Контрольные вопросы по каждой из рассматриваемых тем занятий


Тема№7 Методы системного анализа



бет8/26
Дата13.07.2016
өлшемі2.93 Mb.
#195993
түріКонтрольные вопросы
1   ...   4   5   6   7   8   9   10   11   ...   26

Тема№7
Методы системного анализа


7.1. Методика проведения системного анализа

Принципиальной особенностью системного анализа является использование методов двух типов - формальных и неформальных (качественных, содержательных).

Методика системного анализа разрабатывается и применяется в тех случаях, когда у лиц, принимающих решения, на начальном этапе нет достаточных сведений о проблемной ситуации, позволяющих выбрать метод ее формализованного представления, сформировать математическую модель или применить один из новых подходов к моделированию, сочетающих качественные и количественные приемы. В таких условиях может помочь представление объектов в виде систем, организация процесса принятия решения с использованием разных методов моделирования.

Для того чтобы организовать такой процесс, нужно определить последовательность этапов, рекомендовать методы для выполнения этих этапов, предусмотреть при необходимости возврат к предыдущим этапам. Такая последовательность определенным образом выделенных и упорядоченных этапов с рекомендованными методами или приемами их выполнения представляет собой методику системного анализа.

Таким образом, методика системного анализа разрабатывается для того, чтобы организовать процесс принятия решения в сложных проблемных ситуациях. Она должна ориентироваться на необходимость обоснования полноты анализа, формирование модели принятия решения, адекватно отображать рассматриваемый процесс или объект.

Одной из принципиальных особенностей системного анализа, отличающей его от других направлений системных исследований, является разработка и использование средств, облегчающих формирование и сравнительный анализ целей и функций систем управления. Вначале методики формирования и исследования структур целей базировались на сборе и обобщении опыта специалистов, накапливающих этот опыт на конкретных примерах.

Таким образом, основной особенностью методик системного анализа является сочетание в них формальных методов и неформализованного (экспертного) знания. Последнее помогает найти новые пути решения проблемы, не содержащиеся в формальной модели, и таким образом непрерывно развивать модель и процесс принятия решения, но одновременно быть источником противоречий, парадоксов, которые иногда трудно разрешить. Поэтому исследования по системному анализу начинают все больше опираться на методологию прикладной диалектики.

7.2. Методы системного анализа

Арсенал методов системного анализа достаточно большой, каждый из методов имеет свои достоинства и недостатки, а также область применения по отношению как к типу объекта, так и к этапу его исследования.



Основными методами системного анализа являются следующие методы:

  • неформальные методы: методы «мозговой атаки», метод экспертных оценок, метод «Дельфи», диагностические методы, морфологические методы, метод дерева целей;

  • формализованные методы:

    • графические: матричные методы, сетевые методы;

    • статистические: математическая статистика, теория вероятностей, теория массового обслуживания;

    • аналитические: методы как классической математики, так и математического программирования.

7.2.1. Неформальные методы

Методы «мозговой атаки». Методы данного типа преследуют основную цель - поиск новых идей, их широкое обсуждение и конструктивную критику. Основная гипотеза заключается в предположении, что среди большого числа идей имеются, по меньшей мере, несколько хороших. При проведении обсуждений по исследуемой проблеме применяются следующие правила:

  • сформулировать проблему в основных терминах, выделив центральный единственный пункт;

  • не объявлять ложной и не прекращать исследование ни одной идеи;

  • поддерживать идею любого рода, даже если ее уместность кажется вам в данное время сомнительной;

  • оказывать поддержку и поощрение, чтобы освободить участников обсуждения от скованности.

При всей кажущейся простоте данные обсуждения дают неплохие результаты.

Методы экспертных оценок. Основа этих методов - различные формы экспертного опроса с последующим оцениванием и выбором наиболее предпочтительного варианта. Возможность использования экспертных оценок, обоснование их объективности базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка эксперта о достоверности и значимости того или иного события. При этом предполагается, что истинное значение исследуемой характеристики находится внутри диапазона оценок, полученных от группы экспертов и что обобщенное коллективное мнение является достоверным. Наиболее спорным моментом в данных методиках является установление весовых коэффициентов по высказываемым экспертами оценкам и приведение противоречивых оценок к некоторой средней величине. Данная группа методов находит широкое применение в социально-экономических исследованиях.

Этапы экспертизы:

  1. формирование цели;

  2. разработка процедуры экспертизы;

  3. формирование группы экспертов;

  4. опрос;

  5. анализ и обработка информации.

При обработке материалов коллективной экспертной оценки используются методы теории ранговой корреляции. Для количественной оценки степени согласованности мнений экспертов применяется коэффициент конкордации, который позволяет оценить, насколько согласованы между собой ряды предпочтительности, построенные каждым экспертом. Для наглядности представления степени согласованности мнений двух любых экспертов служит коэффициент парной ранговой корреляции. Тип используемых процедур экспертизы зависит от задачи оценивания. К наиболее употребительным процедурам экспертных измерений относятся:

  • ранжирование;

  • парное сравнение;

  • множественные сравнения;

  • непосредственная оценка;

  • Черчмена-Акоффа;

  • метод Терстоуна;

  • метод фон Неймана-Моргенштерна.

Целесообразность применения того или иного метода во многом определяется характером анализируемой информации. Если оправданы лишь качественные оценки объектов по некоторым качественным признакам, то используются методы ранжирования, парного и множественного сравнения.

Если характер анализируемой информации таков, что целесообразно получить численные оценки объектов, то можно использовать какой-либо метод численной оценки, начиная от непосредственных численных оценок и кончая более тонкими методами Терстоуна и фон Неймана-Моргенштерна.



Метод «Дельфи». Первоначально метод "Дельфи" был предложен как одна из процедур при проведении мозговой атаки и должен помочь снизить влияние психологических факторов и повысить объективность оценок экспертов. Затем метод стал использоваться самостоятельно. Его основа - обратная связь, ознакомление экспертов с результатами предшествующего тура и учет этих результатов при оценке значимости экспертов.

Диагностические методы представляют собой приемы обследования системы, ее подсистем с целью усовершенствования форм и методов ее работы. Диагностические методы применяются на этапе диагностики обследуемого объекта и могут применяться также и на других этапах для получения необходимой информации, в частности, на этапе формулирования проблемы, этапе анализа структуры системы.

Цель использования диагностических методов – это установление и изучение признаков, характеризующих состояние систем для предсказания возможных отклонений и предотвращения нарушения нормального режима функционирования системы.

Морфологические методы. Основная идея морфологических методов – систематически находить все мыслимые варианты решения проблемы или реализации системы путем комбинирования выделенных элементов или признаков. Этот подход был разработан и применен швейцарским астрономом Ф. Цвикки и долгое время был известен как метод Цвикки.

Наиболее известными разновидностями метода являются:



  • Метод систематического покрытия поля (МСПП). Основан на выделении так называемых опорных пунктов знания в любой исследуемой области и использовании для заполнения поля некоторых сформулированных принципов мышления.

  • Метод отрицания и конструирования (МОК), заключающийся в том, что на пути конструктивного прогресса стоят догмы и компромиссные ограничения, которые есть смысл отрицать, и следовательно, сформулировав некоторые положения, полезно заменить из затем на противоположные и использовать при проведении анализа.

  • Метод морфологического ящика (ММЯ), нашедший наиболее широкое распространение. Идея ММЯ состоит в том, чтобы определить все мыслимые параметры, от которых может зависеть решение проблемы, представить их в виде матриц-строк, а затем определить в этом морфологическом матрице-ящике все возможные сочетания параметров по одному из каждой строки. Полученные таким образом варианты могут снова подвергаться оценке и анализу в целях выбора наилучшего. Морфологический ящик может быть не только двумерным.

Метод дерева целей. Термин «дерево целей» подразумевает использование иерархической структуры, полученной путем разделения общей цели на подцели, а их в свою очередь, на более детальные составляющие.

Дерево целей представляет собой связный граф, вершины которого интерпретируются как цели, а ребра или дуги как связи между целями.

