Филогенез систем органов у животных


Сбалансированный полиморфизм



бет33/34
Дата03.01.2022
өлшемі233.5 Kb.
#451288
түріМетодическое пособие
1   ...   26   27   28   29   30   31   32   33   34
филогенез

Сбалансированный полиморфизм. Характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. Й.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение мне это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем v мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1. если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1. а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметают си естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение матировавших генов становится сбаланси­рованным. Примером может сложить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разно векторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности попутяциях человека есть ряд других полиморфных генов предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

ГЕНЕТИЧЕСКИЙ ГРУЗ

Генетическая гибкость (или пластичность) популяций достигается за счет мутационного процесса и комбинативной изменчивости. Й хотя эволюция зависит от постоянного наличия генетической измен­чивости, одно из ее последствий - это появление в популяциях слабо адаптированных особей, в результате чего приспособленность попу­ляций всегда оказывается ниже той, которая характерна для опти­мально приспособленных организмов. Это снижение средней приспо­собленности популяции за счет особей, приспособленность которых ниже оптимальной, называют генетическим грузом. Как писал из­вестный английский генетик Дж. Холдейн, характеризуя генетиче­ский груз: "Это та цена, которую вынуждена платить популяция за право эволюционировать". Он был первым, кто привлек внимание исследователей к существованию генетического груза, а сам термин "генетический груз" ввел в 40-х годах XX века Г. Миллер.

Генетический груз в его широком смысле - это всякое снижение (действительное или потенциальное) приспособленности популяции в силу генетической изменчивости. Дать количественную оценку гене­тического груза, определить его подлинное влияние на популяционную приспособленность - сложная задача. По предложению Ф. Г. Добжанского (1965) носителями генетического груза считаются индивидуумы, приспособленность которых более чем на два стан­дартных отклонения (-2а) ниже средней приспособленности гетерозигот.

Принято выделять три вида генетического груза: мутационный, субстиционный (переходный) и сбалансированный. Общий генетиче­ский груз слагается из этих трех видов груза. Мутационный груз - это та доля общего генетического груза, которая возникает за счет му­таций. Однако, поскольку большинство мутаций носят вредный ха­рактер, то естественный отбор направлен против таких аллелей и час­тота их невелика. Они поддерживаются в популяциях в основном благодаря вновь возникающим мутациям и гетерозиготным носителям.

Генетический груз, возникающий при динамическом изменении частот генов в популяции в процессе замены одного аллеля другим, называется субстиционный (или переходным) грузом. Такое заме­щение аллелей обычно происходит в ответ на какое-либо изменение в условиях среды; когда ранее неблагоприятные аллели становятся бла­гоприятными, и, наоборот, (примером может быть явление индустри­ального механизма бабочек в экологически неблагополучных рай­онах). При этом частота одного аллеля уменьшается по мере увеличе­ния частоты другого.





Достарыңызбен бөлісу:
1   ...   26   27   28   29   30   31   32   33   34




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет