Происхождение нефти и газа является одной из ключевых проблем геологии, имеющей к тому же важное практическое значение. Научная постановка этой проблемы относится к XVIII – началу XIX веков, когда было доказано, что нефть и газ могут получаться как биогенным (органический), так и абиогенным (минеральным) путями.
Согласно галактоцентрической парадигме, нефть и газ – это неотъемлемые продукты циркуляции через земную поверхность углерода и воды кометного происхождения. Эти углерод и вода накоплены в прошлые геологические эпохи и сегодня участвуют в происходящем на нашей планете геохимическом круговороте вещества [145].
Теоретический анализ показывает, что в условиях периодического поступления на Землю больших масс космического вещества устойчивое функционирование системы требует обязательного вывода из обмена излишков углерода и воды и их фиксацию на какое-то время в неких «резервуарах». Такими резервуарами – накопителями подвижного углерода на земной поверхности выступают Мировой океан, живое вещество, атмосфера и почвы, а под земной поверхностью – породы земной коры и верхней мантии.
Из решения уравнений (3) для биосферного цикла следует, что при динамическом равновесии системы углерод распределяется между резервуарами согласно правилу:
С = ni/ti = const, (4)
где C – скорость геохимического круговорота, ni и ti – масса подвижного углерода и время его пребывания в основных резервуарах системы.
Если соотношение (4) выполняется, то убыль углерода в одной части системы восполняется его поступлением из других, если – нет, то в системе возникают перетоки вещества, которые возвращают ее в равновесие.
Круговорот углерода в биосфере в настоящее время пребывает в состоянии, близком к равновесию (рис. 25). Величина константы С, найденная по графику рис.25 и пересчитанная на диоксид углерода, приведена в табл. 7. Там же представлены оценки скоростей круговорота кислорода атмосферы [5] и современной циркуляции вод Мирового океана через срединные океанические хребты [146].
Таблица 7.
Константы круговорота углекислоты, кислорода и воды в современную эпоху [69]
Тип круговорота
|
Геохимическая константа
круговорота, С10-17 г/год
|
Биосферный круговорот СО2
Круговорот атмосферного кислорода
Геологический круговорот вод Мирового океана
|
2.560.51
2.750.05
2.640.53
|
Р ис. 25. Сопоставление содержания углерода и его времени жизни в атмосфере (1), Мировом океане (2), живом веществе (3) и почвенно-иловом слое (4); прямоугольники – разброс литературных данных [1].
Мы видим, что все три процесса образуют единую систему круговорота с величиной C = 2.71017 г/год. Этот результат подтверждает принципиальную правоту В.И. Вернадского, по крайней мере, в двух вопросах: 1) круговорот вещества на Земле – это глобальное геохимическое явление, охватывающее, главным образом, верхние оболочки планеты и обеспечивающее их водой, углеродом и кислородом. И 2) исключительная роль в данном явлении принадлежит живым организмам, которые, принимая активное участие в перераспределении вещества на планете, подстраивают скорость круговорота углерода и кислорода в биосфере к скорости круговорота подземных вод.
С овременное распределение вод по водоемам гидросферы показано на рис. 26.
Рис. 26. Сопоставление количеств воды и времен водообмена для основных резервуаров воды: 1 – Мировой океан; 2 – подземные воды; 3 – ледники; 4 – озера, водохранилища и болота; 5 – озера; 6 – болота; 7 – морские льды; 8 – вода в атмосфере; 9 – влага в почве; 10- снежный покров; 11 – айсберги; 12 – атмосферные льды; 13 – реки. Римские цифры – данные по углероду (см. рис. 25). Пунктирная линия – средняя скорость круговорота вод на земной поверхности.
Воды основных водоемов планеты участвуют в двух разных циклах круговорота, причем в определенной пропорции. На 90% они формируются водами наземного климатического цикла со скоростью 5.21020 г/год [147] – верхняя наклонная прямая, и на 10% водами литосферы, циркулирующими со скоростью 2.71017 г/год (см. табл. 7) – нижняя линия. Так что средняя скорость круговорота составляет (2.00.5)1019 г/год [1].
Воды, участвующие в климатическом круговороте, называют «метеогенными», а воды литосферного цикла «морскими». Первые имеют местное происхождение, они формируются в атмосфере и в виде дождя и снега инфильтруются через земную поверхность, поступая в области питания водоемов. Вторые – это воды более глубокого залегания, относящиеся к общей системе циркуляции подземных вод. Название «морских» они получили из-за близости своего состава водам Мирового океана. Оба типа вод различаются изотопным составом водорода и кислорода, который в большинстве случаев позволяет их надежно идентифицировать[148].
Метеогенные воды по разломам и другим разуплотненным участкам земной коры могут быстро проникать до глубин нескольких километров, что повсеместно наблюдается на земном шаре [148]. При этом они в состоянии ежегодно поставить под поверхность Земли, прежде всего, в форме гидрокарбоната (НСО3) 1015 г углерода [121]. Учет данного обстоятельства устраняет первое балансовое противоречие круговорота углерода через земную поверхность, показанное на рис.23 стрелками разной длины.
Второй дисбаланс, состоящий в поступлении «вниз» окисленного, а «наверх» восстановленного углерода, также устраняется, если учесть возможность каталитического синтеза углеводородов из окислов углерода и водорода в земной коре [149, 150].
Таким образом, становится очевидным, что наиболее быстрый биосферный круговорот углерода не ограничивается только циркуляцией углерода над поверхностью планеты, как полагают климатологи, а охватывает всю биосферу в целом, включая осадочный чехол земной коры, где сосредоточены основные залежи нефти и газа.
Нефтегазовые скопления выступают естественными ловушками – «накопителями» циркулирующего через поверхность Земли подвижного углерода, избыточного для системы его регионального геохимического круговорота. Вследствие активного участия в этом процессе метеогенных вод, пополнение ловушек углеводородами происходит не за геологическое время, а гораздо быстрее. При этом сами ловушки, во-первых, размещаются в пределах крупных водосборных осадочных бассейнов, дренирующих огромные по площади территории, и, во-вторых, тяготеют к крупным разломам земной коры [151]. Наличие разломов, с одной стороны, облегчает поступление метеогенных вод в породы земной коры, а с другой, способствует разгрузке этих вод от транспортируемого ими углерода.
Наиболее принципиален вывод об участии биосферного круговорота углерода в процессах «современного» нефтегазообразования. Следствием чего является частичное восполнение запасов нефти и газа эксплуатируемых месторождений [152], а также обнаружение [153] в нефтях космогенного изотопа С14 с периодом полураспада 5730 лет.
Факты свидетельствуют, что на формирование залежей нефти и газа влияют как геологические условия генезиса и накопления углеводородов в недрах (наличие нефтематеринских пород, присутствие разломов и ловушек, термобарические условия и т.п.). Так и характер круговорота углерода над поверхностью планеты, который во многом определяется хозяйственной деятельностью людей. Существующие объемы добычи и потребления нефти и газа могут не только ощутимо влиять на климат планеты, но и оказывать заметное влияние на распределение подвижного углерода в ее недрах [154].
Транспортировка нефти и газа на многие тысячи километров от мест добычи ведет к перераспределению мировых ресурсов углеводородов, причем далеко не за геологическое время. Интенсивно потребляющие нефть и газ промышленно-развитые страны аккумулируют их на своей территории, тогда как страны, специализирующиеся на добыче и экспорте нефти и газа, могут сравнительно быстро свои ресурсы исчерпать.
Другим прогнозируемым следствием этого процесса является тенденция смещения крупнейших промышленных скоплений нефти и газа в акватории Мирового океана. Вследствие того, что на краях континентов обычно отсутствуют необходимые геологические условия накопления углеводородов в недрах, а на поверхности проживает большая часть активно потребляющего нефть и газ населения Земли, избыточный углерод в ходе регионального круговорота выносится водами подземного стока в Мировой океан [155, 156] на глубоководном шельфе и континентальном склоне материков. Именно поэтому, как полагает автор, здесь сосредоточены очень большие запасы углеводородного сырья нашей планеты, представленные не только нефтью и газом, но и аквамаринными газогидратами [157].
Исходя из галактоцентрической парадигмы, можно утверждать, что запасы нефти и газа разрабатываемых месторождений постоянно, с тем или иным темпом, восстанавливаются. Поэтому при разумном пользовании недрами, когда темп извлечения нефти и газа из залежей не превышает темпа их естественного пополнения, существуют предпосылки для эксплуатации нефтегазовых месторождений как «восполняемых» источников углеводородного сырья.
Достарыңызбен бөлісу: |