Основным требованием к дереву целей является отсутствие циклов. Дерево целей представляет собой главный инструмент увязки целей высшего уровня с конкретными средствами их достижения на низшем уровне через ряд промежуточных звеньев. При этом в понятие целей на разных уровнях вкладывается различное содержание: от объективных народохозяйственных потребностей и желаемых направлений развития на верхнем уровне до решения задач и осуществления отдельных мероприятий на нижних уровнях.



Метод дерева целей используется для:

  • структуризации и анализа проблемы;

  • структуризации системы;

  • декомпозиции критериев оптимальности;

7.2.2. Формализованные методы

Матричные методы. Матричные формы представления и анализа информации не являются специфическим инструментом системного анализа, однако широко используются на различных его этапах в качестве вспомогательного средства. Матрица является не только наглядной формой представления информации, но и формой, которая во многих случаях раскрывает внутренние связи между элементами, помогает выяснить и проанализировать наблюдаемые части структуры. Примером использования свойств матрицы является таблица Менделеева.

Матрицы используются для представления и анализа систем и их структур. Перестроение дерева целей в матрицу бывает удобно для анализа структуры дерева целей, для выявления взаимосвязей и отношений между целями на этапе отбора вариантов и усечения целей.



Сетевые методы. Сетевые методы являются наиболее наглядным и удобным средством отражения динамических, развивающихся во времени процессов, их анализа и планирования с включением элементов оптимизации. Используются главным образом на этапе построения программ развития. Элементы нижних уровней дерева целей, перегруппированные по признаку временных логических взаимосвязей, можно преобразовать в сеть. Анализ этих сетей может послужить для дальнейшей корректировки деревьев целей. Более сложные многомерные сети используются для распределения сфер ответственности, распределения работ по конкретным исполнителям в организациях, ориентированных на цель.

Статистические методы. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским (дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина - с тем или иным количеством возможных значений (в зависимости от единицы измерения).

Для случайных величин приходится использовать особые, статистические методы их описания. В зависимости от типа самой случайной величины - дискретная или непрерывная это делается по разному.



Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.

Можно доказать, что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению - которое и есть вероятность этого значения.

К понятию вероятности значения дискретной случайной величины можно подойти и иным путем - через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике - событие с вероятностью 0,5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0,5 - оно чаще происходит, чем не происходит. События с вероятностью 1 называют достоверными, а с вероятностью 0 - невозможными.

Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.

В ряде ситуаций приходится иметь дело с непрерывно распределенными случайными величинами - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных случайных величин. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие - для непрерывной случайной величины вопрос о том какова вероятность принятия ею конкретного значения обычно не имеет смысла - как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?

Для всех случайных величин - дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто - надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.



Математическое программирование ("планирование") - это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач. Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.

В зависимости от вида целевой функции и ограничений выделяют следующие методы математического программирования:



Линейное программирование, используется если целевая функция линейна и система ограничений также линейна.

Если решения задачи линейного программирования должны быть целыми числами, то это задача целочисленного линейного программирования.

Если целевая функция и система ограничений не линейны, то это задача нелинейного программирования.

В том случае, если в задаче математического программирования имеется переменная времени и целевая функция выражается не в явном виде, как функция переменных, а косвенно, через уравнение, описывающее протекание операции во времени, то такая задача является задачей динамического программирования.


Если целевая функция и система ограничений задаются формулами вида:

,то это задача геометрического программирования.

В задачах параметрического программирования целевая функция и система ограничений зависят от параметров.

Если в целевой функции и системе ограничений определяется область возможного изменения переменных, содержатся случайные величины, то такая задача относится к задачам стохастического программирования.

Если точный оптимум найти алгоритмическим путем невозможно, из-за большого числа вариантов решения, то используются методы эвристического программирования.



Контрольные вопросы

  1. Назовите основные особенности системного анализа.

  2. Для каких целей разрабатывается методика системного анализа и в каких случаях она применяется?

  3. Опишите метод «мозговой атаки».

  4. Опишите методы экспертных оценок.

  5. Опишите метод «Дельфи».

  6. Опишите диагностические методы.

  7. Опишите морфологические методы.

  8. Опишите метод дерева целей.

  9. Опишите матричные методы.

  10. Опишите сетевые методы.

  11. Опишите статистические методы.

  12. Опишите методы математического программирования.





Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   ...   26




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет