Артур Кларк Черты будущего



бет11/21
Дата29.06.2016
өлшемі1.22 Mb.
#164909
түріКнига
1   ...   7   8   9   10   11   12   13   14   ...   21

9

Туда нам не добраться

В автобиографии писателя XIX века Ричарда Джефриса есть одно сильное, хотя и тяжеловесное, выражение «недосягаемая голубизна цветка небес». Оно запомнилось мне с давних времен. «Недосягаемая» — слово, которым мы редко пользуемся сейчас, когда люди добрались до величайших высот и глубин Земли и готовятся к путешествию далеко за пределы нашей планеты. Однако всего лишь сто лет назад земные полюсы были совершенно неизведанными; большая часть Африканского материка оставалась столь же таинственной, как и во времена царя Соломона; ни один человек не погружался в морские воды глубже 20–30 метров и не поднимался в небесные дали выше 1–11/2 километров. Мы так сильно шагнули вперед за это короткое время и, бесспорно, так далеко продвинемся в будущем (если человечество сумеет пережить пору своего созревания), что мне хочется поставить один вопрос, который показался бы весьма странным нашим предкам: существует ли где-либо место, которое навсегда останется недосягаемым для нас, каковы бы ни были масштабы научного прогресса в будущем?

Одна «кандидатура» приходит на ум сразу. Всего в шести с половиной тысячах километров от места, где я сейчас сижу, есть пункт, до которого добраться гораздо труднее, чем до обратной стороны Луны или, если уж на то пошло, и до обратной стороны Плутона. От вас этот пункт находится тоже в шести с половиной тысячах километров. Вы уже, наверное, догадались, что я имею в виду центр Земли.

Принося глубочайшие извинения Жюлю Верну, я вынужден все же заявить, что через кратер вулкана Снеффельс20 в этот весьма интересный пункт попасть нельзя. По существу, через любую систему кратеров, пещер, туннелей — как естественных, так и искусственных — нельзя опуститься под землю глубже чем на три — три с половиной километра. Самая глубокая шахта достигла отметки всего два с лишним километра.

Как и на море, давление под поверхностью Земли нарастает с глубиной в результате воздействия веса вышележащих слоев пород. Поверхностные породы нашей планеты приблизительно втрое плотнее воды, поэтому и давление по мере углубления возрастает в три раза быстрее, чем под водой. Когда батискаф «Триест» опустился на дно Марианской впадины, на глубину более 11 километров под поверхностью Тихого океана, давление там достигало более тысячи атмосфер на каждый сантиметр поверхности сферической наблюдательной камеры; поэтому стенки камеры пришлось сделать из стали толщиной 12 сантиметров. Под землей такая величина давления будет отмечена уже на глубине всего три с небольшим километра, а это ведь только ничтожная царапинка на поверхности нашей планеты.

В центре Земли давление, по ориентировочным подсчетам, должно достигать примерно 3,5 миллиона атмосфер — в три тысячи раз больше давления, испытанного батискафом «Триест».

Под действием такого давления горные породы и металлы становятся текучими, как жидкости. Кроме того, по мере углубления в толщу Земли температура неизменно повышается, достигая в центре земного шара, вероятно, более 3000 °C. Отсюда с очевидностью явствует: не следует рассчитывать, что мы обнаружим готовую дорогу к сердцу нашей планеты. Что касается прежнего представления о пустотелой структуре Земли (некогда выдвигавшегося в качестве серьезной научной теории), то оно должно быть — не без сожаления — отвергнуто вместе с целым ворохом «подземных фантазий» вроде «В сердце Земли» Эдгара Берроуза.

Максимальная глубина, которой достигли буровыми скважинами нефтяные компании (самые настойчивые исследователи земных недр), составляет пока что немногим более восьми километров. Это всего лишь четверть толщины твердой земной коры, которая равна под континентами около 35 километров. Под океанами кора значительно тоньше, и сейчас разрабатывается проект бурения скважины сквозь нее (так называемый проект «Мохол») для получения образцов материала, на котором эта кора плавает.

Обычно для бурения глубоких скважин применяют долото, укрепленное на конце тысячеметровой, свинченной из труб, буровой колонны, которая приводится во вращение двигателем, расположенным на поверхности Земли. По мере углубления скважины все больше и больше энергии теряется на трение о ее стенки, а на подъем и опускание километров труб всякий раз, когда нужно сменить долото, затрачиваются многие часы.

Более новые способы бурения исключают необходимость трубчатых буровых колонн; двигатель, электрический или гидравлический, укрепляется на самом долоте. Русским принадлежит приоритет в этой области; ими также разработан бур, который можно назвать ракетным, — он прожигает скважину струей пламени кислородно-керосиновой смеси, при горении которой достигается температура свыше 3000 °C. Используя один из таких новых методов, мы сможем пройти скважину глубиной 15–16 километров, затратив на это несколько миллионов долларов, и углубиться почти на половину толщины земной коры, или на 1/400 радиуса Земли.

Но пробурить скважину диаметром 150 миллиметров — это еще не значит исследовать подземные толщи, так что давайте рассмотрим некоторые другие, более волнующие возможности. Русские горные инженеры уже построили механических кротов, управляемых человеком, для проходки туннелей на небольших глубинах. Они очень похожи на то устройство, с помощью которого герой романа Берроуза добрался до Пеллюцидара — мира, расположенного в центральной части земного шара. Проблема уборки грунта при проходке решена точно так же, как ее решает обыкновенный крот: грунт, разрыхляемый головной фрезой, уплотняется и вдавливается в стенки туннеля.

Механический крот даже в сравнительно мягком грунте перемещается довольно медленно, так как за ним тянется электрокабель и часто приходится менять буровой механизм. Чтобы «Земной зонд» мог рассчитывать на проникновение куда-нибудь поглубже, мы должны применить совершенно новый принцип проходки и обеспечить подачу значительного количества энергии.

Источником энергии при работе под землей могут служить ядерные реакции: они уже несут такую службу под водой. Что же касается метода разработки пород, то здесь опять русские (которые, по-видимому, заинтересованы в подземных исследованиях не меньше, чем в космических) предложили одно решение. Они используют высокочастотные токи для чисто термического разрушения горных пород. Скорость прокладки пути сквозь толщу Земли посредством электрической дуги зависит только от подачи энергии. С этой задачей может справиться и ультразвук; сейчас он уже используется в малых масштабах для сверления особо твердых материалов, не поддающихся обработке обычными инструментами.

Атомный «подземоход», управляемый человеком, — неплохой предмет размышлений для любого клаустрофоба21. В большинстве случаев нет смысла сажать в него человека. Так или иначе человеку все равно придется рассчитывать только на приборы — его собственные органы чувств окажутся бессильными. Все научные наблюдения и сбор образцов можно провести автоматически по предварительно разработанной программе. Кроме того, без экипажа, нуждающегося в питании и кислороде, машина будет работать намного дольше. Она могла бы неделями, месяцами странствовать в сердцевине Гималаев или под дном Атлантического океана, прежде чем направиться домой с грузом накопленных сведений.

Глубина, на которую удается проникнуть такому зонду, ограничена давлением, которому должны противостоять его стенки. Этот предел давления, пожалуй, мог бы быть весьма высоким, если тело зонда сделать монолитным, а пустоты, оставленные внутри, заполнить жидкостью для обеспечения дополнительной прочности. Это, кстати, еще один довод против экипажа, состоящего из людей.

В лабораторных условиях сейчас достигнуты давления порядка четверти миллиона атмосфер22; эта цифра соответствует давлению на глубине 650 километров под поверхностью Земли. Отсюда отнюдь не вытекает, что мы можем построить машины, способные углубиться на 650 километров, но цифра в десять раз меньшая, по-видимому, не выходит за пределы возможного. Высокие температуры — менее серьезная проблема; кроме отдельных горячих точек, наподобие вулканов, температуры в земной коре не превышают 300–400 °C. Таким образом, можно предполагать, что в последующем мы, если пожелаем, сумеем исследовать большую часть толщи земной коры с помощью машин, которые представляются осуществимыми в свете современного состояния техники.

Как ни трудны проблемы непосредственного исследования внешних слоев толщи Земли, они ничтожны в сравнении с теми, которые возникнут, если мы вознамеримся добраться до мантии , лежащей под земной корой до глубины три тысячи километров, или ядра , находящегося под мантией. Современная техника нам в этом помочь не может; все материалы и виды энергии, какими мы располагаем, безнадежно слабы и неспособны противостоять комбинированному воздействию температуры три тысячи градусов и давления три тысячи тонн на квадратный сантиметр. В таких условиях полое пространство размером с булавочную головку просуществует какую-нибудь долю секунды, а наипрочнейшие наши металлы не то что станут текучими, как вода, а превратятся в новые, значительно более плотные вещества.

Поэтому исследование более глубоких недр Земли непосредственными физическими методами не может быть осуществлено, если только мы не получим в дальнейшем власть над силами на несколько порядков мощнее тех, какими располагаем сейчас. Однако там, где мы не сможем побывать сами, нам на помощь придут косвенные методы наблюдения.

Увидеть недра Земли с той точностью и определенностью, с какой мы исследуем человеческий организм, было бы замечательным достижением величайшего научного и практического значения. Врачу 1860 года рентгенограмма показалась бы чем-то невероятным; сегодня мы вычерчиваем нечто похожее на грубые ренгтенограммы Земли на основе характера распространения волн, возникающих при землетрясениях и взрывах. (Мы умеем производить взрывы такой силы, что от них сотрясается наша планета; не все еще осознали, что самый мощный взрыв природного происхождения, когда-либо отмеченный, — извержение вулкана Кракатау в 1883 году — может быть воспроизведен большой водородной бомбой23.)

Наши представления о недрах весьма приближенные, им не хватает детальности; в частности, мы еще ничего не знаем о строении центрального плотного ядра, диаметр которого равен почти 6,5 тысячи километров. Мы не знаем даже, из чего оно состоит. Старая теория о железном ядре за последние годы была несколько скомпрометирована; очень возможно, что оно состоит из каких-нибудь обычных пород, плотность которых превышает плотность свинца за счет колоссальных давлений.

Чтобы исследовать эту зону, необходимы волны, которые проникали бы сквозь твердую толщу Земли с такой же легкостью, с какой рентгеновские лучи проходят сквозь человеческое тело, а свет — через атмосферу, и передавали бы нам информацию, полученную на пути их движения. Но эта идея совершенно абсурдна. Подумайте только: почти 13 тысяч километров непроницаемых скальных пород и металлов отгораживают нас от антиподов!

Впрочем, не торопитесь — подумайте еще. Ведь есть же пусть не волны, а какие-то другие физические сущности, для которых земной шар прозрачен, словно мыльный пузырь. Во-первых, это гравитация; правда, мне еще ни разу не попался физик, который дал бы прямой ответ на вопрос, имеет ли распространение силы тяжести волновой характер, — несомненно, она проходит сквозь толщи Земли с такой легкостью, как будто их и не существует вовсе.

Такой же способностью проникать сквозь любые преграды обладает и нейтрино — своеобразнейшая и самая неуловимая из всех частиц. Преграда из какого-нибудь тяжелого материала, например свинца, задерживает все другие частицы: одни могут проникнуть в толщу свинца всего на несколько сантиметров, другие — на несколько метров. Но нейтрино, эта невероятная частица, не имеющая ни массы, ни заряда (не огорчайтесь: спин у нее все-таки есть), в состоянии пройти сквозь свинцовый экран толщиной в пятьдесят световых лет без сколько-нибудь заметного ущерба для себя. Мощные потоки нейтрино пронизывают нашу вроде бы очень твердую планету в то самое мгновение, когда я пишу эти строки, и лишь одна частица из триллиона встречает незначительное сопротивление.

Я не предлагаю применить гравитацию или нейтринные лучи для «фотографирования» ядра Земли; вероятно, их проникающая способность слишком велика для этого — нельзя же запечатлеть предмет с помощью лучей, которые совершенно свободно проходят сквозь него. Но, если в природе есть подобные необычайные физические феномены, могут быть и другие, обладающие нужными нам свойствами, и мы сможем применить их, чтобы заснять внутренности нашей планеты, подобно тому как рентгенологи снимают наши внутренние органы.

Проведя такое обследование, мы, вполне вероятно, обнаружим, что в глубочайших недрах Земли ничего особенно интересного нет, — просто однородные слои скальных пород или металлов, плотность которых нарастает по мере приближения к центру. Однако Вселенная почти неизменно оказывается более сложной и удивительной, чем мы предполагаем; вспомните хотя бы, что, когда мы принялись исследовать «пустое» космическое пространство, оно оказалось битком набитым радиоволнами, космической пылью, блуждающими атомами, заряженными частицами и бог знает чем еще. Если природа верна себе повсюду, мы обнаружим в глубинах Земли нечто такое, что обозрение только издали нас никак не удовлетворит. Нам захочется добраться до него самим.

А это «нечто», возможно, захочет добраться до нас, как я предположил несколько лет назад в рассказе «Огни в недрах». Замысел этого рассказа основан на том факте, что в условиях высоких давлений существуют формы материи столь плотные, что по сравнению с ними обычная скальная порода покажется более текучей, чем воздух. Впрочем, это, пожалуй, грубое преуменьшение: гранит примерно в 2000 раз плотнее воздуха, но «разрушенная материя» в центре звезды-карлика в сто тысяч раз, а в некоторых случаях в десять миллионов раз плотнее гранита . Хотя в действительности даже в центре Земли давление слишком мало, чтобы раздавить атомы и довести плотность материи до этих невообразимых величин, я допустил — в чисто беллетристических целях — предположение, что существа, состоящие из такой сверхплотной материи, могут плавать в глубинах Земли, как рыбы в воде. Смею надеяться, что никто не отнесся к этой выдумке более серьезно, чем отношусь к ней я сам, но она может послужить своего рода аллегорией, которая поможет нам подготовиться к восприятию истин почти столь же удивительных, но гораздо более сложных.

Если наши потомки — или их машины — когда-нибудь сумеют погрузиться на большую глубину в расплавленные недра Земли, это, вероятнее всего, будет достигнуто с помощью приемов, разработанных совсем для иных целей и очень далеко от родной планеты. Чтобы попытаться представить себе такие приемы, давайте мысленно перенесемся на некоторое время далеко в космос, к огромной планете Юпитер, которую автоматические исследовательские ракеты будут зондировать, летая вокруг нее, в 70-х годах нашего столетия.

Право же, надоело читать в книгах о космических путешествиях, что Юпитер — это планета, на которую люди, «разумеется», никогда не высадятся. Я не хочу этим сказать, что сам горю желанием отправиться туда. Диаметр Юпитера в одиннадцать раз больше диаметра Земли; поверхность — в сто с лишним раз больше. Если всю нашу планету развернуть на поверхности Юпитера, она будет выглядеть примерно так, как Индия на нашем глобусе. Но мы еще не составили карт Юпитера — мы никогда не видели его поверхности. Так же как и поверхность Венеры, она постоянно закутана облаками — или чем-то еще, что за неимением лучшего названия мы именуем облаками. Они вытягиваются в широтном направлении и образуют вечно перемещающиеся параллельные полосы вследствие быстрого вращения планеты, и, даже находясь за сотни миллионов километров, разделяющих нас, мы можем наблюдать чудовищной силы бури и возмущения, охватывающие площади, которые превышают размером нашу Землю. Метеорология Юпитера — это наука, основы которой еще даже не заложены. Там, на огромном удалении от Солнца, в ледяных сумерках, атмосфера, состоящая из водорода и гелия, раздирается неведомыми нам силами. Однако, несмотря на все эти конвульсии стихий, некоторые наблюдаемые нами элементы поверхности планеты многие годы подряд умудряются сохранять неизменными свои очертания. Вот уже на протяжении 120, а возможно, даже 300 лет астрономы время от времени наблюдают так называемое Красное пятно — огромное овальное пятно протяженностью около 40 тысяч километров.

