Друнвало Мельхиседек. Древняя тайна цветка жизни предисловие дух Единый



бет13/14
Дата26.04.2016
өлшемі1.35 Mb.
#91613
1   ...   6   7   8   9   10   11   12   13   14
Новейшая информация: Со времён Тесла проавительства не допускали распространения знаний о нулевой точке. Почему? Тесла хотел предоставить миру свободную, неограниченную энергию, которая, как он знал, возникала бы при использовании технологии нулевой точки. Но Дж.П.Морган, владелец множества медных копей, не хотел, чтобы электричество стало бесплатным. Вместо этого он хотел пропускать электричество через медные провода так, чтобы он мог его измерять, продавать людям и делать на этом деньги. Тесла был остановлен, и с тех пор мир стал подконтролен.

            С того момента в 1940-ых годах любой человек, исследующий технологию нулевой точки и публично об этом заявляющий, был убит или исчезал, и так - до самого недавнего времени. В 1997 году видеокомпания под названием Lightworks тайно собрала вместе несколько таких учёных и засняла их труды.

            Они дали историческую справку о том, что происходило начиная с 1940-ых годов и продемонстрировали подлинные работающие модели изобретений. Они показали машины, которые вырабатывают электричества больше, чем расходуется на их запуск. Они показали батареи, никогда не нуждающиеся в подзарядке. Они показали, как обычный бензиновый мотор можно переделать так, чтобы он работал на обычной воде, выдавая бóльшую мощность, чем он выдаёт, работая на бензине. Они показали панели, которые будут производить кипящую воду вечно до тех пор, пока внешняя температура будет на 40 градусов выше нуля по шкале Фаренгейта. Они показали множество других научных изобретений, считающихся по сегодняшним меркам невозможными. Когда Lightworks это представила, видеофильм был выпущен в свет за один день и эта информация была опубликована в Интернете («Свободная энергия: Гонка к Нулевой Точке», 105-минутное видео Lightworks - “Free Energy: The Race to Zero Point”, 105-minute video by Lightworks tel. (800) 795 8273, $40.45 ppd; www.lightworks.com). Это вынудило мир изменить направление. Спустя две недели Япония и Англия сделали заявлеие, что они очень близки к разрешению проблемы термоядерного синтеза. Мир начал меняться.

            13 февраля 1998 года Германия выдала единственный в мире патент на изобретение машины, работающей на свободной энергии, принцип действия которой основан на углероде – это тонкий лист материала, который будет производить 400 ватт электричества вечно. Это означает, что все маленькие приспособления, такие как компьютеры, фены, смесители, фонарики и т.п. не будут нуждаться в подключении к какой бы то ни было системе. Это конец прошлого образа жизни и рождение новой неограниченной свободной энергии.

            Спирали, возникающие из мужской и женской точки Для начала мы должны понимать, что существует два вида спиралей, в зависимости от того, составлены ли они из прямых линий (мужских) или изогнутых линий (женских). Об этом мы говорили раньше. Теперь же мы введём новое понятие. Точка возникновения спирали в этой геометрической модели в дальнейшем определяет, будет ли линия спирали мужской или женской. У спаренных квадратов есть четыре угла, где может возникнуть спираль: верхний левый, верхний правый, нижний левый и нижний правый. Два верхних положения производят мужские спирали, два нижних положения производят женские спирали. Линии мужской спирали никогда на пересекают четырёх центральных квадратов; женские линии делают это всегда.

       Рисунок показывает две различные спирали, мужскую и женскую, и путь их следования через эту геометрическую модель.

            Для пояснения дадим пример. Если спираль начинается в верхней правой точке, то относительно этой геометрической модели это будет мужская спираль. Вдобавок к этому, аспект кривой линии этой мужской спирали будет женским, а аспект прямых линий будет мужским. Каждая полярность всегда содержит в себе ещё одну полярность, а внутри этой новой полярности всегда содержится ещё она полярность. Этот процесс деления теоретически будет длиться вечно.

Это пример спиралей мужского происхождения, начинающихся вверху (имеется в виду самое большое расстояние от центра), но представляющих только свой женский (криволинейный) аспект. Этот рисунок показывает все восемь возможных мужских при возникновении спиралей, которые существуют вокруг тела, с точки зрения последовательности Фибоначчи, в их женской (криволинейной) форме. Они проходят последовательность Фибоначчи только до 5 (1-1-2-3-5). В этом ограниченном пространстве интересно отметить, как криволинейные спирали создают своего рода замкнутую систему петель. Энергии в действительности могут превращаться одна в другую и циркулировать в замкнутом цикле. Я считаю, что вокруг тела человека происходит именно это движение Фибоначчи, а не движение по Золотому Сечению, как утверждает большинство книг.

            На рисунке мы видим вокруг тела человека спирали мужского происхождения. Здесь мы показываем мужской (прямолинейный) аспект, и только две спирали представлены женскими кривыми линиями.

      Мы видим женские спирали вокруг тела человека, которые возникают внизу, или в ближайших к центру точках. Здесь мы показываем преимущественно мужской (прямолинейный) аспект этих спиралей женского происхождения. Показан женский (криволинейный) аспект только двух женских спиралей (не все восемь), образующий форму сердца. Обратите внимание на модель, которую они создают. Одно сердце направлено в одном направлении, и после этого спирали распространились с поворотом на 180º и большее сердце направлено уже в другую сторону. Каждая из этих кривых женских линий проходит через нулевую точку в идеальном центре тела человека. Эта нулевая точка есть точка творения, или, как мы бы её назвали, утроба. Именно по этой причине женщины имеют в своём теле утробу, а мужчины – нет. Мужская энергия никогда не проходит через нулевую точку. Позднее вы увидите, как эти взаимоотношения в форме сердец связаны со многими другими природными явлениями, такими как свет, глаза и эмоции – назовём лишь немногое – так что, запомните их.

            Теперь, вооруженные этим пониманием, мы рассмотрим другую последовательность. Существуют тысячи математических последовательностей; я полагаю, существует уровень, на котором вы можете даже сказать, что их бесконечное число. Но в значимых для нас терминах скажем, что их много. Последовательность может быть просто такой: 1, 2, 3, 4, 5, 6, 7, 8. В каждой из тысяч и тысяч известных человеку последовательностей для определения всей закономерности, целой последовательности, требуется знание трёх чисел – за одним лишь исключением логарифмической последовательности Золотого Сечения, ибо в этом случае вам достаточно знать только два числа. Этим подразумевается, что, вероятно, данная последовательность может являться источником всех остальных последовательностей.

            Мне сказано, что кроме последовательности Золотого Сечения, первостепенное значение для природы и жизни имеют ещё две последовательности. Это – последовательность Фибоначчи, которую мы только что рассматривали, и бинарная последовательность, которую мы сейчас рассмотрим. Здесь мы увидим Фибоначчи как женский аспект и бинарность как мужской аспект. В самом же деле они являются много большим, чем просто мужской и женский аспекты; в действительности, они действуют скорее как мать и отец. Обе они первичны и выходят напрямую из Золотого Сечения, точно также, как два первоначальных цвета, выходящие из белого света, это - красный и голубой.

            Проявление бинарной последовательности в делении клетки и в компьютерах Бинарная последовательность - это митоз, в котором просто каждое следующее число удваивается, как например от 1 к 2 к 4 к 8 к 16 к 32. Вместо прибавления к последнему числу, как мы делаем это в последовательности Фибоначчи, мы его удваиваем.

            Давайте взглянем на бинарную последовательность. На каждом скачке она удваивается: 1, 2, 4, 8, 16, 32. Для определения характеристики последовательности нужно всего лишь взять любые три последующие числа из последовательности – например: 2, 4 и 8. Вы удваиваете 2 и получаете 4; удваиваете 4, чтобы получить 8. Чтобы явно проявился процесс удваивания, достаточно рассмотреть три последовательных числа.

            В переводе на язык митотического клеточного деления пронуклеуса, к тому времени, как первые клетки организуются в форму яблока, уже происходит девять делений клеток, которые приводят к наличию 512 клеток. Помня об этом, взгляние на эти два факта.

            Факт первый, показанный на рисунке. В среднем, тело человека состоит из 10-ти в четырнадцатой степени клеток. Это составляет 100 триллионов клеток в среднем человеке. Это много нулей. Факт второй (на том же Рис.). Тело взрослого человека должно в каждую секунду своей жизни заменять два с половиной миллиона красных кровяных телец. Это определённо очень много. Для того, чтобы сосчитать до двух с половиной миллионов, вам потребуется два с половиной месяца в случае, если вы будете считать день и ночь, по 24 часа в сутки, все семь дней в неделю. И тем не менее, для того, чтобы оставаться в живых, наши тела должны создавать ежесекундно миллионы новых красных кровяных клеток, чтобы заменить умершие. И единственный способ достичь этого - через митотическое деление.

            Вы смотрите на это и говорите: “Хорошо, но только через девять делений их становится 512, так что, тело должно как следует постараться, чтобы достичь этих 100 триллионов.” Но тут происходит нечто почти магическое. Каждый, кто изучал математику, знает это, но если вы этого никогда раньше не изучали, то это воспринимается просто как магия. Происходит вот что (Рис.8-20). После следующих десяти делений клетки размножились до более чем полумиллиона. Когда деление происходит ещё десять раз, их становится 536 миллионов.

            Согласно данным из книги Анны K.Пай и Элен Маркус Робертс «Генетика, её понятия и их содержание», (Anna C.Pai, Helen Marcus Roberts, «Genetics, Its Concepts and Implications») для того, чтобы дойти до количества 10 в четырнадцатой степени клеток тела человека, требуется в точности 46 митотических делений клеток. На это уходит только лишь 46 делений! Мне представляется магическим то обстоятельство, что это число, 46, как раз оказывается числом хромосом, которые имеются в нашей средней клетке. Случай или совпадение?

            Эти числа поразительны. Это не поражает, если вы их изучали, потому что в таком случае у вас часто вырабатывается к ним иммунитет. Но меня это всё-таки поражает.

            Я хотел бы рассказать о том, как работают компьютеры. Я уже упоминал, как мы добились перехода между углеродом и кремнием в обеих направлениях. И кто делает кремниевые компьютеры? Мы – существа, основанные на углероде. Из всех вероятных математических возможностей в качестве основы работы компьютера мы выбираем бинарную последовательность. Это – основа всей компьютерной системы, и это также одна из главнейших основ самой жизни. Я чувствую уверенность в том, что мы не случайно выбрали бинарную последовательность, потому что мы есть сама жизнь, и глубоко внутри себя нам известно важное значение этой последовательности.

            Я знаю, что большинству из вас это, очевидно, известно, но несмотря ни на что я хочу показать, как работает компьютер. Представьте маленькие световые переключатели, именуемые компьютерными чипами, и когда вы включаете один из них, вы видите число, соответствующее этому чипу. Если вы включаете чип 1, вы видите число 1. Если в вашем компьютере есть пять чипов, и они соответствуют числам 1, 2, 4, 8, и 16, то вы можете включением или выключением этих пяти чипов получить любое число между 1 и 31. Если вы включите только один чип, вы видите число 1. Включив второй чип, которому соответствует число 2, вы увидите число 2. То же самое верно относительно чипа 4, чипа 8 и чипа16.

            Включением каждой комбинации этих пяти чипов и сложением их можно получить любое число между 1 и 31. Иными словами, если вы включите первый чип, вы получите 1. Включти второй – получите 2. Если же включите первые два чипа одновременно, то получите 3. Включение следующего чипа даст 4; 4 и 1 даёт 5; 4 и 2 даёт 6; 4 и 2 и 1 даёт 7. Затем, для получения 8 вы включаете 8-ой чип. Восемь и 1 дадут 9; 8 и 2 даёт 10; 8 и 2 и 1 даёт 11; 8 и 4 даёт 12; 8 и 4 и 1 даёт 13; 8 и 4 и 2 даёт 14; и затем, 8 и 4 и 2 и 1 даёт 15. Затем, для получения 16 вы включаете чип 16. Добавление пятого чипа даёт вам все числа до 31, что достигается комбинированием пяти чипов всеми возможными способами.

            Если вы добавите всего лишь один чип и дадите ему соответствие 32, то теперь вы можете получить любое число от 1 до 63. Если вы добавите ещё один чип и назовёте его 64, то сможете получить любое число между 1 и 127 и так далее. Если у вас есть компьютер с 46-тью чипами, то вы можете получить каждое из чисел между 1 и 100 триллионами – простым включением и выключением 46-ти маленьких чипов! Именно это дало возможность такого раскрытия знания, какое с такой скоростью происходит на планете сейчас. А ваше тело пользовалось этой технологией миллионы лет!

            Поиск формы за полярностью Я изучал последовательность Фибоначчи и бинарную последовательность под руководством Ангелов, которые постоянно меня вели. Чем больше я это изучал, тем больше я лично верил, что тут должна скрываться геометрия, тайная форма, которая эти числовые последовательности породила. Поскольку Ангелы сказали, что тело и геометрические поля человека являются эталоном вселенной, я сильно подозревал, что если эти две последоваетльности были бы как две составляющие – материнский/отцовский, мужской/женский аспекты, то за ними должна была бы скрываться одна единсвтенная геометрическая форма, породившая обе последовательности. Я искал пути их объединения.

            Я искал разгадку этой тайны годами. Долгое время я относился к этому серьёзно, затем сдался, потому что никак не мог найти решение. Но я всегда держал один глаз открытым, чтобы не пропустить ответ, всегда искал маленький ключик, который, быть может, привёл бы к ответу. И однажды я его получил.

            Разгадка тайны – в полярном графике Учебник математики для шестого класса Маленький мальчик, за которым я присматривал, был в шестом классе, и он хотел разобраться в одной конкретной математической задаче. Это была сравнительно простая задача, но я не помнил, как это делается. Чтобы вспомнить и объяснить ему, как она решается, я просмотрел его учебник. Просматривая учебник, я увидел нужную мне геометрию – в учебнике для шестого класса! Автор учебника не понимал того, что видел я, потому что его мысли тогда двигались в совсем другом направлении. Но я увидел в этой математике что-то такое, что искал, и это был ключ, связывающий воедино эти две первоначальные последовательности.

            Мне жаль, что я не помню ни названия книги, ни автора – это было давно – но там был показан полярный график и его отношение к спирали Золотого Сечения. Это карта Южного полюса на полярнoм графике. Обратите внимание на крест, проходящий через центр, одна из линий следует оси х и другая следует оси у. В самом деле, эти линии пересекают каждый круг. Мы демонстрировали это, взяв плоский диск толщиной около половины дюйма, произвольно насыпая на него песок. Мы держали его за рукоятку, находящуюся под ним и ударяли по нему деревянным молоточком. Песок перераспределялся в совершенно квадратный крест, такой, как вы видите на этой иллюстрации. Если бы мы использовали звуковой генератор на диске, тогда песок перестраивался бы во множество других геометрических моделей. Но самой первой моделью, появляющейся при несильном ударе по круглому диску, будет идеальный квадратный крест.

            Имея круг с квадратным крестом внутри него, возьмём радиус диска за эталон и назовём её единицей: 1 (что очень облегчает расчёты). Вычерчивание концентрических кругов на таком же расстоянии друг от друга наружу от этого первого радиуса даёт вам полярный график.

            Спирали на Полярном графике Вот как обычно выглядит полярный график с 36-тью радиальными линиями, включая сюда и вертикальную, и горизонтальную линии. Эти линии указывают 360° с десятиградусным возрастанием. Затем, нарисованы концентрические окружности, каждая на одинаковом расстоянии от предыдущей таким образом, вдоль каждого радиуса откладывая восемь равных отрезков, считая внутренний круг как первый. За полярным графиком кроется очень глубокий смысл. Прежде всего подумайте, что он представляет. Это двумерное изображение, где приводится попытка проекцией на плоскую поверхность показать трёхмерную сферу, одну из священных форм. Эта форма – тень. Отбрасываемые тени дают одну из священных возможностей получения информации. К тому же, полярный график составлен из как прямых линий (мужских) так и плавных линий (женских), наложенных друг на друга – мужская и женская энергии единовременно.

            Представьте, что этот маленький центральный круг есть планета в пространстве космоса. С поверхности планеты автор учебника по математике вычертил спираль Золотого Сечения – не Фибоначчи, но Золотого Сечения. Она начинается в нулевом радиусе на поверхности маленькой «планеты» в середине, и описывает один оборот, от нуля до 360 градусов, или назад к нулю.

            Теперь, чтобы определить значение каждой точки спирали, вы используете средний круг в качестве единицы (поскольку он представляет расстояние от центра к первой окружности, которую мы назвали «планетой»), и затем отсчитываете единицы наружу до того места, где спираль пересекает радиус. Так, на радиусе в 260° (между четвёртым и пятым кругами) вы отсчитали наружу примерно 4,5. (Конечно, на компьютере вы можете сделать это точнее.) На радиальной линии в 210° спираль достигала почти 3,3. Все ли это поняли?

            Теперь смотрите, что происходит с конкретными значениями от нуля до 360°. При нулевом градусе спираль находится точно на расстоянии одного круга (радиальное возрастание) от центра, поскольку она начинается с поверхности маленькой сферы или планеты. Затем она делает оборот, проходя через различные изменения до тех пор, пока не достигает 120°, где спираль пересекает второй круг. Она продолжает движение наружу к пересечению с четвёртым кругом точно там, где располагается радиальная линия 240°. И восьмого (внешнего) круга она дистигает точно у радиуса 360º (или 0°). Радиальные возрастания удваивались (бинарная последовательность 1,2,4,8) точно в 0°,120°,240° и 360°.

            Обратите внимание на то, где показаны точки пересечения спирали. Белые звёздочки слева от столбика радиального возрастания показывают, где бинарная последовательность пересекает радиус. Чёрные звёздочки показывают, как спираль развивается по последовательности Фибоначчи (1,2,3,5,8), пересекая радиусы 120°, 190°, 280° и 360°. Обе последовательности одновременно достигают полного круга (360°), хотя и по различной линии возрастания, следуя этой спирали Золотого Сечения. Эта спираль, показанная на Полярном графике, интегрировала последовательности Фибоначчи и бинарную!

            Я был так возбуждён, что несколько дней ходил колесом. Я знал, что обнаружил нечто действительно необычайное, хотя полностью ещё не понимал, что это такое. (Это одна из моих слабых сторон, в которой мне следует тут признаться. Однажды увидев это, я понял, что раз я расшифровал одну из закономерностей, это должно бы быть справедливо и для другой, но я никогда не возвращался к ней, чтобы хотя бы взглянуть на другую модель, которая, вероятно, так же интересна).

            Но я в самом деле проанализировал, как ведёт себя бинарная последовательность. Спираль пересекается на 0°, 120°, 240° и 360°. Как видите, это даёт образование равнобедренного треугольника. Если бы эта бинарная спираль продолжала движение наружу, она пересекала бы радиусы в следующих возрастаниях по градусам 16, 32, 64 и так далее, однако всегда касалась бы этих трёх радиальных линий на 120, 240 и 360 градусах, так как они тоже продолжены.

            Тут есть не только треугольник, но на самом деле вы глядите на трёхмерный тетраэдр, потому что радиусы 120, 240 и 360 градусов продолжаются к центру, образуя как план тетраэдра, так и его вид сбоку.

            Новейшая информация: Была обнаружена ещё одна закономерность, которая, как я и подозревал, оказалась последовательностью Фибоначчи. Однако, я ещё не определил, какова значимость этого открытия для сознания.

            Треугольники Кита Кричлоу (Keith Critchlow) и их музыкальное выражение Ещё одна фигура этого чертежа представляет собой равнобедренный треугольник с горизонтальной линией, проходящей прямо через середину от 0º к 180º. Это боковой вид тетраэдра. Вы могли бы не придать этому значения, и я, наверное, никогда бы не догадался, но другой человек, Кит Кричлоу, это сделал. Нам неизвестно, что он думал и как он к этому пришёл. Когда он это сделал, он не знал того, что сейчас знаете вы. (Он мог узнать это теперь, после того, как он увидел эту работу, но когда он писал свою книгу, он этого не знал.) Это труд Кричлоу. Он начертил равносторониий треугольник с линией, проходящей через середину; затем он отмерил середину центральной линии (см. чёрную точку) и прочертил линию вниз к углу и вверх до края к верхней стороне, а затем вертикально вниз к центральной линии, как показано на рисунке. Кто знает, почему? Затем там, где эта первая диагональная линия пересекла центральную линию, он провёл вертикальную линию к верхнему краю, и опять провёл линию вниз к тому же нижнему углу. Воспользовавшись точкой пересечения этой диагонали с центральной линией, он снова провёл вертикальную линию к верхнему краю, и опять опустил линию вниз в нижний угол. Пользуясь точкой пересечения с центральной линией, он повторил всё, что делал прежде, а затем проделал то же самое налево. От первой линии можно продолжать двигаться так в обоих направлениях. Начертив эту забавную маленькую фигуру, он совершил очень важное открытие.

            Он говорит: «Следуя этой схеме в данной строительной модели, каждая последующая попорция становится гармоническим соотношением между предыдущей пропорцией и общей длиной, и все эти пропорции будут нести в себе музыкальное значение: одна вторая даёт октаву, две трети – квинту, четыре пятых – главную терцию, восемь девятых – основной тон (секунду) и шестнадцать семнадцатых – полушаг (полутон).» Иными словами, он сравнивает измерения этих линий с музыкальными тонами.

            Затем он попробовал измерять иначе, начав с другой точки центральной линии, отметив три четверти (см. чёрную точку), и обнаружил, что расстояния составили 1/7, 1/4, 2/5, 4/7, 8/11 и 6/19 – и все это числа имеют музыкальное соответствие.

            Это очень, очень интересно. Это значит, что музыкальные гармонии каким-то образом связаны с пропорциями этой центральной линии, проходящей через тетраэдр. Но Кричлоу начинал с измерения, и если вам всё ещё необходимо применять линейку, то значит, вы ещё не добралось до самых основ священной геометрии; чего-то не хватает. Если вы уже добрались до священной геометрии, тогда вам для измерения ничем никогда пользоваться не приходится. Измерительный аппарат уже встроен так, что возможно расчитать всё, что угодно, не производя никаких вычислений и не пользуясь линейкой или чем бы то ни было. Это всегда уже встроено прямо в саму систему.

            Я экспериментировал с его чертежами и обнаружил, что если я наложу эту модель на полярный график, то я смогу воспроизвести его первую модель, которая показывала октаву – отметку половины линии – безо всякого измерения.

            Всё, что мне нужно было сделать, это – провести линию, которая там уже была, от нижней вершины треугольника через центр сферы к противоположной стороне треугольника; когда я опустил линию прямо вниз, она разделила центральную линию точно пополам, что и было точкой октавы, обнаруженной Кричлоу. Затем можно было автоматически провести остальные три линии.

            Потом я обнаружил, что самый внешний круг полярного графика, описывающий равносторонний треугольник, тоже находился в гармонии относительно центральной линии: вертикальная линия вниз от 60 градусов точно перекрывает линию В. Тут есть соответствие между мужскими (прямолинейными) и женскими (криволинейными) составляющими внутри и снаружи этого треугольника, и эти пропорции все имели музыкальное соответствие. И при этом мне ничего не нужно было измерять!



Достарыңызбен бөлісу:
1   ...   6   7   8   9   10   11   12   13   14




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет