Подобным же образом Рейхенбах может сказать, когда он говорит о пределе частоты, когда n бесконечно, что он имеет в виду только актуальную частоту для очень больших чисел, или, скорее, эту частоту с небольшим запасом ошибки. Бесконечное и бесконечно малое одинаково ненаблюдаем и, следовательно (как он может сказать), одинаково не имеют значения для эмпирического знания.
Я склонен признать справедливость этого ответа. Я только сожалею, что это не выражено явно в книге Рейхенбаха; я думаю тем не менее, что он должен был это иметь в виду.
Второе соображение в пользу его теории — то, что она применима как раз к тем случаям, в которых мы хотим воспользоваться аргументами вероятности. Мы испытываем желание воспользоваться этими аргументами, когда имеем некоторые данные, касающиеся определенного будущего события, но которых недостаточно, чтобы определить его характер в некотором интересующем нас отношении. Моя смерть, например, является событием будущего, и если я страхую свою жизнь, то я могу испытывать желание узнать, какое существует свидетельство, касающееся вероятности его осуществления в том или ином данном году. В таком случае мы всегда имеем некоторое число индивидуальных фактов, записанных в виде последовательности, и предполагаем, что частоты, обнаруженные до сих пор, будут более или менее продолжать оставаться такими же. Или возьмем азартную игру, в которой и возник весь этот вопрос. Мы не интересуемся тем простым фактом, что имеется 36 возможных результатов бросаний с двумя костями. Мы интересуемся тем фактом (если это факт), что на протяжении длинной последовательности бросаний каждая из 36 возможностей будет осуществляться приблизительно одинаковое число раз. Этот факт не вытекает из одного лишь существования 36 возможностей. Когда вы встречаете незнакомого человека, есть только две возможности: одна та, что его зовут Эбинизер Уилкс Смит, другая — что его зовут не так. Но на протяжении долгой жизни, в течение которой я встретил множество незнакомых людей, я только один раз столкнулся с реализацией первой возможности. Чисто математическая теория, которая только перечисляет возможные случаи, лишена практического интереса, если мы не знаем, что каждый возможный случай осуществляется приблизительно с одинаковой или с какой-то известной частотой. А это, если мы рассматриваем не логическую схему, а события, может быть известным только через действительную статистику, использование которой — как я сказал бы — должно идти более или менее в соответствии с теорией Рейхенбаха.
И этот аргумент я принимаю предварительно; он будет исследован заново, когда мы придем к рассмотрению индукции.
Есть совершенно другого рода возражение против теории Рейхенбаха в его собственной формулировке, и это возражение относится к ее введению последовательностей там, где, по-видимому, только классы логически значимы. Возьмем пример: каков шанс, что выбранное наудачу целое число окажется простым? Если мы возьмем целые числа в порядке их следования в натуральном ряде, то шанс, в соответствии с его определением, равен нулю; так как если n есть целое число, то число простых чисел, меньших или равных n, есть приблизительно n /(In n), если n — большое, так что шанс, что целое число, меньшее, чем n, будет простым числом, стремится к n /(In n), а предел 1/(1п n), поскольку n безгранично увеличивается, равен нулю. Но теперь допустим, что мы расставим целые числа в следующем порядке: поставим сначала первые 9 простых чисел, затем первое число, не являющееся простым, затем 9 простых, а затем второе число, не являющееся простым, и так далее до бесконечности. Когда целые числа расставлены в этом порядке, определение Рейхенбаха показывает, что шанс того, что выбранное наудачу число будет простым, равен 9/10. Мы могли бы даже расставить целые числа так, чтобы шанс того, что выбранное число не будет простым, стал равен нулю. Чтобы получить этот результат, начнем с первого непростого числа, то есть с 4, и поставим после n-го числа, не являющегося простым, n простых чисел, следующих после уже поставленных; эта последовательность начинается следующим образом: 4, 1, 6, 2, 3, 8, 5, 7, 11, 9, 13, 17, 19, 23, 10, 29, 31, 37, 41, 43, 12... В этой расстановке перед (n +1)-м непростым будет n непростых и 1/2n (n +1) простых; таким образом, по мере того как n возрастает, отношение числа непростых к числу простых приближается к 0 как пределу.
Из этого примера ясно, что если принять определение Рейхенбаха, то при данном любом классе А, имеющем столько же членов, сколько есть натуральных чисел, и при данном любом бесконечном подклассе В шанс, что выбранное наудачу А будет В, равен любому числу между 0 и 1 (включая и то и другое) в соответствии со способом, который мы избираем для распределения членов В среди А.
Из этого следует, что если вероятность должна применяться к бесконечным совокупностям, она должна применяться не к классам, а к последовательностям. Это кажется странным.
Правда, там, где в деле участвуют эмпирические данные, они все даются во временном порядке и, следовательно, в виде последовательности. Если мы избираем предположение о возможности бесконечного числа событий исследуемого нами вида, тогда мы можем также заключить, что наше определение вероятности является применимым только до тех пор, пока события располагаются во временной последовательности. Но вне чистой математики ни одна последовательность нам неизвестна как бесконечная, а большинство, насколько мы можем судить, является конечными. Каков шанс, что человек шестидесятилетнего возраста умрет от рака? Конечно, мы можем определить этот шанс и без допущения, что число людей, которые до конца мира умрут от рака, бесконечно. Но, согласно букве определения Рейхенбаха, определить это было бы невозможно.
Если вероятности зависят от того, что события берутся в их временном, а не в каком-либо другом порядке, в каком их можно расположить, то вероятность не может быть ветвью логики, а должна быть частью изучения природы. Взгляд Рейхенбаха не таков; он считает, напротив, что всякая истинная логика есть логика вероятности и что классическая логика ошибочна, потому что она делит предложения по признаку их истинности или ложности, а не по признаку обладания той или иной степенью вероятности. Он должен был бы поэтому сформулировать основные положения теории вероятности в абстрактных логических терминах, не вводя в них такие случайные признаки действительного мира, как время.
Имеется очень большая трудность в соединении статистического взгляда на вероятность со взглядом, которого также придерживается Рейхенбах и который состоит в том, что все предложения обладают только различными степенями вероятности, не достигающими достоверности. Трудность заключается в том, что тем самым мы, по-видимому, осуждены на бесконечный регресс. Допустим, что мы говорим о вероятности того, что человек, заболевший чумой, умрет от нее. Это значит, что если бы мы могли составить полную последовательность людей, которые с древнейших времен и до исчезновения человеческой расы болели и будут болеть чумой, то мы установили бы, что больше половины из них умерли и умрут от нее. Поскольку в отношении будущего и значительной части прошедшего регистрации нет, постольку мы считаем, что зарегистрированные случаи служат хорошим образчиком. Но теперь мы должны вспомнить, что все наше знание только вероятно; следовательно, если, собрав наши статистические данные, мы найдем, что А болел чумой и умер от нее, то мы должны рассматривать этот случай не как достоверный, а только как вероятный. Чтобы узнать, насколько он вероятен, мы должны включить его в последовательность, скажем, официальную регистрацию смертей, и должны найти какой-либо способ удостовериться, какое отношение регистрации смертей является правильным. При этом какой-нибудь отдельный пункт в нашей статистике окажется, например, следующим: "Было официально удостоверено, что мистер Браун умер, но потом оказалось, что он все же живой". Но и этот пункт в свою очередь должен быть только вероятным и должен, следовательно, входить в последовательность зарегистрированных официальных ошибок, некоторые из которых окажутся не ошибками. Это значит, что мы должны собрать случаи, когда мы ошибочно верили, что лицо, зарегистрированное как умершее, оказалось все-таки живым. Этому процессу не может быть конца, если все наше знание только вероятно, а вероятность имеет только статистический характер. Если мы хотим избежать бесконечного регресса, а все наше знание является только вероятным, то "вероятность" должна интерпретироваться как "степень правдоподобия" и должна определяться не статистически, а как-либо иначе. Статистическая вероятность может определяться только на основе действительной или постулируемой достоверности.
