Intern. Conf. on Speech and Computer (SPECOM), 2016, pp. 338–345. doi:10.1007/978-3-319-43958-7_40
Verhelst W., Roelands M. An overlap-add technique based on waveform similarity (wsola) for high quality time-scale modification of speech. Acoustics, Speech, and Signal Processing (ICASSP), 1993, pp. 554–557. doi:10.1109/ICASSP. 1993.319366
Instrument obrabotki zvuka Sox [Sound Processing Tool Sox]. Available at: http://sox.sourceforge.net/sox.html (accessed 27 February 2019).
Povey D., et. al. The Kaldi speech recognition toolkit. IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, 2011. Available at: https://infoscience.epfl.
ch/record/192584/ (accessed 27 February 2019).
The Microsoft Cognitive Toolkit. Available at: https://docs. microsoft.com/ru-ru/cognitive-toolkit/ (accessed 27 February 2019).
Markovnikov N., Kipyatkova I., Karpov A., Filchenkov A. Deep neural networks in Russian speech recognition. Conf. on Artificial Intelligence and Natural Language (AINL), 2017, pp. 54–67. doi:10.1007/978-3-319-71746-3_5
Chen S. F., Goodman J. An empirical study of smoothing techniques for language modeling. Comp uter Speech & Language, 1999, pp. 359–394. doi:10.1006/csla.1999.0128
Liang M., Hu X. Recurrent convolutional neural network for object recognition. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3367–3375. doi:10. 1109/CVPR.2015.7298958
Instrumentarij Tensor2Tensor [Tensor2Tensor Toolkit]. Available at: https://github.com/tensorflow/tensor2tensor (accessed 27 February 2019).
Markovnikov N., Kipyatkova I., Lyakso E. End-to-end speech recognition in Russian. SPECOM-2018, 2018, pp. 377–386. doi:10.1007/978-3-319-99579-3
Достарыңызбен бөлісу: |