Учитывая размеры Юпитера и масштабы природных явлений, разыгрывающихся там, вполне естественно предположить, что его атмосфера намного толще земной и простирается не на сотни, а на тысячи километров. Однако на самом деле это не так; поскольку тяготение Юпитера в два с половиной раза превышает земное, атмосфера этой планеты, вероятно, сжата в слой толщиной всего километров восемьдесят.

В нижней части этого слоя давление должно достигать величин, известных нам на Земле лишь в глубинах океанов. Чтобы проникнуть в атмосферу Юпитера, понадобится не просто космический корабль, а батискаф. На Юпитере может не оказаться ясно выраженной твердой поверхности, пригодной для посадки корабля. Плотность водорода там может увеличиваться постепенно, причем сначала он превращается в жидкую кашицу, а ниже, там, где давление в тысячу раз больше, чем на дне Марианской впадины, — в вещество, твердое как металл.

И все же когда-нибудь люди возьмутся за исследование этого мира. Возможно, это будет одно из величайших свершений XXI века. Юпитер станет лабораторией, в которой мы научимся противостоять особо высоким давлениям, управлять ими, использовать их, и эта работа в дальнейшем, возможно, положит начало развитию новых отраслей промышленности гигантских масштабов (ведь на планете, которая весит в триста раз больше Земли, недостатка в сырье не будет). Когда мы узнаем, что надо делать, чтобы уцелеть, находясь в нижних слоях атмосферы Юпитера, мы будем лучше подготовлены к погружению в недра своей планеты. Главные трудности, подстерегающие нас на Юпитере, — это высокое давление и свирепые ураганы, скорости которых измеряются сотнями километров в час. Нам не придется страдать от жары: в наружных слоях атмосферы температура равна примерно 160° ниже нуля; «на поверхности» она ближе к тропической, хотя пока никто не знает, какова она на самом деле. Если в солнечной системе и имеются районы, недоступные только из-за высокой температуры, то их нужно искать значительно ближе к Солнцу.

Наш выбор, бесспорно, падет на планету Меркурий. Этот маленький мир (диаметр планеты достигает немногим более 4800 километров) не знает смены дня и ночи, потому что одна его сторона всегда обращена к Солнцу, а другая погружена в вечную тьму. В центре освещенного полушария, в этом краю бесконечного полудня, где Солнце вечно висит над головой, температура должна достигать 400–450°. Зато на другой стороне, погруженной в тень, где единственным источником тепла служит слабое излучение звезд, температура никогда не превышает 200° ниже нуля24. Конечно, завоевание Меркурия дело нелегкое и при этом погибнет немало людей и будет потеряно немало машин. Однако действительно грозные опасности будут подстерегать нас по мере приближения к огненному ядру Солнца.

Рассмотрим несколько цифр, показывающих, что испытает летящий к Солнцу космический корабль. Вблизи от Земли температура корпуса корабля была вполне терпимой — около 15° выше нуля. По мере удаления от нее температура вначале будет нарастать очень медленно. Когда корабль минует Венеру (108 миллионов километров от Солнца), его корпус нагреется до 55°; когда он выйдет на орбиту Меркурия (58 миллионов километров от Солнца), температура корпуса поднимется до 100°. Выше 500° корпус корабля нагреется лишь тогда, когда мы приблизимся к Солнцу на 16 миллионов километров. На расстоянии вдвое меньшем, 8 миллионов километров, корпус уже будет накален до 1000°, а на расстоянии 1 600 000 километров от Солнца температура возрастет до 2500°, причем корабль будет находиться всего в 800 тысячах километров от поверхности Солнца, где температура равна примерно шести тысячам градусов.

Уже сейчас известны материалы, остающиеся твердыми при температурах выше 3000°; так, графит начинает испаряться при температуре около 3500°, карбид гафния сохраняет стойкость до 4000° — это, насколько мне известно, пока непревзойденный рекорд. Следовательно, мы могли бы послать ракету с последней ступенью из карбида гафния, с тем чтобы она приблизилась к Солнцу на полтора миллиона километров, и рассчитывать, что эта ступень возвратится на Землю. Зонды с приборами, хорошо защищенные несколькими слоями медленно испаряющегося тугоплавкого материала, могут даже достичь поверхности Солнца, прежде чем они разрушатся.

Но главный вопрос в другом: каково безопасное расстояние, на которое может подойти к Солнцу корабль с экипажем из людей? Ответ на этот вопрос зависит от мастерства и изобретательности конструкторов холодильных установок. Лично я полагаю, что 8 миллионов километров — расстояние, вполне достижимое даже для космического корабля с экипажем.

Есть одна уловка, которой мы можем воспользоваться, чтобы приблизиться к Солнцу без всякой (точнее, почти без всякой) опасности. Заключается она в том, что можно воспользоваться подходящим астероидом или кометой в качестве, так сказать, зонтика; из всего, что мы знаем сейчас, наиболее пригодная для этой цели небольшая летающая гора, вполне уместно нареченная именем Икар.

Эта малая планета каждые тринадцать месяцев проходит очень близко от Солнца — на расстоянии всего 27 миллионов километров. Время от времени она проходит совсем близко от нас — в 1968 году ее будет отделять от Земли лишь 6,4 миллиона километров.

Икар представляет собой неправильной формы скалистую глыбу размером от 1,5 до 3 километров в поперечнике. В перигелии, под Солнцем, которое выглядит в тридцать раз большим, чем с Земли, поверхность этого крохотного мирка может накаливаться до температур порядка 600°. Но он отбрасывает конус тени в пространство, и под прикрытием этой тени космический корабль может безопасно облететь вокруг Солнца.

В рассказе «Лето на Икаре» я описал, каким способом ученые могли бы пуститься в подобное головокружительное путешествие, чтобы подобраться вместе со своими приборами поближе к Солнцу, причем наше светило не сумеет опалить их своими лучами, пока они будут оставаться на холодной стороне астероида, защищенные полуторакилометровой толщей скалы. Хотя можно было бы сконструировать искусственную теплоизоляцию, наподобие той, которую несет современная головная часть ракеты, рассчитанная на возврат в атмосферу, пройдет еще много лет, пока мы сумеем создать такую надежную защиту, какую Икар может предоставить нам, не потребовав особых затрат. Ведь эта малая планета, как она ни мала, весит, должно быть, около десяти миллиардов тонн.

Возможно, другие астероиды еще ближе подходят к Солнцу; если таких не найдется, то в свое время мы заставим нужный нам астероид приблизиться к Солнцу, «подтолкнув его в бок» в соответствующей точке его орбиты. Тогда ученые, укрывшись поглубже под его поверхностью, смогут стремительно промчаться сквозь солнечную атмосферу и снова унестись в космическое пространство после головокружительного крутого поворота.

Любопытно прикинуть, сколько времени займет такая «поездка». Наше Солнце сравнительно небольшая звезда: его окружность равна «всего» пяти миллионам километров. Спутник, орбита которого проходит непосредственно за пределами солнечной атмосферы, должен иметь скорость 1,6 миллиона километров в час, чтобы совершить полный оборот вокруг Солнца за три часа.

Комета или астероид, падающие в направлении Солнца с расстояния, равного удалению Земли в точке ближайшего подхода к Солнцу, будут двигаться несколько быстрее — примерно со скоростью два миллиона километров в час; поэтому они совершат пируэт вокруг Солнца за час с небольшим, прежде чем вновь устремиться в космическое пространство. Даже если при этом обратится в пар несколько мегатонн скальных пород, наблюдатели и приборы в толще астероида останутся целы, при условии, конечно, что не будет допущено какой-нибудь «навигационной» ошибки и астероид не внедрится слишком глубоко в солнечную атмосферу и не сгорит от трения, как уже сгорели многие искусственные спутники Земли.

Вот это было бы путешествие! Попробуйте вообразить, как вы молнией проноситесь высоко над центром гигантского солнечного пятна — колоссального зияющего кратера диаметром полторы сотни тысяч километров, через который, подобно мостам, перекинулись языки пламени таких размеров, что наша Земля могла бы катиться по ним, как детский обруч по тротуару. Взрыв самой мощной водородной бомбы прошел бы незамеченным в этом аду, откуда со скоростью в сотни километров в секунду вырываются облака раскаленных газов размером в добрый земной континент и уносятся навеки в мировое пространство.

Рэй Бредбери в своем рассказе «Золотые яблоки Солнца» описал спуск космического корабля в солнечную атмосферу для взятия пробы солнечной материи (кстати, мы теперь уже знаем, что она содержит 90 % водорода, 10 % гелия и ничтожные следы всех других элементов). Когда я впервые прочитал этот рассказ, то отнесся к нему как к очаровательной фантазии и не более. Теперь я не столь твердо уверен в правильности этого моего мнения. В известном смысле мы уже дотянулись до Солнца, прикоснулись к нему: в 1959 году мы установили с ним радиолокационный контакт (всего одно поколение назад это показалось бы совершенно невозможным). Теперь уже не представляется совершенно немыслимым — благодаря развитию новой науки, физики плазмы, родившейся в последнее десятилетие, — и непосредственное физическое приближение к Солнцу.

Физика плазмы, известная также под замысловатым названием магнитогидродинамики, занимается изучением свойств сильно нагретых газов в магнитном поле. Благодаря ей мы уже научились создавать в лабораторных условиях температуры порядка десятков миллионов градусов; в конечном счете она может привести нас к решению задачи извлечения неисчерпаемой энергии реакции синтеза водорода. Я предполагаю, что, когда мы по-настоящему овладеем законами этой еще только нарождающейся науки, она позволит нам создавать такие магнитные или электрические заслоны, которые обеспечат защиту против высоких температур и давлений, гораздо более эффективную, чем стены из монолитного металла. Старая идея научной фантастики о непроницаемом силовом поле, возможно, перестанет оставаться всего лишь мечтой; может быть, необходимость заставит нас открыть подобное поле как единственную реальную защиту против межконтинентальных баллистических ракет. Овладев такими возможностями, мы получим ключ не только к недрам Земли, но и к недрам Солнца. И, вероятно, как это отмечается в главе 12, к чему-нибудь еще более значительному.


В поисках недосягаемого мы унеслись воображением в странные, чуждые, враждебные человеку места. Центр Земли, атмосфера Юпитера, поверхность Солнца пока что, бесспорно, недосягаемы для современной техники, но я привел доводы, позволяющие считать, что они не всегда будут недоступны для нас, если мы действительно захотим туда попасть. Здесь я должен оговориться, что мы в своих рассуждениях отнюдь не исчерпали все неожиданные сюрпризы, которыми так богата Вселенная. Если вы не устали, мы нанесем с вами еще один визит.

Я уже говорил о звездах-карликах: это крохотные солнца, находящиеся на последней стадии звездной эволюции. Некоторые по объему меньше Земли, хотя в них и втиснута вся материя нормальной звезды. Сами атомы, из которых они состоят, разрушены, сплющены в результате колоссального давления, и плотность вещества в них в миллионы раз превышает плотность воды. Кубический сантиметр вещества таких звезд весит более шести тонн.

Хотя большинство карликов раскалено до красного или белого каления, теоретически возможны и холодные, черные карлики. Они являют собой самую последнюю ступень развития звезд; обнаружить их чрезвычайно трудно, поскольку они, подобно планетам, не излучают собственного света и их можно наблюдать лишь при отражении чужого света или когда они затмевают какое-либо другое небесное тело. Поскольку наша Галактика еще очень молода (ей немногим более 25 миллиардов лет), вполне вероятно, что ни одна из ее звезд не достигла последней стадии развития и не стала черным карликом, хотя когда-нибудь придет и их черед.