Я вернусь в Рейхенбаху в связи с индукцией. А сейчас я хочу разъяснить мой собственный взгляд в отношении связи математической вероятности с естественным ходом вещей в природе. Возьмем в качестве примера закон больших чисел Бернулли, выбрав самый простой из возможных случаев. Мы видели, что если мы соберем все возможные целые числа, состоящие из n знаков, каждое из которых будет или 1, или 2, то, если n является большим — скажем, не меньшим, чем 1000,— огромное большинство возможных целых чисел будет иметь приблизительно одинаковое число единиц и двоек. Это есть только применение того факта, что при разложении бинома (х + у)n, когда n — большое, сумма биноминальных коэффициентов около середины будет мало отличаться от суммы всех коэффициентов, каковая равна 2n. Но какое это имеет отношение к утверждению, что если я буду достаточно много раз бросать монету, то я, вероятно, получу приблизительно одинаковое число выпадений лицевой и оборотной сторон? Первое есть логический факт, второе, очевидно, является эмпирическим фактом; какова же связь между ними?
При некоторых интерпретациях "вероятности" утверждение, содержащее слово "вероятный", никогда не может быть эмпирическим утверждением. Признается, что то, что не является вероятным, может произойти, а то, что считается вероятным, может не произойти. Из этого следует, что то, что на самом деле происходит, не показывает, что прежнее суждение о вероятности было или правильным, или ложным; любой воображаемый ход событий логически совместим с любой предшествующей оценкой вероятности, какую только можно вообразить. Это можно отрицать только в том случае, если мы будем считать, что то, что в высокой степени невероятно, не происходит, чего мы не имеем права думать. В частности, если индукция утверждает только вероятности, тогда все то, что может произойти, логически совместимо как с истинностью, так и с ложностью индукции. Следовательно, индуктивный принцип не имеет эмпирического содержания. Это есть reductio ad absurdum и показывает, что мы должны связывать вероятное с действительным теснее, чем это иногда делается.
Если мы согласимся с теорией конечной частоты — а я пока не вижу оснований не соглашаться с ней,— то скажем, что, утверждая вероятность суждения "о есть А "при том, что "а есть B", мы имеем в виду, что действительно большинство членов B является членами А Это есть утверждение факта, а не утверждение об a. И если я скажу, что индуктивный аргумент (соответствующим образом сформулированный и ограниченный) делает заключение из него вероятным, то я имею в виду, что он является одним из класса аргументов, из большинства которых вытекают истинные заключения.
Что теперь могу я иметь в виду, когда говорю, что шанс выпадения лицевой стороны монеты равен половине? Начнем с того, что это, если оно истинно, является эмпирическим фактом; это не следует из того факта, что в бросании монеты есть только две возможности: выпадение лицевой и оборотной сторон. Если бы это следовало из него, мы могли бы сделать вывод, что шанс того, что какой-либо незнакомец называется Эбинизер Уилкс Смит, равен половине, поскольку здесь есть только две возможности, именно что он или называется, или не называется так. В некоторых монетах лицевая сторона выпадает чаще, чем оборотная; в других оборотная чаще, чем лицевая. Когда я говорю, не конкретизируя монету, что шанс выпадения лицевой стороны равен половине, то что я имею в виду?
Мое утверждение, как и все другие эмпирические утверждения, претендующие на численную точность, будет только приблизительным. Когда я говорю, что рост человека равен 6 футам 1 дюйму, мне разрешается до определенных пределов допускать ошибку; даже если бы я поклялся, что у меня нет ошибки, то все равно меня нельзя было бы обвинить в том, что я клятвопреступник, если даже окажется, что я ошибаюсь на одну сотую дюйма. Точно так же нельзя считать, что я высказал ложное утверждение о моменте, если окажется, что 0,500001 будет более точной оценкой, чем 0,5. Однако сомнительно, сможет ли какое бы то ни было свидетельство заставить меня думать, что 0,500001 является лучшей оценкой, чем 0,5. В теории вероятности, как и всюду, мы берем наиболее простое предположение, приблизительно соответствующее фактам. Возьмем, скажем, закон падения тел. Галилей сделал некоторое количество наблюдений, которые более или менее соответствовали формуле s = 1/2 gt2. Без сомнения, он мог бы найти такую функцию f(t), что s = f(t) соответствовала бы его наблюдениям более точно, но он предпочел простую формулу с достаточно хорошим соответствием. Точно так же, если я бросил монету 2000 раз и получил 999 выпадений лицевой стороны и 1001 оборотной стороны, я должен считать шанс выпадения лицевой стороны равным половине. Но что именно должен я иметь в виду, утверждая это?
Этот вопрос показывает силу определения Рейхенбаха. Согласно ему, я имею в виду, что если я буду продолжать бросать достаточно долго, то пропорция выпадений лицевой стороны со временем будет постоянно очень близкой к 1/2; действительно, она будет отличаться от 1/2 на величину, меньшую, чем сколь угодно малая дробь. Это предсказание; если оно правильно, то моя оценка вероятности верна, если же неправильно, то она будет неверной. Что может теория конечной частоты противопоставить этому?
Мы должны различать между тем, что есть вероятность, и тем, что она вероятно есть. Что касается того, что вероятность есть, то это зависит от класса рассматриваемых нами бросаний. Если мы рассматриваем бросание с данной монетой, тогда, если за все время своего существования эта монета даст m выпадений лицевой стороны из общего числа A бросаний, вероятность выпадения лицевой стороны у этой монеты будет m/n. Если же мы рассматриваем монеты вообще, то n должно быть общим числом бросаний всех монет, какие только существовали и будут существовать на протяжении всей прошедшей и будущей истории мира, а m — числом всех выпадений лицевой стороны. Чтобы сделать вопрос менее обширным, мы можем ограничиться бросаниями, имевшими место в этом году в Англии, или бросаниями, попавшими в таблицы исследований вероятности. Во всех этих случаях m и n — конечные числа, а m/n есть вероятность выпадении лицевой стороны при данных условиях.
Но ни одна из приведенных выше вероятностей не известна. Мы поэтому вынуждены оценить их, то есть найти какой-либо способ решить, что они вероятно представляют собой. Если мы присоединяемся к теории конечной частоты, то это значит, что наша последовательность выпадений лицевой и оборотной сторон должна быть членом какого-то ограниченного класса последовательности и что мы должны иметь какое-то относящееся к делу знание обо всем этом классе. Предположим, что мы наблюдали, что в каждой последовательности из 10000 или более бросаний данной монеты отношение выпадений лицевой стороны после 5000-го бросания никогда не изменялось более чем на 2е, где е — очень мало. Мы можем тогда сказать: в каждом наблюдаемом случае отношение выпадений лицевой стороны после 5000 бросков данной монеты всегда оставалось между p — е и p + s, где p есть постоянная, зависящая от монеты. Аргументировать, исходя из этого, к случаю, еще не наблюденному, есть дело индукции. Для того чтобы это заключение было действительным, мы нуждаемся в аксиоме о том, что (при определенных обстоятельствах) признак, присутствующий во всех наблюденных случаях, присутствует в большом отношении всех случаев;
или во всяком случае нам нужна какая-либо аксиома, из которой вытекала бы эта. Тогда мы сможем выводить из наблюденных частот вероятную вероятность, интерпретируя вероятность в согласии с теорией конечной частоты.
Вышеизложенное является только набросками теории. Главное, что я хочу подчеркнуть, есть то, что по теории, которую я защищаю, всякое утверждение вероятности (в противоположность только сомнительному утверждению) есть утверждение факта, касающегося какого-либо отношения в последовательности. В частности, индуктивный принцип — все равно, истинный или ложный — должен утверждать, что как факт большинство последовательностей определенного вида имеет повсюду любой признак определенного рода, который имеется у большого числа следующих друг за другом членов последовательностей. Если это факт, то индуктивные аргументы могут давать вероятность; если же это не так, то не могут. Сейчас я не исследую, каким образом, мы можем знать, является ли это фактом или нет; эту проблему я не буду рассматривать до последней части нашего исследования.
Из сказанного можно видеть, что в результате вышеприведенного обсуждения мы пришли к согласию с Рейхенбахом по многим пунктам, хотя определенно не согласны с ним в отношении определения вероятности. Главное мое возражение против его определения —то, что частота, от которой оно зависит, гипотетична и не поддается удостоверению. Я не согласен с ним также и а том, что более резко по сравнению с ним различаю вероятность и сомнительность, и в том, что считаю, что логика вероятности с логической точки зрения не является основной в противоположность логике достоверности.
ГЛАВА 5.
ТЕОРИЯ ВЕРОЯТНОСТИ КЕЙНСА.
Сочинение Кейнса "Трактат о вероятности" (Treatise on Probability, 1921) выдвигает теорию, которая в некотором смысле является антитезой теории частоты. Он считает, что отношение, применяемое в дедукции, именно "p имплицирует q", есть крайняя форма отношения, которое может быть названо "p более или менее имплицирует q". "Если знание h,— говорит он,— оправдывает рациональную веру в а степени а, то мы говорим, что имеется отношение вероятности степени а между о и h". Мы записываем это: "a/h=а". "Между двумя рядами предложений существует отношение, в силу которого, если мы знаем первый, мы можем приписать второму некоторую степень рациональной веры". Вероятность, по существу, есть отношение: "Так же бесполезно говорить "b вероятно", как и "b равно "или "b больше, чем". Из "a "и "a имплицирует b" мы можем вывести "b"; это значит, что мы можем опустить всякое упоминание посылки и просто утверждать заключение. Но если а так относится к b, что зияние a превращает вероятную веру в b в рациональную, то мы не можем вообще ничего заключить о b, которое не имеет отношения к а; нет ничего соответствующего опусканию истинной посылки в доказательном выводе.
Вероятность, согласно Кейнсу, есть логическое отношение, которое не может быть определено иначе, кроме как, возможно, в терминах степеней рациональной веры. Но в целом кажется, что Кейнс скорее склоняется к определению "степеней рациональной веры" в терминах отношения вероятности. Рациональная вера, говорит он, есть нечто производное от знания: когда мы имеем степень рациональной веры в p, это происходит потому, что мы знаем какое-либо предложение h, а также знаем, что p/h = а. Из этого следует, что среди наших посылок должны быть некоторые предложения формы "p/h = а". Наше знание бывает отчасти непосредственным, а отчасти приобретается через умозаключение; наше знание, приобретаемое через умозаключение, осуществляется благодаря непосредственному знанию предложений формы "p имплицирует q", или "q/p = а ". Во всяком умозаключении, если его полностью проанализировать, мы должны иметь непосредственное знание отношения посылок к заключению, будь это отношение импликацией или отношением вероятности в какой-либо степени. Знание h и того, что p/h=а, ведет к "рациональной вере соответствующей степени" в p. Кейнс открыто признает, что все непосредственное знание достоверно и что рациональная вера, которой недостает достоверности, может возникнуть только через восприятие отношения вероятности.
Вероятности вообще, согласно Кейнсу, не поддаются числовому измерению; те же вероятности, которые поддаются ему, образуют весьма частный класс вероятностей. Он считает, что одна вероятность не может сравниться с другой, то есть не может быть ни большей, ни меньшей, чем другая, ни быть даже равной ей. Он считает даже, что иногда невозможно сравнивать вероятности p и не-p на основе данного свидетельства. Он не имеет при этом в виду, что мы недостаточно знаем, чтобы делать это; он думает, что действительно нет отношения равенства или неравенства. Он думает о вероятностях согласно следующей геометрической схеме: возьмем две точки, представляющие собой 0 невозможности и 1 достоверности; тогда численно измеримые вероятности могут быть изображены лежащими на прямой линии между 0 и 1, тогда как другие лежат на различных кривых, идущих от 0 к 1. Мы можем сказать, что из двух вероятностей, находящихся на одной и той же линии, та, которая находится ближе к 1, является большей, но мы не можем сравнивать вероятности, находящиеся на разных линиях, за исключением тех случаев, когда две линии перекрещиваются, что может случиться.
Кейнсу, как мы видели, нужно непосредственное знание предложений вероятности. Для того чтобы положить начало получению такого знания, он исследует и исправляет то, что называется "принципом недостаточного основания", или, как он предпочитает называть его, "принципом индифферентности".
В своей грубой форме этот принцип утверждает, что если нет известного основания в пользу какой-либо одной из нескольких возможностей, то все эти возможности равно вероятны. В этой форме, как указывает Кейнс, этот принцип ведет к противоречиям. Допустим, например, что вы ничего не знаете о цвете какой-либо определенной книги; тогда шансы, что она синяя или не синяя, одинаковым и, следовательно, каждый равен 1/2. Точно так же шанс, что она черная, равен тоже 1/2. Следовательно, шанс того, что она синяя или черная, равен 1. Из этого следует, что все книги или синие, или черные, что абсурдно. Или предположим, что мы знаем, что некий определенный человек живет или же в Великобритании, или в Ирландии; возьмем ли мы в качестве наших возможностей эти страны, или возьмем Англию, Шотландию и Ирландию, или возьмем каждое графство как одинаково вероятное? Или если мы знаем, что удельный вес определенного вещества находится между 1 и 3, то будем ли мы рассматривать интервалы от 1 до 2 и от 2 до 3 как равно вероятные? Но если мы примем во внимание относительный объем, то естественно выбрать интервалы от 1 до 2/3 и от 2/3 до 1/3 что создает одинаковые шансы для того, чтобы удельный вес был или между 1 и 3/2 или между 3/2 и 3. Такие парадоксы можно увеличивать бесконечно.
Из-за этого Кейнс не расстается полностью с принципом индифферентности; он думает, что этот принцип может быть так сформулирован, что можно будет избежать вышеупомянутых затруднений и что он будет все еще полезен. Для этой цели он сначала определяет то, что является "не относящимся к делу".
Грубо говоря, добавленная посылка является "не относящейся к делу", если она не изменяет вероятности, то есть h1 не связано с отношением к x и h, если x/h1h = x/h. Таким образом, например, тот факт, что фамилия человека начинается с буквы M, не имеет отношения к оценке шансов его смети. Вышеприведенное определение является, однако, до некоторой степени слишком простым, потому что h\ может состоять из двух частей, из которых одна может повышать вероятность х, тогда как другая — понижать ее. Например: шансы жизни белого человека понижаются при жизни его в тропиках, но повышаются (или так по крайней мере говорят), если он ведет трезвый образ жизни. Может быть, смертность среди белых трезвенников в тропиках та же, что и вообще у белых людей, но мы не можем сказать, что трезвый образ жизни человека, живущего в тропиках, не имеет отношения к этому вопросу. Поэтому мы говорим, что h1 не имеет отношения к x/h, если нет никакой части h1, которая изменяет вероятность x.
Кейнс теперь формулирует принцип индифферентности в следующей форме: вероятности событий а и b в отношении к данному свидетельству одинаковы, если нет относящегося к событию a свидетельства без соответствующего свидетельства, относящегося к событию b; это значит, что вероятности событий а и b в отношении свидетельства равны, если это свидетельство симметрично по отношению к о и b.
Достарыңызбен бөлісу: |