Майкл А. Кремо Деволюция человека: Ведическая альтернатива теории Дарвина



бет13/61
Дата20.06.2016
өлшемі2.8 Mb.
#150789
1   ...   9   10   11   12   13   14   15   16   ...   61

Система репликации ДНК

При делении клетки необходимо, чтобы ДНК в клетке также разделилась и воспроизвела себе подобную молекулу. Система репликации ДНК у людей и других организмов – еще одна система, возникновение которой проблематично описать с точки зрения теории эволюции. ДНК – это нуклеиновая кислота, состоящая из нуклеотидов. Каждый нуклеотид состоит из двух частей: углеводородного кольца (дезоксирибозы) и основы, связанной с углеводородным кольцом. Существует 4 основы: аденин (А), цитозин (С), гуанин (G) и тимин (Т). К каждому углеводородному кольцу присоединяется одна основа. Углеводородные кольца объединяются в цепи. На одном конце цепи находится группа 5‘ OH (5‘ гидроксил). На другом конце цепочки ДНК находится группа 3‘ OH (3‘ гидроксил). Последовательность пар основ в цепочке ДНК начинается с 5‘ конца и кончается 3‘ концом. Внутри клетки две цепочки ДНК сплетаются в спираль. Нуклеотидные основы в каждой из цепей соединяются между собой. А всегда соединяется с Т, а G – с С. Таким образом, эти две цепочки дополняют друг друга. По одной из них можно определить другую. Зная последовательность основ в одной из цепочек ДНК, нетрудно вычислить последовательность во второй цепочке спирали. Например, если часть последовательности основ в одной цепочке выражается как TTGAC, значит, соответствующая часть во второй цепочке содержит последовательность основ AACTG. Таким образом, каждая из цепочек может служить шаблоном для воспроизведения другой. В результате получается новая двойная спираль ДНК, соответствующая исходной спирали. Поэтому, когда клетка делится на две части, в каждой из них остается по двойной спирали ДНК (Behe. 1998. P. 184).

Для репликации ДНК необходимо, чтобы две цепочки этой молекулы были разъединены. Однако в исходной молекуле они соединены между собой химическими связями. Воспроизведение происходит в тех местах молекулы ДНК, которые именуются «точками начала репликации». Белок присоединяется к ДНК в одном из таких мест и отделяет цепочки друг от друга. Затем другой белок, геликаза, действуя как клин, разъединяет цепочки. Разъединенные цепочки ДНК стремятся объединиться и, кроме того, существует вероятность, что каждая из них образует замкнутую цепь в результате действия водородных соединений между разными ее частями. Избежать этого позволяет одноцепочный связывающий белок, который покрывает одиночную цепочку, не давая ей замкнуться или соединиться с другими цепочками ДНК. На этом этапе возникает другая проблема. По мере того, как геликоза продвигается вперед, разделяя свернутые в спираль цепочки ДНК, концы цепочек перед геликозой сворачиваются в узлы. Чтобы убирать эти узлы, существует энзим гираза, который разрезает, распутывает и вновь соединяет цепочки ДНК (Behe. 1998. P. 190).

Как таковое, воспроизведение цепочки ДНК осуществляется, главным образом, энзимом полимеразой, который присоединяется к цепочке ДНК. Это присоединение осуществляется при помощи кольца из так называемых «хватательных белков». Существует сложная система белков, которая нанизывает кольцо на цепочку ДНК. Особый вид молекулы РНК начинает процесс репликации, объединяя несколько нуклеотидных основ и формируя короткую цепочку ДНК. Затем полимераза продолжает добавлять дополнительные нуклеотидные основы к 3‘ концу новой цепочки. Например, если в исходной цепочке ДНК есть основа G, то полимераза добавляет основу С к новой цепочке. Добавление нуклеотидных основ происходит в месте, именуемом нуклеотидной вилкой, где происходит разделение двух исходных цепочек ДНК (Behe. 1998. P. 188).

По мере того как репликационная вилка продвигается вдоль цепочки от 5‘ конца к 3‘ концу, энзим полимеразы непрерывно воспроизводит эту цепочку, именуемую ведущей. ДНК может воспроизводиться только по направлению к 3‘ концу. Однако две цепочки ДНК, которые образуют спираль, направлены в противоположную сторону. Как же воспроизводится вторая цепочка? В то время как энзим полимеразы репродуцирует ведущую цепочку описанным выше способом, двигаясь по направлению к 3‘ концу, одновременно с этим он репродуцирует вторую, ведомую, цепочку, добавляя группы нуклеотидов к соответствующим основам в обратном порядке. Этот процесс начинается с короткого отрезка РНК, который служит отправной точкой. К этому отрезку РНК добавляется несколько нуклеотидов по направлению к 3‘ концу ведомой цепочки. Добавив эти несколько нуклеотидов в обратном направлении, полимеразный механизм репликации отсоединяется и двигается вперед, останавливаясь в новом положении репликационной вилки, которая постоянно движется по направлению к 3‘ концу ведущей цепочки, отдаляясь от 3‘ конца ведомой цепочки. Полимераза продолжает репродуцировать ведущую цепочку, добавляя основы к новой цепочке, идущей в том же направлении, и одновременно с этим продолжает воссоздавать ведомую цепочку, добавляя основы в обратном направлении. К новой воссоздаваемой ведомой цепочке, полимераза присоединяет другой отрезок первичного фрагмента РНК и еще несколько нуклеотидов, делая это в обратном направлении, пока они не соприкоснутся с предыдущей связкой исходного отрезка РНК и нуклеотида. Каждый комплект нуклеотидов, воссозданных на парной ведомой цепочке, называется фрагментом Оказаки. Для соединения нового фрагмента Оказаки с предыдущим необходим особый энзим, который убирает первичный фрагмент РНК, находящийся между двумя фрагментами. Затем два фрагмента Оказаки соединяются энзимом лигазой ДНК. Далее полимеразный механизм репликации должен отсоединиться, переместиться к репликационной вилке и снова закрепиться на цепочке. Этот процесс продолжается до тех пор, пока ведущая и ведомая цепочки не будут полностью воспроизведены (Behe. 1998. P. 191). Существует также сложная система контроля, которая устраняет любые ошибки, возникшие в процессе репликации.

Бехе отмечает: «В специальной научной литературе не существует ни единого подробного описания того, как механизм репликации ДНК, целиком или по частям, мог возникнуть в результате постепенной эволюции» (Behe. 1998. P. 192). То же самое верно и в случае других сложных биохимических структур и процессов, имеющих отношение к человеку и другим живым существам.



Нервные соединения мозга

Д. Тревис пишет: «Человеческий мозг может развиваться только в том случае… если миллионы нервных клеток в нем связаны между собой и взаимодействуют должным образом» (Travis. 2000c). Поскольку, по утверждению ученых, сознание во всем многообразии его функций является продуктом деятельности мозга, эти взаимосвязи имеют огромное значение. Помимо расплывчатых предположений о существовании неких «наводящих молекул» и всеобъемлющей веры в то, что связи между нервными клетками образовались в результате эволюции, ученые не дали подробного объяснения возникновению этих связей. На основе опытов, проведенных на мушках дрозофилах, ученые утверждают, что обнаружили ген, который, предположительно, отвечает за код 38000 различных «наводящих молекул». Даже если это так, то их находка ставит перед эволюционистами еще одну неразрешимую проблему: как один ген может определять код такого огромного числа молекул? И как эти 38000 разных «наводящих молекул» распределяются нужным образом, чтобы образовать необходимые соединения между нейронами мозга дрозофилы? Даже если предположить, что выяснить это удастся, разве можно представить, что из мозга мушки в результате мутаций ДНК и естественного отбора возник гораздо более сложный мозг человека?



Плацента

Другая проблема, с которой сталкиваются эволюционисты, – это происхождение плаценты у млекопитающих. ДНК зародыша представляет собой комбинацию ДНК матери и отца. Поскольку ДНК зародыша отличается от материнского ДНК, организм матери должен отторгать его как чужеродную ткань. Но этого не происходит, поскольку плацента изолирует зародыш от прямого контакта с иммунной системой матери. Плацента также снабжает зародыш питательными веществами и выводит отходы из его организма. Харви Д. Климан, биолог репродуктивист из Йельского университета, утверждает: «Во многих отношениях плацента выполняет роль акваланга для зародыша, а также центра управления беременностью матери». По мнению сторонников теории эволюции, до появления плацентарных млекопитающих все наземные животные откладывали яйца. В своей статье в «Science News»Джон Трэвис пишет: «Как и в случае большинства других эволюционных натяжек, происхождение плаценты покрыто мраком неизвестности. Но это не мешает биологам строить предположения на данный счет» (Travis. 2000d. P. 318). Однако умозрительные предположения не имеют ничего общего с научным объяснением, которого в этих случаях просто не существует.

Бехе пишет: «За последние десять лет «Journal of Molecular Evolution» опубликовал более тысячи статей… Но ни в одной из них не дается детального описания промежуточных стадий развития сложных биохимических структур. И это не особенность данного издания. Никаких подробных описаний моделей промежуточных ступеней развития сложных биомеханических структур мы не встретим и в таких изданиях, как «Proceedings of the National Academy of Science», «Nature», «Science», «Journal of Molecular Biology» и, по моим сведениям, ни в одном другом научном издании» (Behe. 1998. P. 183).

Сходство приматов и человека

Физические антропологи и другие ученые предприняли попытки использовать генетику для объяснения предполагаемой эволюционной связи между людьми, шимпанзе и гориллами. Кто ближе к нам – шимпанзе или гориллы? И ближе ли эти человекообразные друг к другу, чем к человеку? Исследования дают совершенно разные результаты. Согласно исследователю Марксу, некоторые ученые утверждают, что по структуре хромосом человек ближе всего к гориллам, тогда как другие роднят человека с шимпанзе, а третьи находят наибольшее сходство в строении хромосом у шимпанзе и горилл. Исследования ДНК в митохондриях клеток показывают, что человек, шимпанзе и гориллы одинаково близки друг к другу. ДНК в ядрах клеток у человека, шимпанзе и горилл имеют различия, причем по строению X хромосомы наиболее близки шимпанзе и гориллы, а по строению Y хромосомы – шимпанзе и люди. Что же касается скелета, то по черепному строению людям наиболее близки шимпанзе, а по строению остальной части скелета наибольшее сходство наблюдается у шимпанзе и горилл (Marks. 1994. Pp. 65–66).