Такие «звездные трупы» будут принадлежать к числу самых замечательных (и самых мрачных) объектов Вселенной. Сочетание огромной массы с ничтожными размерами и обусловит существование на них гравитационных полей колоссальной мощности — в миллион раз мощнее, чем на Земле. Мир, в котором господствует такая тяжесть, должен быть идеально сферической формы: никакие горы и холмы не смогли бы подняться над его поверхностью больше чем на несколько миллиметров, а толщина атмосферы составляла бы всего несколько метров.

При тяжести в миллион раз больше земной все тела, даже из крепчайшего металла, под воздействием собственного веса стали бы текучими, как жидкость, и растеклись бы в тонкую пленку. Человек в таких условиях весил бы столько же, сколько на Земле весит огромный морской лайнер; он расплющился бы под собственной тяжестью так быстро, что его разрушение нельзя было бы проследить невооруженным глазом: оно произошло бы менее чем за 0,001 секунды. Падение с высоты один сантиметр на звезде-карлике эквивалентно в земных условиях падению с вершины Эвереста до уровня моря.

И все же, несмотря на мощнейшее гравитационное поле, можно было бы приблизиться к подобному небесному телу даже на несколько сот метров. Космический корабль или космический зонд, запущенный по достаточно точно рассчитанной орбите, мог бы, во всяком случае теоретически, стремительно обернуться вокруг него, подобно тому как кометы проносятся вокруг Солнца.

Если бы вы находились на таком корабле, вы ничего особенного не почувствовали бы даже в момент максимального сближения. Под воздействием ускорения, равного миллиону g, вы оставались бы в состоянии полной невесомости, потому что совершали бы свободное падение. Проносясь над самой поверхностью умирающей звезды, корабль достиг бы максимальной скорости — 40 миллионов километров в час; затем он ушел бы снова в космическое пространство, ускользнув от тяготения звезды-карлика.

А возможна ли посадка на звезду-карлик? Что ж, вполне возможна, при условии что мы примем два допущения, ни одно из которых не нарушает каких-либо известных физических законов. Во-первых, нам понадобятся двигатели, в несколько миллионов раз более мощные, чем современные; во-вторых, потребуется абсолютно надежное и совершенное средство нейтрализации тяжести, которое ослабит сокрушительное внешнее поле в миллион раз. Если хотя бы 0,001 процента такой страшной гравитации «просочится» в корабль, его экипаж будет раздавлен. Конечно, люди не успеют даже ничего почувствовать: все кончится так быстро, что нервные клетки не успеют среагировать.

Мир черного карлика настолько необычен, что его трудно представить себе даже мысленно. Гравитационное поле изменит саму геометрию пространства, свет уже не будет распространяться по идеальной прямой, и его лучи подвергнутся заметному искривлению. Сейчас не стоит и гадать, какие еще искажения могут там встретиться, — это и есть одна из причин, которые побудят нас отправиться на такую звезду, если подобное путешествие когда-нибудь станет возможным.

При нашей жизни люди уже сумели взглянуть сквозь иллюминаторы батискафа на отделенную от них всего несколькими сантиметрами среду, в которой они были бы мгновенно расплющены давлением, достигающим одной тонны на каждый квадратный сантиметр поверхности их тел. Это замечательное достижение, торжество человеческого мужества и технического мастерства. Пройдут сотни лет, и где-то в далях, находящихся на расстоянии многих световых лет от Земли, люди, может быть, взглянут через иллюминаторы на еще более жестокий мир звезды-карлика.

И, должно быть, странно будет чувствовать себя человек, глядя на гладкую, геометрически совершенно правильную поверхность, расстилающуюся по ту сторону защитного компенсационного поля корабля, и сознавая, что в переводе на условия слабой земной гравитации он по весу стал великаном ростом больше полутора тысяч километров.



Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   21




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет