Глава 6
Нейропсихическая регуляция
индивидуального развития человека
1. Иерархическая («вертикальная») система регулирования и ее становление
В этой книге были рассмотрены многие факты, свидетельствующие о наложении на одни и те же психофизиологические функции возрастных, половых, нейродинамических и других свойств или особенностей индивида. Именно констелляция этих свойств, или целостная природа индивидуального развития, регулирует динамику функций1.
Обычно, когда говорят о регулировании путем воздействия управляющего прибора на исполнительные, индуцирующего механизма — на индуцируемый и т. д., имеют в виду управление процессами в определенной замкнутой системе. В такой системе между процессами возникают отношения по типу доминантных и субдоминантных отношений, т. е. субординационных, но вместе с тем распространены и отношения взаимного усиления или взаимного ослабления свойств по типу координационныхотношений. Однако при регулировании в организме как живой управляющей системе процессов жизнедеятельности и поведения возникают разнообразные взаимосвязи и взаимовлияния между свойствами этих процессов.
Мы думаем, что относительное взаимосоответствие между возрастными, половыми, конституциональными и нейротипологическими осо-
1 См., например: Регуляция вегетативных и анимальных функций в онтогенезе: Сб. — М.: Наука, 1966.
Глава 6. Нейропсихическая регуляция индивидуального развития человека
бенностями обеспечивается регулированием не только процессов, но и свойств индивида в онтогенетическом развитии.
Любая биологическая система, в том числе и головной мозг человека, представляет собой сложную организацию контуров регулирования с многочисленной цепью звеньев, включающих объекты регулирования, измерительные и исполнительные устройства, механизмы обратной связи, обеспечивающие постоянство регулируемой величины. В мозговой деятельности человека совмещены все типы обратных связей, свойственные живым управляющим системам. В ходе биологической эволюции образовались, как показал А. А. Малиновский, различные типы обратных связей, обеспечивающие кольцевую регуляцию жизненных процессов путем стабилизации функций: то путем их нарастания, то посредством их дифференциации и ухода от неблагоприятного состояния. Особенно важно сочетание типов стабилизации и нарастания, способствующих изменению порогов реакций регулируемых органов2.
В человеческом мозгу различные типы обратных связей действуют не только последовательно, но и одновременно в разных отделах и на разных уровнях центральной нервной системы. В связи с этим важно отметить существенную особенность биологических систем сравнительно с автоматическими устройствами, которую С. Н. Брай-нес охарактеризовал так: «Одна система биорегулирования может также содержать (и обычно содержит) не один контур, а несколько дублеров»3.
Дублирование контуров регулирования в одной биологической системе — явление, в высшей степени характерное именно для мозговой деятельности. «Ступенчатость» механизмов регулирования следует понимать и в этом смысле, поскольку дублирование контуров регулирования происходит на различных уровнях центральной неовной системы, особенно на уровне мозгового ствола с его ретикулярной формацией, субкортикальных и кортикальных аппаратов. Поэтому не случайно в теории биорегулирования важнейшее значение приобрела идея «многоэтажной иерархической системы». Эта идея была развита Н. А. Бернштейном первоначально в теории регуляции движений, а затем в новой концепции физиологии активности4. Эта же идея составляет содержание гипотезы С. Н. Б р а й н е с а и В. Б. Свечинского о трех у р о в н я х б и о -логического регулирования, между которыми имеются определенные субординационные отношения в программировании и регулировании процессов внутренней среды организма и его взаимодействия с внешней средой5.
Идея субординационной иерархической системы биорегулирования своеобразно представлена в концепции, согласно которой головной мозг участвует в регулировании не целиком, а своими, специальными регулирующими структурами, от которых зависят другие, так называемые оперативные структуры мозга. Эту концепцию в нашей литературе развивают Н. И. Гращенков, Л. П. Латаш и И. М. Фейгенберг. Они относят к регулирующим органам аппараты разных уровней и происхождения: рети-2 Малиновский А. А. Типы управляющих биологических систем // Пробл. кибернетики: Сб. — Т. 4. — М.: Изд. АН СССР, 1960. - С. 169.
3 Брайнес С. Н. Нейрокибернетика // Кибернетику — на службу коммунизу: Сб. — М.: Госэнергоиздат,
1961. - С. 146.
4 Бернштейн Н. А. Очередные проблемы физиологии активности // Пробл. кибернетики: Сб. — Т. 6. —
М.: Изд. АН СССР, 1961.
5 Брайнес С. Н. Указ. соч.
Человек как предмет познания
кулярную формацию мозгового ствола, неспецифические таламо-кортикальные проекции, мозжечок, корковые и подкорковые структуры обонятельного мозга, лимби-ческую кору, передние отделы лобной коры и некоторые другие кортикальные аппараты.
Признается, однако, что деление мозговых структур на регуляторные и оперативные не может считаться строгим, поскольку процессы саморегулирования имеют место и в так называемых оперативных отделах мозга. Поэтому в общей характеристике биорегулирования и названные авторы подчеркивают в качестве главной черты «иерархию процессов саморегулирования»6, причем применяют весьма выразительную терминологию, обозначающую такую иерархию. Они говорят о «вертикальной» организации любой функции в нервной системе.
О подобном вертикальном подразделении более общей системы нейрогумораль-ной регуляции говорит также Г. Дришель, включая сюда серию контуров регулирования, начиная с гомеостатического механизма печени и кончая корой головного мозга, соединяемых прямыми и обратными связями через островковые аппараты поджелудочной железы и систему гипофиз — промежуточный мозг7. Значение вертикальной, или иерархической, организации контуров регулирования возрастает в процессе биологической эволюции по мере цефализации и кортикализации нервных функций. Действительно, эта вертикальная, или многоэтажная иерархическая, система регулирования является основной, определяющей целостность организма, единство процессов жизнедеятельности и поведения.
Представляется вполне правомерным использовать общие кибернетические схемы контуров регулирования в области психофизиологии человека. Однако при этом необходимо учитывать одно из существенных различий между техническими и биологическими системами как регуляторами. Оно заключается в том, что каждой технической системе строго заданы те или иные свойства регулирования и одни и те же субординационные отношения между регуляторами, определяющие режим работы данной системы регулирования. Если возникает отклонение от заданных субординационных отношений и рассогласование функций регуляторов, то посредством специальных механизмов обратных связей восстанавливается заданный порядок. Такая техническая система является как бы с самого начала «зрелой».
Между тем мы ничего не поймем в иерархической вертикальной организации ней-рорегуляции, если будем игнорировать процессуальный характер ее онтогенетического становления. Эта организация имеет решающее значение для регулирования взаимосвязей между основными свойствами онтогенетического развития человека, но она сама подвержена законам созревания, зрелости и старения.
Такая система регулирования, разумеется, не является зрелой с самого начала и только в общем процессе созревания (общесоматическом, половом и нервно-психическом) достигает высокостабилизированного уровня, существующего до тех пор, пока общие инволюционные процессы вновь не изменят субординационных отношений между всеми отделами центральной нервной системы. Зависимость основной сис-6 Грашенков Н. И., Латаш Л. П., Фейгенберг И. М. Диалектический материализм и некоторые вопросы
современной нейрофизиологии. — М., 1 9 6 2 . — С. 48. 7 Дришель Г. Регулирование уровня с а х а р а в к р о в и // П р о ц е с с ы р е г у л и р о в а н и я в б и о л о г и и : Сб. — М: ИЛ, 1 9 6 0 .
Глава 6. Нейропсихическая регуляция индивидуального развития человека
темы нейрорегулирования от общих законов онтогенетической эволюции имеет фундаментальное значение, и поэтому теория биологического регулирования обязательно должна быть генетической, рассматривающей все механизмы этого регулирования в онтогенетической эволюции.
Неравномерность нарастания общего веса головного мозга в раннем онтогенезе человека, равно как и раннее проявление полового диморфизма в росте мозга, общеизвестны. Менее известно то, что в первые годы жизни ребенка эти моменты специфически проявляются в развитии больших полушарий, мозжечка и мозгового ствола. Изменения в весе, конечно, далеко не полностью характеризуют это развитие, но все же достаточно показательны для картины формирования головного мозга как единой субординационной системы. Современная неврология связывает с мозговым стволом важнейшие функции ретикулярной формации как регулятора взаимосвязей между большими полушариями головного мозга и внутренней средой организма.
Для наших целей достаточно сопоставить относительные величины веса (в процентах) больших полушарий, мозжечка и мозгового ствола с общим весом головного мозга детей (табл. 23)8.
В раннем онтогенезе, как видим, мозговой ствол относительно увеличивается в весе к 2,5 месяцам жизни (как у мальчиков, так и у девочек), затем несколько понижается (к 12 месяцам) и вновь возрастает. Что касается веса мозжечка, являющегося важнейшим регулятором нервно-мышечных координации, установок тела, вестибуляр-но-кинестетических связей и т. д., то отмечается хотя и неравномерное по величинам, но постоянное увеличение его веса в первые годы жизни, причем у девочек эта тенденция выражена более резко.
В зрелые и старческие годы, по данным Р. Эллиса, сохраняется относительно больший вес мозжечка у женщин. За исключением двух возрастных периодов (50-60 и 70-80 лет), с 20 до 90 лет обнаруживается этот феномен, причем относительный вес мозжечка у женщин является не только большим, но и стабильным (11 % от общего веса головного мозга), между тем как относительные величины веса мозжечка у мужчин варьируют почти по всем периодам9.
Существенно изменяется показатель прироста относительного веса больших полушарий (к общему весу головного мозга). С момента рождения до 4-4,5 лет имеет место некоторое уменьшение величины такого прироста, несмотря на значительное возрастание общего веса мозга и больших полушарий (с 91,16 у мальчиков и 91,2 у девочек до 85,6 у мальчиков и 86,0 у девочек). Следует отметить, что такое уменьшение величин прироста относительного веса больших полушарий резче выражено у мальчиков. Во все периоды раннего онтогенеза процентное отношение веса полушарий к общему весу головного мозга выше у девочек. Явления полового диморфизма постоянно перекрывают общие возрастные изменения мозга и явно свидетельствуют о том, что эти изменения связаны с эволюцией не только рефлекторных приспособлений к внешней среде, но и аналогичных приспособлений к внутренней среде организма, к которой Павлов относил как функции внутренних органов, так и скелетно-мус-кульную энергию организма.
8 Таблица заимствована из кн.: Блинков С. М., Глезер И:И. Мозг человека в цифрах и таблицах. — М.: Ме
дицина, 1964. - С. 338.
9 См. табл. 1 5 7 в кн.: Блинков С. М., Глезер И. И. — Указ. соч. — С. 359.
Человек как предмет познания
Величины относительного веса мозговых структур по отношению к общему весу головного мозга у детей
Таблица 23
Возраст
Общий вес головного мозга
Абсолютный вес
Большие полушария
Мозжечок
Мозговой ствол
Мальчики
3 недели
|
485
|
100
|
91,16
|
6,9
|
1,85
|
2,5 месяца
|
610
|
100
|
88,1
|
9,68
|
2,15
|
6 месяцев
|
. 785
|
100
|
-
|
8,92
|
1,72
|
12 месяцев
|
1000
|
100
|
84,5
|
8,90
|
1,50
|
2,5 года
|
1005
|
100
|
86,4
|
11,8
|
1,84
|
4 года
|
1168
|
100
|
85,6
|
11,2
|
1,92
|
|
|
Девочки
|
|
|
3 недели
|
492
|
100
|
91,2
|
6,8
|
1,7
|
2,5 месяца
|
495
|
100
|
90,5
|
7,5
|
2,0
|
6 месяцев
|
661
|
100
|
89,4
|
10,4
|
1,97
|
12 месяцев
|
908
|
100
|
89,2
|
9,37
|
1,43
|
2,5 года
|
1023
|
100
|
87,4
|
11,0
|
1,6
|
4,5 года
|
1080
|
100
|
86,0
|
11,1
|
1,8
|
Следует отметить, что циркуляция информационных потоков, ориентирующих организм в изменениях окружающего мира, в общем, не зависит непосредственно от полового диморфизма. Поэтому на разных уровнях умственной деятельности нет существенной разницы между полами, как это пытались утверждать реакционные биологи и психологи-антифеминисты, провозгласившие тезис о «физиологическом слабоумии женщины» (К. Мебиус).
Различия в характере информационных потоков не распространяются за пределы информации о внутренней среде, хотя эта последняя, конечно, взаимодействует с информационными массами, идущими через анализаторы внешней среды из окружающего мира. Половые различия связаны лишь с теми особенными соотношениями индуцирующих и реагирующих тканей (см. главу 3), которые создают своеобразие внутренних контуров регулирования и определяют тип гомеостаза.
Половой диморфизм сказывается, следовательно, в регулировании информационных потоков лишь частично. Однако это ограничение не относится к регулированию энергетических потоков, генерируемых организмом в процессе обмена веществ с окружающей средой. Ранее было показано на сравнительно-возрастных данных об эволюции основного обмена и некоторых других явлений метаболизма, что в этой области половой диморфизм проявляется весьма эффективно.
Все возрастные даты роста, созревания, зрелости, старения модифицируются именно вследствие существенных половых различий в энергетических ресурсах муж-
Глава 6. Нейропсихическая регуляция индивидуального развития человека
ского и женского организмов. Эти различия, конечно, не абсолютны, и они не возрастают, а уменьшаются по мере перехода от низших к высшим генераторам энергии, включая большие полушария. Но тем не менее половые различия в энергетических потоках более значительны и существенны, чем в информационных. Поскольку биологическое регулирование обеспечивает строгое взаимосоответствие между информационными и энергетическими потоками, постольку в процессе онтогенетической эволюции с изменением энергетического баланса перестраивается констелляция информационных систем, а эта последняя воздействует на последующий ход метаболических процессов организма.
В связи с этим особый интерес представляет онтогенетическая эволюция подкорковых образований, которыми завершается ретикулярная формация, охватывающая мозговой ствол и эти образования. Ранее предполагалось, что подкорковые образования созревают если не в эмбриональный период, то в самые первые годы жизни ребенка. Вообще созревание головного мозга в детском и подростковом возрасте стало трактоваться преимущественно как созревание функций.
Между тем имеются фундаментальные доказательства того, что подкорковые образования растут и развиваются вплоть до достижения человеком взрослого состояния. Имеет место, следовательно, длительный процесс морфогенеза механизмов, через которые организуются интроцептивные сигналы и осуществляется церебральная настройка внутренней среды.
В этом отношении весьма важно авторитетное заявление руководителя многолетних морфологических исследований детского мозга С. А. Саркисова. В предисловии к коллективному обобщающему труду Московского института мозга он пишет следующее: «На основании всех проведенных исследований можно считать установленным, что подкорковые образования растут и развиваются вплоть до взрослого состояния. Эти данные, полученные при изучении клеточного строения коркового конца и подкорковых образований различных анализаторов, дают все основания, вопреки мнению некоторых зарубежных авторов, для утверждения положения о взаимосвязи развития коры и подкорковых образований, а также о продолжающемся развитии не только коры, но и ближайшей подкорки до взрослого состояния»10.
Можно полагать поэтому, что созревание одного из основных субстратов органических потребностей и элементарных эмоций охватывает ряд фаз детства и отрочества. Рост и созревание коры головного мозга происходят на протяжении всего детства и отрочества, вплоть до взрослого состояния, но гетерохронно по различным полям, областям и межобластным структурам. Темпы созревания различных мозговых структур в разные периоды жизни постепенно замедляются, но именно при этом замедлении завершается морфогенез сложных субстратов нервно-психической деятельности.
Так, например, морфогенез различных полей височной (преимущественно слуховой) зоны, в общем, завершается к семи годам, когда эта зона по величине поверхности приближается к размерам во взрослом мозгу11. Но вместе с тем филогенетически новые поля (44-е и 45-е) лобной области, имеющие преимущественное отношение
10 Развитие мозга ребенка / Под ред. С. А. Саркисова. — М.: Медицина, 1965. — С. 9.
11 Височная область. Внутреннее коленчатое тело, слуховой анализатор/В. А. Абовян, А. С. Арутюнова.
И. И. Глезер, Т. М. Мохова // Там же. — Гл. 5; Кононова Е. П. Лобная область // Там же. — Гл. 9.
Человек как предмет познания
к речедвигательному анализатору, дифференцируются на более поздних этапах развития (после семи лет).
Еще более показательны данные Н. С. Преображенской относительно роста поверхности коры затылочной (преимущественно зрительной) области12. К двум годам жизни эта поверхность уже достигает 71,5 % от всей величины в мозгу взрослого человека. К семи годам она увеличивается до 83,5 %, затем темпы роста замедляются, но все же рост продолжается до достижения человеком взрослого состояния. Установлено, что филогенетически более новые поля затылочной области достигают соотношений, характерных для развитого, взрослого мозга, в поздние сроки постнатального детства.
Поскольку кору больших полушарий следует рассматривать как высший регулятор, по отношению к которому субординированы все нижележащие отделы головного мозга, постольку особенно важны знания о неравномерном созревании корковых структур (областей и подобластей), с которыми специфически связаны определенные психофизиологические функции43.
Поверхности мозговых структур к семилетнему возрасту достигают величины поверхностей соответствующих структур взрослого человека лишь в основном, так как разность величин между отдельными структурами колеблется между 91,6 и 95,0 % (по отношению к величине взрослого мозга). Таким образом, морфогенез мозга завершается лишь после семилетнего возраста.
Еще более важным фактом является неравномерность созревания разных структур в одни и те же периоды. В этом отношении резко выделяется средняя височная подобласть. Все сопоставляемые подобласти, кроме этой, в возрасте 1 года достигают более половины поверхности соответствующих структур мозга взрослого. Между тем поверхность средней височной подобласти составляет в это же время всего 19,3 % от поверхности данной структуры у взрослого. В 2 и 4 года отставание роста поверхности этой структуры от других увеличивается, достигая разности в 50 %, но к семилетнему возрасту показатели почти сравниваются за счет резкого, скачкообразного прироста субстрата средней височной подобласти между 4-7 годами жизни.
Гетерохронность созревания различных полей в еще большей мере характерна для лобной области человека, как это показано Е. П. Кононовой. Говоря о росте поверхности коры в этой области, Е. П. Кононова отмечает, что «по отдельным полям она сильно колеблется в зависимости от расположения поля. Так, например, величина поверхности коры, расположенной в борозде, в поле 10 — 69-70 %, в полях 11,12 — 52-54 %»14. Существенно, что поля, филогенетически более старые, достигают окончательного развития быстрее. Поля, филогенетически новые, развиваются медленнее и заканчивают свое развитие в более поздние возрасты. По данным Е. П. Кононовой, «в некоторых полях особенно увеличивается поверхность к двухлетнему возрасту. В некоторых полях уве' личение поверхности заканчивается в возрасте 7-12 лет»15.
Гетерохронность созревания является закономерностью общего характера, относящейся к каждому из больших полушарий в целом, если сопоставлять имеющиеся данные об их морфогенетических различиях, например по весу. По данным П. Пфи-
12 Преображенская Н. С. Затылочная область // Там же. — Гл. 4.
13 См. табл. 189, 190, 191 в кн.: Блинков С. М., Глезер И. И. — Указ. соч.
14 Кононова Е. П. Лобная область // Развитие мозга ребенка. — С. 191-192.
15 Там же. - С. 190.
Глава 6. Нейропсихическая регуляция
индивидуального развития человека
стера и 3. Зивс, приведенным С. М. Блинковым и И. И. Глезером, вес обоих полушарий в граммах (абсолютный) и в процентах (к общему весу головного мозга в данный период) полностью не совпадает ни в один из периодов раннего онтогенеза (до 4-4,5 лет жизни). Приведем в извлечениях эти интересные сопоставления (табл. 24)16.
Достарыңызбен бөлісу: |