допустимых мощностях операндов, а во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Как мы увидим немного ниже, основной смысл включения операции расширенного прямого произведения в состав реляционной алгебры состоит в том, что на ее основе определяется действительно полезная операция соединения.
По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т. е., если обозначить через OP любую из четырех операций, то (A OP B) OP C = A (B OP C), и следовательно, без введения двусмысленности можно писать A OP B OP C (A, B и C - отношения, обладающие свойствами, требуемыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т.е. A OP B = B OP A.
5.1.4. Специальные реляционные операции
В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление.
Операция ограничения
Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа.
В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения-операнда, а в тело входят те кортежи отношения-операнда, для которых значением условия ограничения является true.
Пусть UNION обозначает операцию объединения, INTERSECT - операцию пересечения, а MINUS - операцию взятия разности. Для обозначения операции ограничения будем использовать конструкцию A WHERE comp, где A - ограничиваемое отношение, а comp - простое условие сравнения. Пусть comp1 и comp2 - два простых условия ограничения. Тогда по определению:
-
A WHERE comp1 AND comp2 обозначает то же самое, что и (A WHERE comp1) INTERSECT (A WHERE comp2)
-
A WHERE comp1 OR comp2 обозначает то же самое, что и (A WHERE comp1) UNION (A WHERE comp2)
-
A WHERE NOT comp1 обозначает то же самое, что и A MINUS (A WHERE comp1)
С использованием этих определений можно использовать операции ограничения, в которых условием ограничения является произвольное булевское выражение, составленное из простых условий с использованием логических связок AND, OR, NOT и скобок.
На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.
Операция взятия проекции
Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A.
Результатом проекции отношения A по списку атрибутов a1, a2, ..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2, ..., an, и с телом, состоящим из кортежей вида 1:v1, a2:v2, ..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2, ..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.
Операция соединения отношений
Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения.
Тогда по определению результатом операции сравнения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B.
Если внимательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b - имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.
Хотя операция соединение в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры. Заметим также, что в практических реализациях соединение обычно не выполняется именно как ограничение прямого произведения. Имеются более эффективные алгоритмы, гарантирующие получение такого же результата.
Имеется важный частный случай соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединения, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации.
Операция естественного соединения применяется к паре отношений A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B - это спроектированный на ab результат эквисоединения A и B по A/c и BBC. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомпозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.
Операция деления отношений
Эта операция наименее очевидна из всех операций реляционной алгебры и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения - A с заголовком {a1, a2, ..., an, b1, b2, ..., bm} и B с заголовком {b1, b2, ..., bm}. Будем считать, что атрибут bi отношения A и атрибут bi отношения B не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов {aj} составным атрибутом a, а множество атрибутов {bj} - составным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения A(a,b) на унарное отношение B(b).
Результатом деления A на B является унарное отношение C(a), состоящее из кортежей v таких, что в отношении A имеются кортежи такие, что множество значений {w} включает множество значений атрибута b в отношении B.
Предположим, что в базе данных сотрудников поддерживаются два отношения: СОТРУДНИКИ ( ИМЯ, ОТД_НОМЕР ) и ИМЕНА ( ИМЯ ), причем унарное отношение ИМЕНА содержит все фамилии, которыми обладают сотрудники организации. Тогда после выполнения операции реляционного деления отношения СОТРУДНИКИ на отношение ИМЕНА будет получено унарное отношение, содержащее номера отделов, сотрудники которых обладают всеми возможными в этой организации именами.
5.2. Реляционное исчисление
Предположим, что мы работаем с базой данных, обладающей схемой СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП, ОТД_НОМ) и ОТДЕЛЫ (ОТД_НОМ, ОТД_КОЛ, ОТД_НАЧ), и хотим узнать имена и номера сотрудников, являющихся начальниками отделов с количеством сотрудников больше 50.
Если бы для формулировки такого запроса использовалась реляционная алгебра, то мы получили бы алгебраическое выражение, которое читалось бы, например, следующим образом:
-
выполнить соединение отношений СОТРУДНИКИ и ОТДЕЛЫ по условию СОТР_НОМ = ОТД_НАЧ;
-
ограничить полученное отношение по условию ОТД_КОЛ > 50;
-
спроецировать результат предыдущей операции на атрибут СОТР_ИМЯ, СОТР_НОМ.
Мы четко сформулировали последовательность шагов выполнения запроса, каждый из которых соответствует одной реляционной операции. Если же сформулировать тот же запрос с использованием реляционного исчисления, которому посвящается этот раздел, то мы получили бы формулу, которую можно было бы прочитать, например, следующим образом: Выдать СОТР_ИМЯ и СОТР_НОМ для сотрудников таких, что существует отдел с таким же значением ОТД_НАЧ и значением ОТД_КОЛ большим 50.
Во второй формулировке мы указали лишь характеристики результирующего отношения, но ничего не сказали о способе его формирования. В этом случае система должна сама решить, какие операции и в каком порядке нужно выполнить над отношениями СОТРУДНИКИ и ОТДЕЛЫ. Обычно говорят, что алгебраическая формулировка является процедурной, т.е. задающей правила выполнения запроса, а логическая - описательной (или декларативной), поскольку она всего лишь описывает свойства желаемого результата. Как мы указывали в начале лекции, на самом деле эти два механизма эквивалентны и существуют не очень сложные правила преобразования одного формализма в другой.
5.2.1. Кортежные переменные и правильно построенные формулы
Реляционное исчисление является прикладной ветвью формального механизма исчисления предикатов первого порядка. Базисными понятиями исчисления являются понятие переменной с определенной для нее областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы.
В зависимости от того, что является областью определения переменной, различаются исчисление кортежей и исчисление доменов. В исчислении кортежей областями определения переменных являются отношения базы данных, т.е. допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены, на которых определены атрибуты отношений базы данных, т.е. допустимым значением каждой переменной является значение некоторого домена. Мы рассмотрим более подробно исчисление кортежей, а в конце лекции коротко опишем особенности исчисления доменов.
В отличие от раздела, посвященного реляционной алгебре, в этом разделе нам не удастся избежать использования некоторого конкретного синтаксиса, который мы, тем не менее, формально определять не будем. Необходимые синтаксические конструкции будут вводиться по мере необходимости. В совокупности, используемый синтаксис близок, но не полностью совпадает с синтаксисом языка баз данных QUEL, который долгое время являлся основным языком СУБД Ingres.
Для определения кортежной переменной используется оператор RANGE. Например, для того, чтобы определить переменную СОТРУДНИК, областью определения которой является отношение СОТРУДНИКИ, нужно употребить конструкцию
RANGE СОТРУДНИК IS СОТРУДНИКИ
Как мы уже говорили, из этого определения следует, что в любой момент времени переменная СОТРУДНИК представляет некоторый кортеж отношения СОТРУДНИКИ. При использовании кортежных переменных в формулах можно ссылаться на значение атрибута переменной (это аналогично тому, как, например, при программировании на языке Си можно сослаться на значение поля структурной переменной). Например, для того, чтобы сослаться на значение атрибута СОТР_ИМЯ переменной СОТРУДНИК, нужно употребить конструкцию СОТРУДНИК.СОТР_ИМЯ.
Правильно построенные формулы (WFF - Well-Formed Formula) служат для выражения условий, накладываемых на кортежные переменные. Основой WFF являются простые сравнения (comparison), представляющие собой операции сравнения скалярных значений (значений атрибутов переменных или литерально заданных констант). Например, конструкция "СОТРУДНИК.СОТР_НОМ = 140" является простым сравнением. По определению, простое сравнение является WFF, а WFF, заключенная в круглые скобки, является простым сравнением.
Более сложные варианты WFF строятся с помощью логических связок NOT, AND, OR и IF ... THEN. Так, если form - WFF, а comp - простое сравнение, то NOT form, comp AND form, comp OR form и IF comp THEN form являются WFF.
Наконец, допускается построение WFF с помощью кванторов. Если form - это WFF, в которой участвует переменная var, то конструкции EXISTS var (form) и FORALL var (form) представляют wff.
Переменные, входящие в WFF, могут быть свободными или связанными. Все переменные, входящие в WFF, при построении которой не использовались кванторы, являются свободными. Фактически, это означает, что если для какого-то набора значений свободных кортежных переменных при вычислении WFF получено значение true, то эти значения кортежных переменных могут входить в результирующее отношение. Если же имя переменной использовано сразу после квантора при построении WFF вида EXISTS var (form) или FORALL var (form), то в этой WFF и во всех WFF, построенных с ее участием, var - это связанная переменная. Это означает, что такая переменная не видна за пределами минимальной WFF, связавшей эту переменную. При вычислении значения такой WFF используется не одно значение связанной переменной, а вся ее область определения.
Пусть СОТР1 и СОТР2 - две кортежные переменные, определенные на отношении СОТРУДНИКИ. Тогда, WFF EXISTS СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если во всем отношении СОТРУДНИКИ найдется кортеж (связанный с переменной СОТР2) такой, что значение его атрибута СОТР_ЗАРП удовлетворяет внутреннему условию сравнения. WFF FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если для всех кортежей отношения СОТРУДНИКИ (связанных с переменной СОТР2) значения атрибута СОТР_ЗАРП удовлетворяют условию сравнения.
На самом деле, правильнее говорить не о свободных и связанных переменных, а о свободных и связанных вхождениях переменных. Легко видеть, что если переменная var является связанной в WFF form, то во всех WFF, включающих данную, может использоваться имя переменной var, которая может быть свободной или связанной, но в любом случае не имеет никакого отношения к вхождению переменной var в WFF form. Вот пример:
EXISTS СОТР2 (СОТР1.СОТР_ОТД_НОМ = СОТР2.СОТР_ОТД_НОМ) AND
FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)
Здесь мы имеем два связанных вхождения переменной СОТР2 с совершенно разным смыслом.
5.2.2. Целевые списки и выражения реляционного исчисления
Итак, WFF обеспечивают средства формулировки условия выборки из отношений БД. Чтобы можно было использовать исчисление для реальной работы с БД, требуется еще один компонент, который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком (target_list).
Целевой список строится из целевых элементов, каждый из которых может иметь следующий вид:
-
var.attr, где var - имя свободной переменной соответствующей WFF, а attr - имя атрибута отношения, на котором определена переменная var;
-
var, что эквивалентно наличию подсписка var.attr1, var.attr2, ..., var.attrn, где attr1, attr2, ..., attrn включает имена всех атрибутов определяющего отношения;
-
new_name = var.attr; new_name - новое имя соответствующего атрибута результирующего отношения.
Последний вариант требуется в тех случаях, когда в WFF используются несколько свободных переменных с одинаковой областью определения.
Выражением реляционного исчисления кортежей называется конструкция вида target_list WHERE wff. Значением выражения является отношение, тело которого определяется WFF, а набор атрибутов и их имена - целевым списком.
5.2.3. Реляционное исчисление доменов
В исчислении доменов областью определения переменных являются не отношения, а домены. Применительно к базе данных СОТРУДНИКИ-ОТДЕЛЫ можно говорить, например, о доменных переменных ИМЯ (значения - допустимые имена) или НОСОТР (значения - допустимые номера сотрудников).
Основным формальным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R - это n-арное отношение с атрибутами a1, a2, ..., an, то условие членства имеет вид
R (ai1:vi1, ai2:vi2, ..., aim:vim) (m <= n),
где vij - это либо литерально задаваемая константа, либо имя кортежной переменной. Условие членства принимает значение true в том и только в том случае, если в отношении R существует кортеж, содержащий указанные значения указанных атрибутов. Если vij - константа, то на атрибут aij задается жесткое условие, не зависящее от текущих значений доменных переменных; если же vij - имя доменной переменной, то условие членства может принимать разные значения при разных значениях этой переменной.
Во всех остальных отношениях формулы и выражения исчисления доменов выглядят похожими на формулы и выражения исчисления кортежей. В частности, конечно, различаются свободные и связанные вхождения доменных переменных.
Для примера сформулируем с использованием исчисления доменов запрос "Выдать номера и имена сотрудников, не получающих минимальную заработную плату" (будем считать для простоты, что мы определили доменные переменные, имена которых совпадают с именами атрибутов отношения СОТРУДНИКИ, а в случае, когда требуется несколько доменных переменных, определенных на одном домене, мы будем добавлять в конце имени цифры):
СОТР_НОМ, СОТР_ИМЯ WHERE EXISTS СОТР_ЗАРП1
(СОТРУДНИКИ (СОТР_ЗАРП1) AND
СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП) AND
СОТР_ЗАРП > СОТР_ЗАРП1)
Реляционное исчисление доменов является основой большинства языков запросов, основанных на использовании форм. В частности, на этом исчислении базировался известный язык Query-by-Example, который был первым (и наиболее интересным) языком в семействе языков, основанных на табличных формах.
Лекция 6. Проектирование реляционных БД
При проектировании базы данных решаются две основных проблемы:
-
Каким образом отобразить объекты предметной области в абстрактные объекты модели данных, чтобы это отображение не противоречило семантике предметной области и было по возможности лучшим (эффективным, удобным и т.д.)? Часто эту проблему называют проблемой логического проектирования баз данных.
-
Как обеспечить эффективность выполнения запросов к базе данных, т.е. каким образом, имея в виду особенности конкретной СУБД, расположить данные во внешней памяти, создание каких дополнительных структур (например, индексов) потребовать и т.д.? Эту проблему называют проблемой физического проектирования баз данных.
В случае реляционных баз данных трудно представить какие-либо общие рецепты по части физического проектирования. Здесь слишком много зависит от используемой СУБД. Например, при работе с СУБД Ingres можно выбирать один из предлагаемых способов физической организации отношений, при работе с System R следовало бы прежде всего подумать о кластеризации отношений и требуемом наборе индексов и т.д. Поэтому мы ограничимся вопросами логического проектирования реляционных баз данных, которые существенны при использовании любой реляционной СУБД.
Более того, мы не будем касаться очень важного аспекта проектирования - определения ограничений целостности (за исключением ограничения первичного ключа). Дело в том, что при использовании СУБД с развитыми механизмами ограничений целостности (например, SQL-ориентированных систем) трудно предложить какой-либо общий подход к определению ограничений целостности. Эти ограничения могут иметь очень общий вид, и их формулировка пока относится скорее к области искусства, чем инженерного мастерства. Самое большее, что предлагается по этому поводу в литературе, это автоматическая проверка непротиворечивости набора ограничений целостности.
Так что будем считать, что проблема проектирования реляционной базы данных состоит в обоснованном принятии решений о том,
-
из каких отношений должна состоять БД и
-
какие атрибуты должны быть у этих отношений.
6.1. Проектирование реляционных баз данных с использованием нормализации
Сначала будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих лучшими свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая.
Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером набора ограничений является ограничение первой нормальной формы - значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию.
В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм:
-
первая нормальная форма (1NF);
-
вторая нормальная форма (2NF);
-
третья нормальная форма (3NF);
-
нормальная форма Бойса-Кодда (BCNF);
-
четвертая нормальная форма (4NF);
-
пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).
Основные свойства нормальных форм:
-
каждая следующая нормальная форма в некотором смысле лучше предыдущей;
-
при переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются.
В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы.
Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Для дальнейшего изложения нам потребуются несколько определений.
Определение 1. Функциональная зависимость
В отношении R атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: R.X (r) R.Y.
Определение 2. Полная функциональная зависимость
Функциональная зависимость R.X (r) R.Y называется полной, если атрибут Y не зависит функционально от любого точного подмножества X.
Определение 3. Транзитивная функциональная зависимость
Функциональная зависимость R.X -> R.Y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости R.X -> R.Z и R.Z -> R.Y и отсутствует функциональная зависимость R.Z --> R.X. (При отсутствии последнего требования мы имели бы "неинтересные" транзитивные зависимости в любом отношении, обладающем несколькими ключами.)
Определение 4. Неключевой атрибут
Неключевым атрибутом называется любой атрибут отношения, не входящий в состав первичного ключа (в частности, первичного).
Определение 5. Взаимно независимые атрибуты
Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других.
6.1.1. Вторая нормальная форма
Рассмотрим следующий пример схемы отношения:
СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ
(СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
Первичный ключ:
СОТР_НОМЕР, ПРО_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР -> СОТР_ЗАРП
СОТР_НОМЕР -> ОТД_НОМЕР
ОТД_НОМЕР -> СОТР_ЗАРП
СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН
Как видно, хотя первичным ключом является составной атрибут СОТР_НОМЕР, ПРО_НОМЕР, атрибуты СОТР_ЗАРП и ОТД_НОМЕР функционально зависят от части первичного ключа, атрибута СОТР_НОМЕР. В результате мы не сможем вставить в отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ кортеж, описывающий сотрудника, который еще не выполняет никакого проекта (первичный ключ не может содержать неопределенное значение). При удалении кортежа мы не только разрушаем связь данного сотрудника с данным проектом, но утрачиваем информацию о том, что он работает в некотором отделе. При переводе сотрудника в другой отдел мы будем вынуждены модифицировать все кортежи, описывающие этого сотрудника, или получим несогласованный результат. Такие неприятные явления называются аномалиями схемы отношения. Они устраняются путем нормализации.
Определение 6. Вторая нормальная форма (в этом определении предполагается, что единственным ключом отношения является первичный ключ)
Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый неключевой атрибут полностью зависит от первичного ключа.
Можно произвести следующую декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ в два отношения СОТРУДНИКИ-ОТДЕЛЫ и СОТРУДНИКИ-ПРОЕКТЫ:
СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР)
Первичный ключ:
СОТР_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР -> СОТР_ЗАРП
СОТР_НОМЕР -> ОТД_НОМЕР
ОТД_НОМЕР -> СОТР_ЗАРП
СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
Первичный ключ:
СОТР_НОМЕР, ПРО_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН
Каждое из этих двух отношений находится в 2NF, и в них устранены отмеченные выше аномалии (легко проверить, что все указанные операции выполняются без проблем).
Если допустить наличие нескольких ключей, то определение 6 примет следующий вид:
Определение 6~
Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда оно находится в 1NF, и каждый неключевой атрибут полностью зависит от каждого ключа R.
Здесь и далее мы не будем приводить примеры для отношений с несколькими ключами. Они слишком громоздки и относятся к ситуациям, редко встречающимся на практике.
6.1.2. Третья нормальная форма
Рассмотрим еще раз отношение СОТРУДНИКИ-ОТДЕЛЫ, находящееся в 2NF. Заметим, что функциональная зависимость СОТР_НОМЕР -> СОТР_ЗАРП является транзитивной; она является следствием функциональных зависимостей СОТР_НОМЕР -> ОТД_НОМЕР и ОТД_НОМЕР -> СОТР_ЗАРП. Другими словами, заработная плата сотрудника на самом деле является характеристикой не сотрудника, а отдела, в котором он работает (это не очень естественное предположение, но достаточное для примера).
В результате мы не сможем занести в базу данных информацию, характеризующую заработную плату отдела, до тех пор, пока в этом отделе не появится хотя бы один сотрудник (первичный ключ не может содержать неопределенное значение). При удалении кортежа, описывающего последнего сотрудника данного отдела, мы лишимся информации о заработной плате отдела. Чтобы согласованным образом изменить заработную плату отдела, мы будем вынуждены предварительно найти все кортежи, описывающие сотрудников этого отдела. Т.е. в отношении СОТРУДИКИ-ОТДЕЛЫ по-прежнему существуют аномалии. Их можно устранить путем дальнейшей нормализации.
Определение 7. Третья нормальная форма. (Снова определение дается в предположении существования единственного ключа.)
Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.
Можно произвести декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ в два отношения СОТРУДНИКИ и ОТДЕЛЫ:
СОТРУДНИКИ (СОТР_НОМЕР, ОТД_НОМЕР)
Первичный ключ:
СОТР_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР -> ОТД_НОМЕР
ОТДЕЛЫ (ОТД_НОМЕР, СОТР_ЗАРП)
Первичный ключ:
ОТД_НОМЕР
Функциональные зависимости:
ОТД_НОМЕР -> СОТР_ЗАРП
Каждое из этих двух отношений находится в 3NF и свободно от отмеченных аномалий.
Если отказаться от того ограничения, что отношение обладает единственным ключом, то определение 3NF примет следующую форму:
Определение 7~
Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 1NF, и каждый неключевой атрибут не является транзитивно зависимым от какого-либо ключа R.
На практике третья нормальная форма схем отношений достаточна в большинстве случаев, и приведением к третьей нормальной форме процесс проектирования реляционной базы данных обычно заканчивается. Однако иногда полезно продолжить процесс нормализации.
6.1.3. Нормальная форма Бойса-Кодда
Рассмотрим следующий пример схемы отношения:
СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ИМЯ, ПРО_НОМЕР, СОТР_ЗАДАН)
Возможные ключи:
СОТР_НОМЕР, ПРО_НОМЕР
СОТР_ИМЯ, ПРО_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР -> CОТР_ИМЯ
СОТР_НОМЕР -> ПРО_НОМЕР
СОТР_ИМЯ -> CОТР_НОМЕР
СОТР_ИМЯ -> ПРО_НОМЕР
СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН
СОТР_ИМЯ, ПРО_НОМЕР -> CОТР_ЗАДАН
В этом примере мы предполагаем, что личность сотрудника полностью определяется как его номером, так и именем (это снова не очень жизненное предположение, но достаточное для примера).
В соответствии с определением 7~ отношение СОТРУДНИКИ-ПРОЕКТЫ находится в 3NF. Однако тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям. Например, для того, чтобы изменить имя сотрудника с данным номером согласованным образом, нам потребуется модифицировать все кортежи, включающие его номер.
Определение 8. Детерминант
Детерминант - любой атрибут, от которого полностью функционально зависит некоторый другой атрибут.
Определение 9. Нормальная форма Бойса-Кодда
Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом.
Очевидно, что это требование не выполнено для отношения СОТРУДНИКИ-ПРОЕКТЫ. Можно произвести его декомпозицию к отношениям СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ:
СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ)
Возможные ключи:
СОТР_НОМЕР
СОТР_ИМЯ
Функциональные зависимости:
СОТР_НОМЕР -> CОТР_ИМЯ
СОТР_ИМЯ -> СОТР_НОМЕР
СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
Возможный ключ:
СОТР_НОМЕР, ПРО_НОМЕР
Функциональные зависимости:
СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН
Возможна альтернативная декомпозиция, если выбрать за основу СОТР_ИМЯ. В обоих случаях получаемые отношения СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ находятся в BCNF, и им не свойственны отмеченные аномалии.
6.1.4. Четвертая нормальная форма
Рассмотрим пример следующей схемы отношения:
ПРОЕКТЫ (ПРО_НОМЕР,ПРО_СОТР, ПРО_ЗАДАН)
Отношение ПРОЕКТЫ содержит номера проектов, для каждого проекта список сотрудников, которые могут выполнять проект, и список заданий, предусматриваемых проектом. Сотрудники могут участвовать в нескольких проектах, и разные проекты могут включать одинаковые задания.
Каждый кортеж отношения связывает некоторый проект с сотрудником, участвующим в этом проекте, и заданием, который сотрудник выполняет в рамках данного проекта (мы предполагаем, что любой сотрудник, участвующий в проекте, выполняет все задания, предусмотренные этим проектом). По причине сформулированных выше условий единственным возможным ключем отношения является составной атрибут ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН, и нет никаких других детерминантов. Следовательно, отношение ПРОЕКТЫ находится в BCNF. Но при этом оно обладает недостатками: если, например, некоторый сотрудник присоединяется к данному проекту, необходимо вставить в отношение ПРОЕКТЫ столько кортежей, сколько заданий в нем предусмотрено.
Определение 10. Многозначные зависимости
В отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С.
В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости:
ПРО_НОМЕР -> -> ПРО_СОТР
ПРО_НОМЕР -> -> ПРО_ЗАДАН
Легко показать, что в общем случае в отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, когда существует многозначная зависимость R.A -> -> R.C.
Дальнейшая нормализация отношений, подобных отношению ПРОЕКТЫ, основывается на следующей теореме:
Теорема Фейджина
Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A -> -> B | C.
Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений.
Определение 11. Четвертая нормальная форма
Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A -> -> B все остальные атрибуты R функционально зависят от A.
В нашем примере можно произвести декомпозицию отношения ПРОЕКТЫ в два отношения ПРОЕКТЫ-СОТРУДНИКИ и ПРОЕКТЫ-ЗАДАНИЯ:
ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР)
ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН)
Оба эти отношения находятся в 4NF и свободны от отмеченных аномалий.
6.1.5. Пятая нормальная форма
Во всех рассмотренных до этого момента нормализациях производилась декомпозиция одного отношения в два. Иногда это сделать не удается, но возможна декомпозиция в большее число отношений, каждое из которых обладает лучшими свойствами.
Рассмотрим, например, отношение
СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР)
Предположим, что один и тот же сотрудник может работать в нескольких отделах и работать в каждом отделе над несколькими проектами. Первичным ключем этого отношения является полная совокупность его атрибутов, отсутствуют функциональные и многозначные зависимости.
Поэтому отношение находится в 4NF. Однако в нем могут существовать аномалии, которые можно устранить путем декомпозиции в три отношения.
Определение 12. Зависимость соединения
Отношение R (X, Y, ..., Z) удовлетворяет зависимости соединения * (X, Y, ..., Z) в том и только в том случае, когда R восстанавливается без потерь путем соединения своих проекций на X, Y, ..., Z.
Определение 13. Пятая нормальная форма
Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.
Введем следующие имена составных атрибутов:
СО = {СОТР_НОМЕР, ОТД_НОМЕР}
СП = {СОТР_НОМЕР, ПРО_НОМЕР}
ОП = {ОТД_НОМЕР, ПРО_НОМЕР}
Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения:
* (СО, СП, ОП)
На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения:
СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР)
СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР)
ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР)
Пятая нормальная форма - это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется. Заметим, что зависимость соединения является обобщением как многозначной зависимости, так и функциональной зависимости.
6.2. Семантическое моделирование данных, ER-диаграммы
Широкое распространение реляционных СУБД и их использование в самых разнообразных приложениях показывает, что реляционная модель данных достаточна для моделирования предметных областей. Однако проектирование реляционной базы данных в терминах отношений на основе кратко рассмотренного нами механизма нормализации часто представляет собой очень сложный и неудобный для проектировщика процесс.
При этом проявляется ограниченность реляционной модели данных в следующих аспектах:
-
Модель не предоставляет достаточных средств для представления смысла данных. Семантика реальной предметной области должна независимым от модели способом представляться в голове проектировщика. В частности, это относится к упоминавшейся нами проблеме представления ограничений целостности.
-
Для многих приложений трудно моделировать предметную область на основе плоских таблиц. В ряде случаев на самой начальной стадии проектирования проектировщику приходится производить насилие над собой, чтобы описать предметную область в виде одной (возможно, даже ненормализованной) таблицы.
-
Хотя весь процесс проектирования происходит на основе учета зависимостей, реляционная модель не предоставляет каких-либо средств для представления этих зависимостей.
-
Несмотря на то, что процесс проектирования начинается с выделения некоторых существенных для приложения объектов предметной области ("сущностей") и выявления связей между этими сущностями, реляционная модель данных не предлагает какого-либо аппарата для разделения сущностей и связей.
6.2.1. Семантические модели данных
Потребности проектировщиков баз данных в более удобных и мощных средствах моделирования предметной области вызвали к жизни направление семантических моделей данных. При том, что любая развитая семантическая модель данных, как и реляционная модель, включает структурную, манипуляционную и целостную части, главным назначением семантических моделей является обеспечение возможности выражения семантики данных.
Прежде, чем мы коротко рассмотрим особенности одной из распространенных семантических моделей, остановимся на их возможных применениях.
Наиболее часто на практике семантическое моделирование используется на первой стадии проектирования базы данных. При этом в терминах семантической модели производится концептуальная схема базы данных, которая затем вручную преобразуется к реляционной (или какой-либо другой) схеме. Этот процесс выполняется под управлением методик, в которых достаточно четко оговорены все этапы такого преобразования.
Менее часто реализуется автоматизированная компиляция концептуальной схемы в реляционную. При этом известны два подхода: на основе явного представления концептуальной схемы как исходной информации для компилятора и построения интегрированных систем проектирования с автоматизированным созданием концептуальной схемы на основе интервью с экспертами предметной области. И в том, и в другом случае в результате производится реляционная схема базы данных в третьей нормальной форме (более точно следовало бы сказать, что автору неизвестны системы, обеспечивающие более высокий уровень нормализации).
Наконец, третья возможность, которая еще не вышла (или только выходит) за пределы исследовательских и экспериментальных проектов, - это работа с базой данных в семантической модели, т.е. СУБД, основанные на семантических моделях данных. При этом снова рассматриваются два варианта: обеспечение пользовательского интерфейса на основе семантической модели данных с автоматическим отображением конструкций в реляционную модель данных (это задача примерно такого же уровня сложности, как автоматическая компиляция концептуальной схемы базы данных в реляционную схему) и прямая реализация СУБД, основанная на какой-либо семантической модели данных. Наиболее близко ко второму подходу находятся современные объектно-ориентированные СУБД, модели данных которых по многим параметрам близки к семантическим моделям (хотя в некоторых аспектах они более мощны, а в некоторых - более слабы).
6.2.2. Основные понятия модели Entity-Relationship (Сущность-Связи)
Далее мы кратко рассмотрим некоторые черты одной из наиболее популярных семантических моделей данных - модель "Сущность-Связи" (часто ее называют кратко ER-моделью).
На использовании разновидностей ER-модели основано большинство современных подходов к проектированию баз данных (главным образом, реляционных). Модель была предложена Ченом (Chen) в 1976 г. Моделирование предметной области базируется на использовании графических диаграмм, включающих небольшое число разнородных компонентов. В связи с наглядностью представления концептуальных схем баз данных ER-модели получили широкое распространение в системах CASE, поддерживающих автоматизированное проектирование реляционных баз данных. Среди множества разновидностей ER-моделей одна из наиболее развитых применяется в системе CASE фирмы ORACLE. Ее мы и рассмотрим. Более точно, мы сосредоточимся на структурной части этой модели.
Основными понятиями ER-модели являются сущность, связь и атрибут.
Сущность - это реальный или представляемый объект, информация о котором должна сохраняться и быть доступна. В диаграммах ER-модели сущность представляется в виде прямоугольника, содержащего имя сущности. При этом имя сущности - это имя типа, а не некоторого конкретного экземпляра этого типа. Для большей выразительности и лучшего понимания имя сущности может сопровождаться примерами конкретных объектов этого типа.
Ниже изображена сущность АЭРОПОРТ с примерными объектами Шереметьево и Хитроу:
Каждый экземпляр сущности должен быть отличим от любого другого экземпляра той же сущности (это требование в некотором роде аналогично требованию отсутствия кортежей-дубликатов в реляционных таблицах).
Связь - это графически изображаемая ассоциация, устанавливаемая между двумя сущностями. Эта ассоциация всегда является бинарной и может существовать между двумя разными сущностями или между сущностью и ей же самой (рекурсивная связь). В любой связи выделяются два конца (в соответствии с существующей парой связываемых сущностей), на каждом из которых указывается имя конца связи, степень конца связи (сколько экземпляров данной сущности связывается), обязательность связи (т.е. любой ли экземпляр данной сущности должен участвовать в данной связи).
Связь представляется в виде линии, связывающей две сущности или ведущей от сущности к ней же самой. При это в месте "стыковки" связи с сущностью используются трехточечный вход в прямоугольник сущности, если для этой сущности в связи могут использоваться много (many) экземпляров сущности, и одноточечный вход, если в связи может участвовать только один экземпляр сущности. Обязательный конец связи изображается сплошной линией, а необязательный - прерывистой линией.
Как и сущность, связь - это типовое понятие, все экземпляры обеих пар связываемых сущностей подчиняются правилам связывания.
В изображенном ниже примере связь между сущностями БИЛЕТ и ПАССАЖИР связывает билеты и пассажиров. При том конец сущности с именем "для" позволяет связывать с одним пассажиром более одного билета, причем каждый билет должен быть связан с каким-либо пассажиром. Конец сущности с именем "имеет" означает, что каждый билет может принадлежать только одному пассажиру, причем пассажир не обязан иметь хотя бы один билет.
Лаконичной устной трактовкой изображенной диаграммы является следующая:
-
Каждый БИЛЕТ предназначен для одного и только одного ПАССАЖИРА;
-
Каждый ПАССАЖИР может иметь один или более БИЛЕТОВ.
На следующем примере изображена рекурсивная связь, связывающая сущность ЧЕЛОВЕК с ней же самой. Конец связи с именем "сын" определяет тот факт, что у одного отца может быть более чем один сын. Конец связи с именем "отец" означает, что не у каждого человека могут быть сыновья.
Лаконичной устной трактовкой изображенной диаграммы является следующая:
-
Каждый ЧЕЛОВЕК является сыном одного и только одного ЧЕЛОВЕКА;
-
Каждый ЧЕЛОВЕК может являться отцом для одного или более ЛЮДЕЙ ("ЧЕЛОВЕКОВ").
Атрибутом сущности является любая деталь, которая служит для уточнения, идентификации, классификации, числовой характеристики или выражения состояния сущности. Имена атрибутов заносятся в прямоугольник, изображающий сущность, под именем сущности и изображаются малыми буквами, возможно, с примерами.
Пример:
Уникальным идентификатором сущности является атрибут, комбинация атрибутов, комбинация связей или комбинация связей и атрибутов, уникально отличающая любой экземпляр сущности от других экземпляров сущности того же типа.
6.2.3. Нормальные формы ER-схем
Как и в реляционных схемах баз данных, в ER-схемах вводится понятие нормальных форм, причем их смысл очень близко соответствует смыслу реляционных нормальных форм. Заметим, что формулировки нормальных форм ER-схем делают более понятным смысл нормализации реляционных схем. Мы приведем только очень краткие и неформальные определения трех первых нормальных форм.
В первой нормальной форме ER-схемы устраняются повторяющиеся атрибуты или группы атрибутов, т.е. производится выявление неявных сущностей, "замаскиро-ванных" под атрибуты.
Во второй нормальной форме устраняются атрибуты, зависящие только от части уникального идентификатора. Эта часть уникального идентификатора определяет отдельную сущность.
В третьей нормальной форме устраняются атрибуты, зависящие от атрибутов, не входящих в уникальный идентификатор. Эти атрибуты являются основой отдельной сущности.
6.2.4. Более сложные элементы ER-модели
Мы остановились только на самых основных и наиболее очевидных понятиях ER-модели данных. К числу более сложных элементов модели относятся следующие:
-
Подтипы и супертипы сущностей. Как в языках программирования с развитыми типовыми системами (например, в языках объектно-ориентированного программирования), вводится возможность наследования типа сущности, исходя из одного или нескольких супертипов. Интересные нюансы связаны с необходимостью графического изображения этого механизма.
-
Связи "many-to-many". Иногда бывает необходимо связывать сущности таким образом, что с обоих концов связи могут присутствовать несколько экземпляров сущности (например, все члены кооператива сообща владеют имуществом кооператива). Для этого вводится разновидность связи "многие-со-многими".
-
Уточняемые степени связи. Иногда бывает полезно определить возможное количество экземпляров сущности, участвующих в данной связи (например, служащему разрешается участвовать не более, чем в трех проектах одновременно). Для выражения этого семантического ограничения разрешается указывать на конце связи ее максимальную или обязательную степень.
-
Каскадные удаления экземпляров сущностей. Некоторые связи бывают настолько сильными (конечно, в случае связи "один-ко-многим"), что при удалении опорного экземпляра сущности (соответствующего концу связи "один") нужно удалить и все экземпляры сущности, соответствующие концу связи "многие". Соответствующее требование "каскадного удаления" можно сформулировать при определении сущности.
-
Домены. Как и в случае реляционной модели данных бывает полезна возможность определения потенциально допустимого множества значений атрибута сущности (домена).
Эти и другие более сложные элементы модели данных "Сущность-Связи" делают ее существенно более мощной, но одновременно несколько усложняют ее использование. Конечно, при реальном использовании ER-диаграмм для проектирования баз данных необходимо ознакомиться со всеми возможностями.
В нашей лекции мы немного подробнее разберем только один из упомянутых элементов - подтип сущности.
Сущность может быть расщеплена на два или более взаимно исключающих подтипа, каждый из которых включает общие атрибуты и/или связи. Эти общие атрибуты и/или связи явно определяются один раз на более высоком уровне. В подтипах могут определяться собственные атрибуты и/или связи. В принципе подтипизация может продолжаться на более низких уровнях, но опыт показывает, что в большинстве случаев оказывается достаточно двух-трех уровней.
Сущность, на основе которой определяются подтипы, называется супертипом. Подтипы должны образовывать полное множество, т.е. любой экземпляр супертипа должен относиться к некоторому подтипу. Иногда для полноты приходится определять дополнительный подтип ПРОЧИЕ.
Пример: Супертип ЛЕТАТЕЛЬНЫЙ АППАРАТ
Как полагается это читать? От супертипа: ЛЕТАТЕЛЬНЫЙ АППАРАТ, который должен быть АЭРОПЛАНОМ, ВЕРТОЛЕТОМ, ПТИЦЕЛЕТОМ или ДРУГИМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ. От подтипа: ВЕРТОЛЕТ, который относится к типу ЛЕТАТЕЛЬНОГО АППАРАТА. От подтипа, который является одновременно супертипа: АЭРОПЛАН, который относится к типу ЛЕТАТЕЛЬНОГО АППАРАТА и должен быть ПЛАНЕРОМ или МОТОРНЫМ САМОЛЕТОМ.
Иногда удобно иметь два или более разных разбиения сущности на подтипы. Например, сущность ЧЕЛОВЕК может быть разбита на подтипы по профессиональному признаку (ПРОГРАММИСТ, ДОЯРКА и т.д.), а может - по половому признаку (МУЖЧИНА, ЖЕНЩИНА).
6.2.5. Получение реляционной схемы из ER-схемы
Шаг 1. Каждая простая сущность превращается в таблицу. Простая сущность - сущность, не являющаяся подтипом и не имеющая подтипов. Имя сущности становится именем таблицы.
Шаг 2. Каждый атрибут становится возможным столбцом с тем же именем; может выбираться более точный формат. Столбцы, соответствующие необязательным атрибутам, могут содержать неопределенные значения; столбцы, соответствующие обязательным атрибутам, - не могут.
Шаг 3. Компоненты уникального идентификатора сущности превращаются в первичный ключ таблицы. Если имеется несколько возможных уникальных идентификатора, выбирается наиболее используемый. Если в состав уникального идентификатора входят связи, к числу столбцов первичного ключа добавляется копия уникального идентификатора сущности, находящейся на дальнем конце связи (этот процесс может продолжаться рекурсивно). Для именования этих столбцов используются имена концов связей и/или имена сущностей.
Шаг 4. Связи многие-к-одному (и один-к-одному) становятся внешними ключами. Т.е. делается копия уникального идентификатора с конца связи "один", и соответствующие столбцы составляют внешний ключ. Необязательные связи соответствуют столбцам, допускающим неопределенные значения; обязательные связи - столбцам, не допускающим неопределенные значения.
Шаг 5. Индексы создаются для первичного ключа (уникальный индекс), внешних ключей и тех атрибутов, на которых предполагается в основном базировать запросы.
Шаг 6. Если в концептуальной схеме присутствовали подтипы, то возможны два способа:
-
все подтипы в одной таблице (а)
-
для каждого подтипа - отдельная таблица (б)
При применении способа (а) таблица создается для наиболее внешнего супертипа, а для подтипов могут создаваться представления. В таблицу добавляется по крайней мере один столбец, содержащий код ТИПА; он становится частью первичного ключа.
При использовании метода (б) для каждого подтипа первого уровня (для более нижних - представления) супертип воссоздается с помощью представления UNION (из всех таблиц подтипов выбираются общие столбцы - столбцы супертипа).
Все в одной таблице
|
Таблица - на подтип
|
Преимущества
|
|
Все хранится вместе
Легкий доступ к супертипу и подтипам
Требуется меньше таблиц
|
Более ясны правила подтипов
Программы работают только с нужными таблицами
|
Недостатки
|
|
Слишком общее решение
Требуется дополнительная логика работы с разными наборами столбцов и разными ограничениями
Потенциальное узкое место (в связи с блокировками)
Столбцы подтипов должны быть необязательными
В некоторых СУБД для хранения неопределенных значений требуется дополнительная память
|
Слишком много таблиц
Смущающие столбцы в представлении UNION
Потенциальная потеря производительности при работе через UNION
Над супертипом невозможны модификации
|
Шаг 7. Имеется два способа работы при наличии исключающих связей:
-
общий домен (а)
-
явные внешние ключи (б)
Если остающиеся внешние ключи все в одном домене, т.е. имеют общий формат (способ (а)), то создаются два столбца: идентификатор связи и идентификатор сущности. Столбец идентификатора связи используется для различения связей, покрываемых дугой исключения. Столбец идентификатора сущности используется для хранения значений уникального идентификатора сущности на дальнем конце соответствующей связи.
Если результирующие внешние ключи не относятся к одному домену, то для каждой связи, покрываемой дугой исключения, создаются явные столбцы внешних ключей; все эти столбцы могут содержать неопределенные значения.
Общий домен
|
Явные внешние ключи
|
Преимущества
|
|
Нужно только два столбца
|
Условия соединения - явные
|
Недостатки
|
|
Оба дополнительных атрибута должны использоваться в соединениях
|
Слишком много столбцов
|
Альтернативные модели сущностей:
Вариант 1 (плохой)
Вариант 2 (существенно лучше, если подтипы действительно существуют)
Вариант 3 (годится при наличии осмысленного супертипа D).
Достарыңызбен бөлісу: |