Оборудование: пробирки, штатив для пробирок.
Техника безопасности. Соблюдать правила безопасности при работе с кислотами.
Карбоновые кислоты – слабые электролиты
Слабые электролиты - это вещества, которые частично распадаются на ионы при растворении в воде. Обнаружить ионы в растворе можно с помощью прибора для изучения электропроводности. Если вещество или его раствор распадается на ионы, то лампочка прибора загорается. Проверим электропроводность уксусной кислоты. Опускаем электроды в концентрированную уксусную кислоту. Лампочка не загорается.
Разбавим уксусную кислоту водой и вновь проверим электропроводность. Лампочка не горит. Прибавим к раствору уксусной кислоты большой объем воды. Лампочка загорается. Мы убедились в том, что уксусная кислота - слабый электролит.
СН3СООН <=> СН3СОО- + Н+
Уксусная кислота в значительной степени распадается на ионы лишь при большом разбавлении водой.
Оборудование: стакан химический, пипетка, набор для опытов с электрическим током.
Техника безопасности. Соблюдать правила работы с кислотами и правила работы с электроприборами.
Взаимодействие уксусной кислоты с раствором щелочи
Реакция нейтрализации характерна для всех кислот. Нальем в бюретку раствор уксусной кислоты. В колбу для титрования – раствор гидроксида натрия. Прибавим к щелочи немного фенолфталеина. Раствор окрашивается в малиновый цвет. Прибавляем из бюретки раствор кислоты к раствору щелочи. Происходит нейтрализация щелочи. Когда вся щелочь переходит в соль – малиновая окраска исчезает. В растворе образовалась соль – ацетат натрия.
СН3СООН + NaOH = CH3COONa + H2O
Оборудование: штатив, бюретка, стакан химический, коническая колба.
Техника безопасности. Соблюдать правила работы с растворами кислот и щелочей.
Взаимодействие уксусной кислоты с оксидом меди (II)
Как и неорганические кислоты, уксусная кислота реагирует с оксидами металлов. Проведем реакцию между оксидом меди (II) и уксусной кислотой. При обычных условиях реакция идет очень медленно. Нагреем смесь на пламени горелки. Наблюдается растворение оксида меди и появление голубой окраски раствора. В пробирке образовался ацетат меди (II).
2СН3СООН + CuO = H2О + ( CH3COO)2 Cu
Оборудование: штатив для пробирок, пробирка, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами.
Взаимодействие уксусной кислоты с металлами
Уксусной кислоте, как и неорганическим кислотам, присущи общие свойства кислот. Убедимся в том, что эта кислота способна реагировать с металлами. В две пробирки поместим кусочки магния и цинка. Прильем к ним раствор уксусной кислоты. В пробирке с магнием идет энергичная реакция – выделяется водород. В пробирке с цинком, менее активным металлом, выделение водорода едва заметно.
2СН3СООН + Мg = H2 + ( CH3COO)2 Mg
2СН3СООН + Zn = H2 + ( CH3COO)2 Zn
При взаимодействии металлов с раствором уксусной кислоты образуется водород и соли уксусной кислоты. Соли уксусной кислоты называются ацетатами.
Оборудование: штатив для пробирок, пробирка, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами.
Взаимодействие уксусной кислоты с карбонатом натрия
Уксусная кислота – слабая кислота. Но она способна вытеснять более слабые кислоты из их солей. Убедимся в этом. К раствору карбоната натрия прильем раствор уксусной кислоты. Наблюдается обильное выделение углекислого газа.
Уксусная кислота вытеснила угольную кислоту из раствора ее соли. Угольная кислота – непрочное соединение, она распадается на углекислый газ и воду.
2СН3СООН + Na2CO3 = H2O + CO2 + 2CH3COONa
Оборудование: химические стаканы.
Техника безопасности. Соблюдать правила работы с горючими газами.
Горение уксусной кислоты на воздухе
Безводная уксусная кислота – огнеопасное вещество, ее пары легко загораются. Убедимся в этом. Нагреем уксусную кислоту до кипения. При поднесении горящей лучины пары кислоты загораются. При горении уксусной кислоты образуются углекислый газ и вода.
СН3СООН + 2О2 = 2H2О + 2СО2
Склянки с уксусной кислотой хранят в металлических контейнерах.
Оборудование: штатив для пробирок, пробирка, горелка, лучина.
Техника безопасности. Соблюдать правила работы с кислотами.
Замораживание уксусной кислоты
Безводная уксусная кислота при ее охлаждении примерно до 15 0С переходит в кристаллическое состояние. В этом состоянии она очень похожа по внешнему виду на лед. Поэтому безводную уксусную кислоту называют ледяной. Приготовим охлаждающую смесь из воды и льда. Опустим в нее пробирку с уксусной кислотой. Через некоторое время уксусная кислота кристаллизуется.
Оборудование: химический стакан, пробирка, термометр, штатив.
Техника безопасности. Соблюдать правила работы с кислотами.
Возгонка бензойной кислоты
Бензойная кислота – ароматическая карбоновая кислота. Ее особенность – способность к возгонке. Возгонка - переход из твердого состояния в пароообразное, минуя жидкое. В стакан с бензойной кислотой положим еловую ветку и закроем колбой. В колбе – холодная вода. Колба будет служить и крышкой, и холодильником. Бензойная кислота при легком нагреве переходит из твердого состояния – в парообразное. Соприкасаясь с холодным дном колбы, пары бензойной кислоты охлаждаются – и конденсируются в виде кристалликов бензойной кислоты.
Оборудование: химический стакан, штатив, огнезащитная прокладка, колба круглодонная, горелка.
Техника безопасности. Соблюдать правила работы с нагревательными приборами. Бензойная кислота вызывает раздражение дыхательных путей. После проведения опыта дать прибору остыть и лишь после этого его можно разбирать.
Взаимодействие бромной воды с олеиновой кислотой
Олеиновая кислота относится к непредельным карбоновым кислотам. Непредельность соединений можно обнаружить с помощью качественных реакций с бромной водой или раствором перманганата калия. В данном случае воспользуемся бромной водой. К олеиновой кислоте прибавим бромную воду и энергично перемешаем содержимое пробирки. Происходит обесцвечивание бромной воды. Мы доказали, что олеиновая кислота непредельная карбоновая кислота.
СН3 – (СН2)7 – СН=СН – (СН2)7 – СООН + Вr2 = СН3 – (СН2)7 – СНBr – СНBr – (СН2)7 – СООН
Оборудование: пробирка, штатив для пробирок.
Техника безопасности. Соблюдать правила работы с бромом (бромной водой).
Получение уксусноэтилового эфира
Проведем реакцию этерификации в приборе для получения галоидоалканов. В реакционную колбу поместим этиловый спирт, уксусную кислоту и концентрированную серную кислоту. Серная кислота используется как водоотнимающее средство. Так как реакция этерификации обратима, необходимо удалять воду. В холодильник нальем насыщенный раствор поваренной соли. В этом растворе растворимость эфира минимальна. При нагревании смеси образуется летучий уксусноэтиловый эфир. Он конденсируется в холодильнике. Он легче воды и раствора соли. Поэтому он образует верхний слой жидкости. Для лучшей видимости прибавим в холодильник подкрашенную воду. Эфир растворяет краситель, и верхний слой становится хорошо заметен.
СН3СООН + С2Н5ОН = H2О + CH3COOС2Н5
Оборудование: прибор для получения галоидоалканов, штатив, горелка, огнезащитная прокладка, мерный цилиндр, мерная пробирка.
Техника безопасности. Соблюдать правила работы с кислотами и правила работы с горючими жидкостями.
Получение борноэтилового эфира
Неорганическая борная кислота, как и другие карбоновые кислоты, способна образовывать летучие эфиры. Смешаем борную кислоту с этиловым спиртом. Добавим концентрированную серную кислоту. Нагреем смесь. Легкокипящий борноэтиловый эфир испаряется. При поджигании он горит красивым зеленым пламенем.
В(ОН)3 + 3 С2Н5ОН = ( С2Н5О)3В + 3 Н2О
Оборудование: штатив, пробирка, горелка, газоотводная трубка, шпатель.
Техника безопасности. Соблюдать правила работы с кислотами и горючими жидкостями.
Определение непредельности жиров
Жидкие жиры, например, подсолнечное масло, в своем составе содержат остатки непредельных карбоновых кислот. Докажем это. Воспользуемся бромной водой. К подсолнечному маслу прибавим бромную воду и энергично перемешаем содержимое пробирки. Происходит обесцвечивание бромной воды. Мы доказали, что жидкие жиры содержат остатки непредельных карбоновых кислот.
СН3 – (СН2)7 – СН=СН – (СН2)7 – СО – + Вr2 = СН3 – (СН2)7 – СНBr – СНBr – (СН2)7 – СО –
Оборудование: штатив для пробирок, пробирки.
Техника безопасности. Соблюдать правила работы с бромом (бромной водой).
Выделение свободных жирных кислот из мыла
Мыла представляют собой растворимые соли высших карбоновых кислот. Чаще используется натриевая соль стеариновой кислоты. Так как, карбоновые кислоты слабые кислоты, то их легко выделить из раствора при действии сильных неорганических кислот. К раствору хозяйственного мыла прибавим раствор серной кислоты. Сразу же выделяется стеариновая кислота.
2С17Н35СООNa + H2SO4 =2C17 H35COOH + Na2SO4
Оборудование: штатив для пробирок, пробирки.
Техника безопасности. Соблюдать правила работы с кислотами.
Образование нерастворимых кальциевых солей жирных кислот
Кальциевые соли жирных кислот нерастворимы в воде. Это можно наблюдать в следующем опыте. К раствору мыла прильем немного раствора хлорида кальция. Выпадает обильный осадок нерастворимого стеарата кальция.
2С17Н35СООNa + СаСI2 =(C17 H35COO)2Ca + 2NaCI
Такой процесс происходит при мытье в жесткой воде. Поэтому мыло в жесткой воде плохо мылится.
Оборудование: штатив для пробирок, пробирки.
Техника безопасности. Опыт безопасен.
Окисление муравьиной кислоты раствором перманганата калия
Муравьиная кислота отличается по строению от всех остальных карбоновых кислот. Поэтому она совмещает свойства и кислоты и альдегида. Альдегиды, как известно, легко окисляются. Прильем к раствору муравьиной кислоты раствор перманганата калия. Нагреем смесь. Происходит обесцвечивание раствора. Муравьиная кислота окислилась до углекислого газа и воды.
НСООН + [О]= H2О + CO2
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами и нагревательными приборами.
Гидролиз ацетата натрия
Уксусная кислота – слабый электролит. Ацетат натрия – соль образованная сильным основанием и слабой кислотой. При растворении этой соли в воде создается щелочная среда. Особенностью кристаллогидрата ацетата натрия является то, что он при нагревании легко плавится и ацетат натрия растворяется в своей кристаллизационной воде. Смешает ацетат натрия с сухим индикатором фенолфталеином. Полученную смесь нагреем. Появляется малиновая окраска. Соль частично расплавилась, в расплаве появились гидроксид- ионы.
CH3COONa + HOН = СН3СООН + NaОН
CH3COO- + HOН = СН3СООН + ОН-
При охлаждении соль кристаллизуется, равновесие смещается в сторону образования ацетата натрия, гидроксид-илны исчезают, и окраска пропадает. Опыт доказывает, что уксусная кислота является слабой кислотой.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с нагревательными приборами.
Качественная реакция глюкозы с гидроксидом меди (II)
Глюкоза содержит в своем составе пять гидроксильных групп и одну альдегидную группу. Поэтому она относиться к альдегидоспиртам. Ее химические свойства похожи на свойства многоатомных спиртов и альдегидов. Реакция с гидроксидом меди (II) демонстрирует восстановительные свойства глюкозы. Прильем к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт. Нагреем раствор. Цвет раствора начинает изменяться. Сначала образуется желтый осадок Cu2O, который с течением времени образует более крупные кристаллы CuO красного цвета. Глюкоза при этом окисляется до глюконовой кислоты.
СН2ОН – (СНОН)4 – СОН + Сu(ОН)2 = СН2ОН – (СНОН)4 – СООН + Сu2О↓+ Н2О
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с растворами щелочей.
Качественная реакция глюкозы
с аммиачным раствором оксида серебра (I)
Доказать наличие альдегидной группы в глюкозе можно с помощью аммиачного раствора оксида серебра. К аммиачному раствору оксида серебра добавим раствор глюкозы и подогреем смесь на водяной бане. Вскоре на стенках колбы начинает осаждаться металлическое серебро. Эта реакция называется реакцией серебряного зеркала. Ее используют как качественную для открытия альдегидов. Альдегидная группа глюкозы окисляется до карбоксильной группы. Глюкоза превращается в глюконовую кислоту.
СН2ОН – (СНОН)4 – СОН + Ag2O = СН2ОН – (СНОН)4 – СООН + 2Ag↓
Реакцию серебряного зеркала используют в промышленности для серебрения зеркал, изготовления колб для термосов, елочных украшений.
Оборудование: колба круглодонная, горелка, стакан, штатив, прокладка огнезащитная.
Техника безопасности. Аммиачный раствор оксида серебра нельзя хранить. После опыта неиспользованный раствор нейтрализуют соляной кислотой.
Окисление глюкозы кислородом воздуха
в присутствии метиленового голубого
Окисление глюкозы до глюконовой кислоты особенно легко протекает в щелочной среде в присутствии индикатора метиленового голубого. В колбе с водой растворим гидроксид натрия. Добавим туда глюкозу и затем немного раствора метиленового голубого. Через некоторое время раствор становится бесцветным. Перемешаем раствор. Он вновь окрашивается в голубой цвет.такие изменения окраски можно наблюдать много раз подряд. Под действием щелочи в водной среде глюкоза дегидрируется, превращаясь в глюконовую кислоту.
СН2ОН(СНОН)4СОН + Н2О = СН2ОН(СНОН)4СООН + 2Н
В отсутствии метиленового голубого отщепляющийся при дегидрировании водород окисляется кислородом воздуха очень медленно и реакция практически не идет. Метиленовый голубой присоединяет водород, превращаясь в бесцветное соединение. Это бесцветное соединение окисляется кислородом воздуха в метиленовый голубой, и вновь появляется голубая окраска. В процессе реакции индикатор практически не расходуется. Он является типичным катализатором окисления глюкозы до глюконовой кислоты.
Оборудование: шпатель, плоскодонная колба с пробкой.
Техника безопасности.
Соблюдать правила работы со щелочами и их растворами.
Определение глюкозы в виноградном соке
Многие фрукты и ягоды содержат глюкозу. Определить наличие глюкозы можно с помощью гидроксида меди (II). Из ягоды винограда выжмем сок. Прильем к соку несколько капель раствора сульфата меди (II) и раствор щелочи. Нагреем раствор. Цвет раствора начинает изменяться. При кипячении раствора образуется желтый осадок Cu2O, который постепенно превращается в красный осадок CuO. Это доказывает наличие глюкозы в виноградном соке.
СН2ОН – (СНОН)4 – СОН + Сu(ОН)2 = СН2ОН – (СНОН)4 – СООН + Сu2О↓+ Н2О
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с растворами щелочей.
Доказательство наличия гидроксильных групп в сахарозе
Докажем, что в состав молекулы сахарозы входят гидроксильные группы.
Прильем к раствору сахарозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. В данном случае сахароза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт. Продукт реакции – сахарат меди (II).
Оборудование: штатив для пробирок, пробирки.
Техника безопасности. Соблюдать правила работы с растворами щелочей
Отсутствие восстанавливающей способности сахарозы
Экспериментально проверим отсутствие альдегидной группы у сахарозы. Приготовим сахарат меди (II). В пробирку с раствором сахарозы добавим раствор сульфата меди (II), воду и раствор щелочи. Образуется ярко синий сахарат меди (II). Раствор сахарата меди (II) нагреваем до кипения. Красного осадка оксида меди (I) не образуется. Следовательно, сахароза не имеет в своем составе свободную альдегидную группу и не обладает восстанавливающими свойствами.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с растворами щелочей.
Кислотный гидролиз сахарозы
В присутствии кислот дисахариды гидролизуются. При гидролизе сахарозы образуется глюкоза и фруктоза. Экспериментально проверим это. Прокипятим смесь растворов сахарозы и серной кислоты. Через несколько минут проверим наличие глюкозы в полученном растворе.
С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6
Прильем к раствору щелочь и несколько капель раствора сульфата меди (II). Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. Нагреем раствор. Выпадает красный осадок оксида меди (I). Мы доказали, что при гидролизе сахарозы образовалась глюкоза.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок, штатив, стакан, прокладка огнезащитная.
Техника безопасности. Соблюдать правила работы с растворами кислот.
Кислотный гидролиз целлюлозы
При кислотном гидролизе целлюлозы образуется глюкоза. Проведем гидролиз в присутствии серной кислоты. В фарфоровой ступке разотрем вату с концентрированной серной кислотой. Полученную смесь разбавим водой и перенесем в стакан. Прокипятим смесь. Через несколько минут проверим наличие глюкозы в полученном растворе. Прильем к раствору щелочь и несколько капель раствора сульфата меди (II). Нагреем раствор. Выпадает красный осадок оксида меди (I). Мы доказали, что при гидролизе целлюлозы образовалась глюкоза. Кислотный гидролиз целлюлозы имеет важное промышленное значение. Брожением полученной глюкозы получают этиловый спирт.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок, фарфоровая ступка с пестиком.
Техника безопасности. Соблюдать правила работы с концентрированными кислотами.
Получение и свойства нитроцеллюлозы
Целлюлоза с азотной кислотой образует азотнокислые эфиры. Эфиры получают действием на целлюлозу смесью безводной азотной кислоты и концентрированной серной кислоты. Целлюлоза в нашем опыте - хлопковая вата.
Приготовим такую смесь и опустим в нее кусочек ваты. Через 15 минут процесс нитрования целлюлозы заканчивается. Промоем полученную нитроцеллюлозу водой. Высушим. Нитроцеллюлоза при поджигании быстро сгорает. Нитроцеллюлоза используется для приготовления бездымного пороха.
Оборудование: стакан, палочка, фильтровальная бумага, мерная пробирка.
Техника безопасности. Опыт необходимо проводить под тягой. Соблюдать правила работы с концентрированными кислотами.
Растворение целлюлозы в аммиачном растворе гидроксида меди (II)
Целлюлоза нерастворима в воде и в большинстве растворителей. Однако в аммиачном растворе гидроксида меди (II) целлюлоза растворяется хорошо. Продемонстрируем это. В концентрированный аммиачный раствор опускаем небольшие порции ваты. Вата хорошо растворяется в данном растворе. Получается густой вязкий раствор целлюлозы в аммиачном растворе гидроксида меди (II). Раствор целлюлозы используют в промышленности для получения медноаммиачного шелка.
Оборудование: пробирка или стакан, стеклянная палочка.
Техника безопасности. Соблюдать правила работы с концентрированным раствором аммиака.
Получение пенопласта
Пенопласты - легкие пористые материалы. Получим пенопласт реакцией поликонденсации. Растворим мочевину в формалине. Формалин – это 40% водный раствор формальдегида. В другой пробирке смешиваем немного шампуня с соляной кислотой. Шампунь содержит пенообразующие вещества. Смешаем содержимое двух пробирок. Сильно взболтаем смесь и нагреем ее на слабом огне. Образовавшаяся пена быстро затвердевает. Мы получили пенопласт.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами и нагревательными приборами.
Получение пластмасс на примере резорцинформальдегидной смолы
Для получения многих пластмасс используют реакцию поликонденсации. Проведем такую реакцию. В пробирку нальем немного раствора формалина. Затем растворим в нем резорцин. Резорцин – это вещество, относящееся к классу фенолов, но в отличие от фенола резорцин содержит две гидроксильные группы. К полученному раствору прибавим несколько капель соляной кислоты. Опустим в пробирку термометр.
Через некоторое время начинается реакция поликонденсации. Реакция протекает с выделением теплоты. Полученный полимер имеет розовый цвет.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с нагревательными приборами.
Изучение физических свойств анилина
Анилин – бесцветная маслянистая жидкость. При хранении анилин постепенно окисляется и приобретает вначале желтую, затем бурую окраску. Изучим растворимость анилина в воде. Прибавим анилин к воде и перемешаем раствор. Анилин мало растворим в воде. При 18оС в 100 мл воды растворяется всего 3,6г. анилина. Раствор анилина не изменяет окраски индикаторов.
Оборудование: пробирки, штатив для пробирок.
Техника безопасности. Соблюдать правила работы с ядовитыми веществами.
Достарыңызбен бөлісу: |