Пытаясь найти закономерность в этих противоречиях, многие ученые исходят из веры в превосходство генетических данных над всеми другими. Однако Маркс ставит под сомнение такую позицию: «Молекулярные исследования проблем антропологической систематизации, судя по всему, нередко страдают от [слабого] контроля над их качеством, поспешных обобщений, противоречивых заключений и ничем не обоснованной убежденности в том, что если два исследования приводят к разным результатам, то следует доверять данным, полученным с помощью генетического анализа» (Marks. 1994. P. 65).

Сибли и Алкист утверждают, что с помощью молекулярных методов (гибридизации ДНК) им удалось реконструировать филогенетику шимпанзе, горилл и человека (Sibley, Ahlquist. 1984. P. 11). По их словам, генетические данные показали, что первые шимпанзе произошли от горилл, а из них возникли люди. Однако Маркс отмечает: «К такому заключению они пришли через: 1) расстановку коррелирующих точек по линии регрессии и пересчета их значений, 2) замещение контрольных значений по ходу эксперимента, 3) введение точных изменений на основе произвольно взятой переменной» (Marks. 1994. P. 65). В связи с этим Маркс пишет: «Отсутствие упоминаний о данных манипуляциях в протоколах экспериментов усугубляется тем, что о них ничего не говорится в отчетах этих ученых и что они были обнаружены совершенно случайно… Данные факты свидетельствуют о недобросовестности указанных ученых и недальновидности их защитников» (Marks, 1994, P. 66).

Исследования Сибли и Алкиста грешат не только этими техническими недостатками, но и сомнительными исходными предпосылками. Согласно Марксу, эти предпосылки сводятся к следующему: 1) люди произошли от шимпанзе или от горилл в два этапа (т. е. от горилл произошли шимпанзе, а от шимпанзе – люди; либо от шимпанзе произошли гориллы, а от горилл – люди); 2) этот процесс «прослеживается с помощью генетических исследований и теории в их нынешнем состоянии» (Marks. 1994. P. 69). Маркс поясняет: «Эти предпосылки пагубны, ибо… они искажают научные факты. Прежде всего, необходимо учитывать, что мы точно не знаем, являются ли шимпанзе, люди и гориллы звеньями одной цепи или разветвлениями одной ветви» (Marks. 1994. P. 69). Значит, вполне возможно, что люди, шимпанзе и гориллы происходят от общего неизвестного предка. С такой же уверенностью можно предположить, что все эти виды были одновременно сотворены Богом в их нынешней форме.

На протяжении многих лет эволюционисты утверждают, что ДНК людей и шимпанзе на 97 % идентичны. По мнению ученых, это доказывает эволюционную связь между двумя данными видами. Однако данное утверждение имеет несколько неточностей. Прежде всего, сходство на 97 % было установлено путем грубой гибридизации ДНК (Sibley, Alhquist. 1987). Исследователи разбили человеческую ДНК в пробирке на несколько частиц и затем пронаблюдали, сколько из них воссоединились с частицами ДНК шимпанзе. 97 % частиц воссоединились, а остальные 3 % – нет. Однако никто точно не знает степени действительного сходства шимпанзе и человека на молекулярном уровне. Человеческий геном расшифровали лишь недавно. Была получена последовательность из примерно трех миллиардов нуклеотидных основ. Это похоже на последовательность букв в книге на иностранном языке. Чтобы прочитать эту книгу, вам понадобится разбить эту последовательность на слова и предложения и понять их значение. Этого до сих пор не было проделано в отношении ДНК. Согласно современным представлениям о строении ДНК, 97 % нуклеотидных основ не образуют генов. Их называют мусором. На отбор последовательностей, которые составляют гены, а не мусор, может уйти не одно десятилетие. Геном шимпанзе еще не был даже расшифрован и в ближайшие годы его расшифровка не предвидится. Поэтому в настоящее время нет никаких оснований для строго научного сопоставления геномов человека и шимпанзе. На данный момент мы не можем представить полный список генов шимпанзе и человека и проанализировать, насколько они сходны или различны во всем своем объеме.

Нам следует иметь в виду, что гены лишь определяют, какие аминокислоты должны соединяться для образования молекул белка (или других полипептидов). Иными словами, гены просто генерируют молекулярное сырье, необходимое для формирования организма и его функций. Нет ничего удивительного в том, что организмы человека и шимпанзе состоят почти из тех же самых молекулярных составляющих. Мы существуем в сходных средах обитания и питаемся сходной пищей. Поэтому схожесть генов и молекул наших организмов не исключает возможности творения. Конструкторы разных моделей автомобилей используют очень похожие компоненты. На самом деле, настоящая проблема не в компонентах, а в организации их в сложные структуры, которые выполняют функции тех или иных механизмов. Недостаточно, чтобы сырье, то есть сталь, стекло, резина, пластмасса и другие материалы, просто поступили на автозавод; нужно еще, чтобы рабочие этого завода придали им нужную форму и расположили их в нужном порядке – только тогда получится автомобиль. Подобно этому гены только обуславливают формирование молекулярного сырья, но не существует никаких данных о том, чтобы гены составляли из этого сырья тела шимпанзе или человека. До тех пор пока этот процесс не будет подробно описан, можно с равной уверенностью относить схожесть ДНК человека и шимпанзе, а также сложность их организмов на счет разумного творения.

Последние на момент написания этой книги исследования показывают, что геномы человека и шимпанзе отличаются всего на 1,5 % (Travis. 2000a. P. 236). «Что означает эта цифра? В настоящее время этого никто сказать не может», – пишет Джон Трэвис в своей статье в «Science News» (Travis. 2000а. P. 237). Таким образом, схожесть ДНК человека и шимпанзе представляется большинству эволюционистов сложной проблемой, которая требует объяснения. Франс де Ваал, приматолог из Университета Эмори, утверждает: «Большинству из нас трудно поверить, что мы отличаемся от обезьяны всего лишь на 1,5%. Крайне необходимо знать, какие функции выполняют эти 1,5 %» (Travis. 2000а. P. 237). Судя по всему, сложный механизм формирования различных видов жизни основан на чем то еще, помимо ДНК. Остается предположить, что это «что то» и есть результат разумного творения.

Некоторые ученые усматривают в человеческой хромосоме 2 комбинацию хромосом 12 и 13, которые имеются у шимпанзе. В этом они видят доказательство существования эволюции. Но тот факт, что хромосомы могут соединяться, не объясняет того, как это произошло. Это может быть делом рук разумного Творца, который оперировал одними и теми же хромосомами в разных комбинациях для создания различных видов жизни. Другие ученые видят подтверждение теории эволюции в существовании так называемых «псевдогенов». Псевдогены – это отрезки ДНК, которые выглядят как гены, но не выполняют никаких функций. Например, в ДНК человека есть отрезок, который подобен гену, отвечающему за выработку витамина С у некоторых животных. Но у человека этот ген неактивен. Между тем, тот факт, что ген деактивирован, не говорит о том, как именно произошла его деактивация. Это вполне может быть результатом разумного творения.

Африканская Ева

По утверждению некоторых ученых, генетические свидетельства указывают на то, что все ныне живущие люди происходят от единой прародительницы, жившей в Африке примерно 200 000 лет назад. Ее потомки распространились по всему миру, вытеснив гоминидов, существовавших в разных частях мира, при этом не скрещиваясь с ними. Этими гоминидами были неандертальцы или подобные им потомки Homo erectus , которые покинули Африку предположительно в предыдущую волну переселения 1–2 миллиона лет назад.



Данные исследований ДНК митохондрий

Вышеизложенный сценарий называется гипотезой африканской Евы или гипотезой африканского происхождения. Впервые о ней заговорили в 80 х годах двадцатого века такие исследователи, как Канн, Стоункинг и Виджилэнт. Их выводы были основаны на исследованиях ДНК митохондрий. Большинство молекул ДНК в человеческих клетках находятся в ядре клетки. Это ядерное ДНК представляет собой комбинацию ДНК матери и отца. Мужские и женские половые клетки содержат половину ДНК каждого из родителей. Поэтому после соединения сперматозоида отца с яйцеклеткой матери оплодотворенная яйцеклетка в своем ядре содержит полную ДНК, отличную от ДНК как отца, так и матери. Однако материнская яйцеклетка содержит также небольшие круглые тельца, находящиеся за пределами ядра, которые называются митохондриями и участвуют в процессе вырабатывания энергии.

Присутствие митохондрий в эукариотных клетках представляет собой загадку. В эукариотных клетках ДНК содержится в хромосомах, изолированных в клетке ядра. В прокариотных клетках нет ядра, и ДНК просто плавают в клеточной цитоплазме. Почти все живые организмы в наше время представляют собой либо одну эукариотную клетку, либо множество таких клеток. Только бактерии и сине зеленые водоросли состоят из прокариотных клеток. Эволюционисты выдвигают теорию, согласно которой, митохондрии в современных клетках представляют собой остатки прокариотных клеток, которые «вторглись» в примитивные эукариотные клетки. Если дело действительно обстояло так, то это могло произойти, вероятнее всего, на самых ранних этапах эволюционного процесса, когда существовали только одноклеточные организмы. В этом случае следовало бы ожидать, что митохондрии всех живых существ будут сходны между собой. Однако ДНК в митохондриях млекопитающих «нельзя отнести ни к эукариотному, ни к прокариотному типам». Кроме того: «Митохондриальный генетический код млекопитающих отличен от так называемого универсального генетического кода… митохондрии у млекопитающих очень отличаются от митохондрий других организмов. Например, митохондрии дрожжевых бактерий отличаются не только своим генетическим кодом, но также и порядком расположения генов и расстоянием между ними, а также тем, что в некоторых случаях они содержат промежуточные последовательности. Эти радикальные отличия не позволяют с легкостью делать выводы об эволюции митохондрий» (Anderson et al. 1981. P. 464). Иными словами, присутствие разных по виду митохондрий в различных живых существах не позволяет говорить об их возникновении в процессе эволюции.

Но давайте вернемся к основному вопросу. У млекопитающих митохондрии в яйцеклетке имеют собственную ДНК. Однако эта ДНК не соединяется с ДНК отца. Поэтому у всех нас в митохондриях содержится ДНК матери. Митохондриальное ДНК досталось нашей матери от ее собственной матери и так далее. Сторонники гипотезы африканской Евы полагают, что митохондриальная ДНК претерпевает только случайные мутационные изменения. Эти ученые считают, что, исследуя скорость мутаций, они смогут использовать митохондриальную ДНК как своего рода часы, соотнеся скорость мутации с числом лет. Исследуя митохондриальную ДНК у разных групп населения Земли, ученые надеются отыскать среди них группу прародительницу, от которой произошли все другие группы.

Ученые полагают, что группу прародительницу, которая должна быть старше всех других, можно вычислить с помощью компьютерных программ, составляющих генеалогическое древо разных народов. Наиболее короткое древо, с наименьшим числом ответвлений, именуется «минимальным древом». Ученые уверены, что по нему можно проследить исторические взаимосвязи различных групп. Корнем этого дерева является группа прародительница. Согласно теории эволюции, митохондриальная ДНК у этой группы должна обладать наибольшим числом вариаций (как следствие мутаций) среди всех групп. По мнению ученых, исследования в этом направлении помогут обнаружить, где и когда существовала эта группа. Однако некоторые ученые возражают, что такие биологические часы не показывают точного времени и что генетической информации, содержащейся в митохондриальной ДНК современных групп, недостаточно, чтобы точно определить географическое местоположение первых людей.

В одном из первых докладов по гипотезе африканской Евы исследователи привели результаты анализа митохондриального ДНК современных групп из разных частей мира. Они проанализировали последовательность нуклеотидных основ, находящихся в определенном участке митохондриального ДНК, у всех участвующих в исследовании. Затем при помощи компьютерной программы они отсортировали эти последовательности (именуемые гаплотипами) и на их основе составили генеалогическое древо. Согласно отчету по данному исследованию, корнем этого древа является африканская группа (Cann et al. 1987). Однако, по утверждению Темплтона, при повторном анализе данных, проведенном Мэдисоном в 1991 году, были составлены 10 000 генеалогических древ, которые были короче (т. е. обладающие большим соответствием), чем «минимальное древо», которое фигурировало в отчете сторонников гипотезы африканской Евы (Templeton. 1993. P. 52). Многие из этих генеалогических древ имели смешанные афро азиатские корни. Проанализировав другой отчет на тему «африканской Евы» (Vigilant et al. 1991), Темплтон обнаружил 1000 генеалогических древ, которые были на два уровня короче, чем древо, которое исследователи данного вопроса предлагали в качества «минимального». У всей этой 1000 древ, обнаруженной Темплтоном в 1992 году, были неафриканские корни (Templeton. 1993. P. 53). Это согласуется с информацией, содержащейся в древних санскритских текстах из Индии, согласно которым изначально человек населял регион между Гималаями и Каспийским морем.

Почему были получены столь разные результаты? Относительно доклада по гипотезе африканской Евы, Темплтон пишет: «Компьютерные программы… не могут гарантировать правильность вычисления „минимального древа“ на основе такого большого объема информации, поскольку пространство состояний слишком велико для исчерпывающего поиска. Например, на основе 147 гаплотипов, о которых пишут Стоункинг, Бхатия и Уилсон (Stoneking et al. 1986), можно составить 1,68 ) 10294 генеалогических древ. Найти «минимальное древо» среди такого множества вариантов представляется делом огромной сложности». Компьютерные программы отбирают дерево, которое обладает минимальным количеством ответвлений только по отношению к подмножеству всего количества возможных древ. Выбор подмножества зависит от порядка, в котором данные вводятся в компьютер. Чтобы избежать этой проблемы, необходимо вводить данные многократно и в случайном порядке. Проделав это достаточное количество раз и уравняв вероятности, чтобы получить «минимальные древа» для различных локальных подмножеств, можно будет сравнить эти генеалогические древа и прийти к определенным выводам. Этого не было проделано в случае с исследованиями в рамках гипотезы африканской Евы (компьютерная программа проанализировала данные только один раз), и потому полученные на основе указанных исследований выводы не заслуживают доверия. Но даже уравнивание вероятностей не позволяет решить эту проблему полностью (Templeton. 1993. P. 53). Это означает, что на основе доступных сегодня генетических данных невозможно точно определить, из какой части мира произошли люди.

Помимо неточных выводов относительно «минимального древа» с африканскими корнями, сторонники гипотезы африканской Евы (Cann et al. 1987; Vigilant et al. 1991) также сделали вводящие в заблуждение утверждения касательно степени разнообразия митохондриальной ДНК у представителей разных рас и народов. Эти исследователи исходили из того, что мутации происходят с постоянной скоростью и потому группа с наибольшим внутренним разнообразием митохондриальной ДНК должна быть самой старой по сравнению с другими. Поскольку африканской группе свойственно большее внутреннее разнообразие, чем азиатской или европейской группам, исследователи сделали вывод, что население Африки старше всех других. Однако Темплтон отмечает, что «в отчетах не было представлено никаких статистических данных по этому вопросу» (Templeton. 1993. P. 56). Он отмечает, что при применении должных статистических методов между митохондриальной ДНК африканцев, европейцев и азиатов не наблюдается значительных расхождений (Templeton. 1993. P. 53). Темплтон пишет: «Кажущееся большее разнообразие в африканской группе является следствием недостатков статистического анализа, на основании которого и были сделаны заключения относительно… процесса, в результате которого сформировалось современное население Земли. Суть в том, что свидетельства о географических корнях человечества весьма расплывчаты… и нет никаких статистически обоснованных аргументов в пользу африканского происхождения на основе данных генетического исследования митохондриальных ДНК» (Templeton. 1993. P. 57).

Теперь рассмотрим данные о возрасте анатомически современного человека, полученные сторонниками гипотезы африканской Евы. Они попытались вычислить время, которое потребовалось для возникновения разнообразия митохондриальной ДНК, наблюдаемого у современных людей, исходя при этом из скорости мутаций. На основе этих расчетов определяется ближайший к нам «период единообразия», когда митохондриальная ДНК у всех людей имела одинаковую последовательность основ. Одна группа исследователей (Stoneking et al. 1986) определила возраст Евы примерно в 200 000 лет, в промежутке между 140 000 и 290 000 лет, используя для этого внутривидовые вычисления по молекулярным часам. Под внутривидовыми вычислениями подразумевается то, что они исходили из скорости мутаций только человека. Другая группа ученых (Vigilant et al. 1991), используя межвидовые вычисления, также получила цифру в 200 000 лет, но уже в промежутке между 166 000 и 249 000 лет. Под межвидовыми вычислениями подразумевается то, что они проводили свои вычисления, взяв за отправную точку предположительное время отделения человеческой ветви от ветви шимпанзе.

Для начала рассмотрим отчет об исследовании, основанном на межвидовом определении скорости мутации (Vigilant et al. 1991). Они исходили из предположения о том, что человеческая ветвь отделилась от ветви шимпанзе 4 или 6 миллионов лет назад. Вычисления на основании этой датировки с учетом статистической неопределенности позволяют судить о том, что единообразие митохондриальной ДНК человека существовало, соответственно, 170 000 или 256 000 лет назад (Templeton et al. 1993. P. 58). Однако, по оценкам Гингериха, разделение человека и шимпанзе произошло 9,2 миллиона лет назад. Если исходить из этой цифры, то полученная величина изменений отодвинет время единообразия митохондриальной ДНК на 554 000 лет назад (Templeton. 1993. Pp. 58–59). Кроме того, Ловджой и его коллеги (Lovejoy. 1993) отметили, что Виджилант и другие допустили математическую ошибку (они использовали неправильную транзицию трансверсию), при исправлении которой возраст Евы увеличится как минимум до 1,3 миллиона лет (Frayer et al. 1993. P. 40).

Несложно заметить, что исследования, основанные на так называемых «молекулярных часах», дают крайне ненадежные результаты, поскольку основываются на недоказанных эволюционных предпосылках. Не существует никаких доказательств того, что у человека и шимпанзе был единый предок, в чем уверяют нас последователи Дарвина. Как мы уже убедились, даже если согласиться с этим утверждением, невозможно с точностью определить время, когда они отделились от своего единого предка, что приводит к большим расхождениям в оценке скорости мутаций и определении времени единообразия митохондриальных ДНК.

Теперь рассмотрим заключения, к которым пришли те, кто проводили исследования на основе внутривидовых вычислений, то есть только в отношении мутаций, накопившихся в митохондриальной ДНК человека, не учитывая предположительного времени разделения ветвей человека и шимпанзе. Темплтон указывает, что эта методика не принимает во внимание несколько «источников ошибок и неопределенности». Например, тот факт, что в действительности скорость мутаций не постоянна. Мутации происходят случайно, согласно распределению Пуассона. Распределение Пуассона, названное в честь французского математика С. Д. Пуассона, используется для вычисления вероятности случайных событий (таких, как появление грамматических ошибок в печатных изданиях или мутаций в ДНК). Темплтон пишет: «В этой связи очень важно иметь в виду, что человечество представляет один из многих образцов мутационного процесса, лежащего в основе структуры современной митохондриальной ДНК. Поэтому, даже если бы митохондриальная ДНК человека была полностью расшифрована, скорость мутаций была точно определена и молекулярные часы шли бы в точном соответствии с распределением Пуассона, то и тогда время единообразия митохондриальной ДНК невозможно было бы определить точно… Поэтому стохастичность исследуемого процесса неизбежно мешает точному определению возраста, и в этом не поможет ни увеличение исследуемых образцов, ни большее генетическое разрешение, ни более точное определение скорости генетических изменений» (Templeton. 1993. P. 57).

Стоункинг и соавторы его научной работы (Stoneking et al. 1986) признают существование проблемы стохастичности, однако, по словам Темплтона, они не предпринимают адекватных шагов для ее решения. Стоункинг и его соавторы подсчитали, что расхождения в митохондриальной ДНК у исследованных ими групп людей, составили 2–4 %. Сколько же потребовалось времени, чтобы образовались такие расхождения? Стоункинг и его соавторы считают, что для этого потребовалось 200 000 лет. Однако Темплтон обнаружил, что если учесть вероятностные эффекты, то получится цифра в 290 000 лет. Далее Темплтон указывает, что «действительные величины, указанные в их работе, имеют 5 кратное расхождение (1,8–9,3 %), а в работах других исследователей они еще больше (1,4–9,3 %)» (Templeton. 1993. P. 58). Более широкие рамки расхождения позволяют датировать время единообразия митохондриальной ДНК в промежутке между 33 000 и 675 000 годами.

Сторонники гипотезы об африканской Еве и другие считают, что митохондриальная ДНК не подлежит естественному отбору. Это значит, что единственным фактором, приводящим к появлению различий в последовательностях митохондриальной ДНК у разных групп на Земле, являются случайные мутации, накапливающиеся с определенной скоростью. Если это так, то это значит, что молекулярные часы идут с одинаковой скоростью у разных групп населения Земли. Если бы в формировании различий ДНК у разных групп участвовал бы еще и естественный отбор, то это совершенно бы смешало показания молекулярных часов. К примеру, если бы у одной группы населения естественный отбор удалил последствия некоторых мутаций, то эта группа казалась бы моложе, чем на самом деле. В этом случае невозможно было бы сопоставить величину мутаций с определенным отрезком времени и сравнить возраст различных групп. Существуют доказательства того, что естественный отбор действительно играет роль в изменении митохондриальной ДНК. К примеру, Темплтон указывает на различия в степени расхождения кодирующих и некодирующих участков митохондриальной ДНК у разных групп. Если бы скорость мутаций была нейтральна, этого бы не наблюдалось. Степень мутаций должна быть одинакова как у кодирующих, так и у некодирующих участков митохондриальной ДНК (Templeton. 1993. P. 59). К этому заключению приходят и другие исследователи (Frayer et al. 1993. Pp. 39–40): «Все молекулярные часы требуют эволюционной нейтральности для обеспечения постоянства скорости изменений. Однако продолжительные исследования митохондриальной ДНК позволяют со все большей уверенностью говорить о роли естественного отбора в изменениях митохондриальной ДНК. К примеру, такие исследователи, как Фос и его соавторы (Fos et al. 1990), МакРей и Андерсон (MacRae, Anderson. 1988), Палька (Palca. 1990), Уоллес (Wallace D. C. 1992) и другие продемонстрировали, что митохондриальная ДНК не нейтральна, а подлежит строгому естественному отбору… Митохондриальная ДНК – это неподходящая пружина для молекулярных часов».

Фрайер и его соавторы также утверждают: «Поскольку случайные потери, происходящие в митохондриальной ДНК, приводят к утрате свидетельств о предыдущих мутациях, все генеалогические древа развития первопредка подвержены изменениям под влиянием неизвестных и непредсказуемых факторов. Каждое такое невидимое изменение представляет собой генетическую замену, которая не принимается во внимание при расчете количества мутаций, необходимого для определения возраста Евы. Поскольку на такие изменения влияют колебания численности той или иной группы населения, и точное число незасчитанных мутаций зависит от конкретных деталей процесса их сглаживания, невозможно найти способ калибровки (и постоянной перекалибровки) молекулярных часов, пока не станет известна вся история той или иной группы населения. Принимая во внимание тот факт, что каждая группа населения имеет свою демографическую историю (с учетом среднего уровня потерь), один только этот фактор обесценивает использование вариаций митохондриальной ДНК для определения временных отрезков (Thorne, Wolpoff, 1992).

Подтверждением вышесказанному служит находка ископаемых останков анатомически современного человека близ озера Мунго в Австралии, возраст которых 62 000 лет и чья митохондриальная ДНК значительно отличается от современных образцов (Bower, 2001). Это показывает, что пути развития митохондриальной ДНК невозможно проследить, и ставит под сомнение точность молекулярных часов на основе митохондриальной ДНК.

Существуют также и другие факторы, влияющие на расхождения в митохондриальной ДНК у современных групп населения в разных регионах мира, которые ставят под вопрос точность калибровки молекулярных часов на основе скорости мутаций митохондриальной ДНК. Один из этих факторов – демографическая экспансия групп населения. Если население увеличивается в одном регионе быстрее, чем в другом, это может привести к большему разнообразию митохондриальной ДНК у данной группы. Это разнообразие не дает оснований считать, что одна группа старше другой или является источником других групп в других регионах. Также расхождения, наблюдаемые в различных группах, могут указывать не на перемещения группы из одного региона в другой, а на перемещение генов внутри одной группы, населяющей обширное пространство. И это не исчерпывает возможных причин разнообразия митохондриальной ДНК у разных групп. Подводя итог обсуждению этой проблемы, Темплтон пишет: «Региональное разнообразие митохондриальной ДНК не обязательно отражает возраст данной группы, а, скорее, говорит о том, сколько времени прошло с последней положительной мутации в этой группе, о демографической истории группы, масштабе экспансии и обмена генами с другими группами и т. п.» (Templeton. 1993. P. 59). В общих чертах, эти факторы добавляют уверенности в том, что возраст человека как вида значительно занижен (Templeton. 1993. P. 60).

Сложнейшие статистические методы, такие как «гнездовой анализ происхождения», позволяют ученым до некоторой степени дифференцировать различные модели возникновения разнообразия митохондриальной ДНК у групп людей (как, например, модели географической экспансии и модели обмена генами). Используя гнездовой анализ происхождения в отношении вариаций митохондриальной ДНК человека, Теплтон не обнаружил никаких свидетельств масштабных миграций из Африки, которая должна была привести к замене всех других групп гоминидов. Темплтон пишет: «Неспособность классического гнездового анализа происхождения обнаружить признаки экспансии населения Африки невозможно отнести на счет неадекватных размеров образцов или низкого генетического разрешения…. Отсюда следует, что географическая привязка тех или иных вариантов митохондриальной ДНК статистически противоречит гипотезе об экс африканской экспансии» (Templeton. 1993. P. 65). В заключение Темплтон пишет: «1) свидетельства географического местоположения единого митохондриального предка сомнительны и 2) время существования единого митохондриального предка также крайне неопределенно, но, вероятнее всего, намного превосходит 200 000 лет» (Templeton. 1993. P. 70).



Свидетельства исследований ядерной ДНК

По утверждению сторонников гипотезы африканской Евы, большая группа анатомически современных людей мигрировала из места своего происхождения в Африке в Европу и Азию, вытеснив живущих там гоминидов, что должно подтверждаться данными не только митохондриальных ДНК, но и ДНК, содержащихся в ядрах клеток. Однако в своем анализе первых работ, посвященных африканской Еве, Темплтон утверждает: «…не существует ни одного свидетельства, позволяющего связать данные, полученные в результате исследований митохондриальной и ядерной ДНК, с гипотезой экс африканского замещения» (Templeton. 1993. P. 65).

Одна группа исследователей во главе с Брегетом рассмотрела вариации участка «В» у гена, отвечающего за апопротеин человека (Breguet et al. 1990). Согласно Темплтону, проведенный ими детальный анализ позволил сделать вывод, что «кавказские народности (населявшие территорию от Северной Африки до Индии) были ближе к прародителям человечества, чем все другие группы, и что всемирная генетическая дифференциация этого участка гена лучше всего объясняется оттоком генов из этого региона на запад и восток, а не суб сахарским происхождением» (Templeton. 1993. Pp. 68–69). Для таких исследователей, как я, которые в своей работе отталкиваются от данных, содержащихся в санскритских текстах древней Индии, и считают местом повторного появления человечества (после всемирных потопов) регион Гималаев, эти данные представляют значительный интерес.

Совсем недавно исследователи обнаружили еще одну проблему, связанную с гипотезой африканского происхождения человека. Эта проблема связана с группой генов глобина у людей. Ген или часть гена на определенном участке хромосомы может присутствовать в нескольких различных формах, именуемых аллелями. Проанализировав глобиновые аллели у разных групп людей, авторы недавно опубликованного учебника обнаружили, что наблюдаемая величина вариаций указывает на то, что возраст современного человека значительно превышает 200 000 лет. К тому же, исследовав другой участок группы глобиновых генов, авторы утверждают, что «две аллели некодирующего (и поэтому нейтрального) участка, судя по всему, сохранялись неизменными на протяжении 3 000 000 лет». Они заключили: «До настоящего времени неясно, как сопоставить структуру глобиновых генов с данными об африканском происхождении человека в гораздо более поздние времена» (Page, Holmes. 1998. P. 132). Данные, полученные путем анализа глобина, соответствуют сведениям о глубокой древности человеческого рода, почерпнутым из древнеиндийских Пуран.

Принимая во внимание сложности, связанные с генетическими данными, некоторые исследователи заявили, что ископаемые являются самым надежным свидетельством происхождения и возраста человечества: «В отличие от генетических данных, полученных при исследовании материалов, взятых у живущих людей, ископаемые могут быть использованы в качестве мерила правильности тех или иных теорий о прошлом человека, позволяющего обходиться без длинного списка допущений относительно генетических маркеров, скорости мутации и других необходимых условий для составления картины прошлого на основе современных генетических вариаций… генетическая информация, в лучшем случае, позволяет строить теории о том, как мог появиться современный человек, если допущения, использованные при трактовке генетических данных, правильны» (Frayer et al. 1993. P. 19). Я согласен с тем, что генетические свидетельства не всегда надежнее археологических. Это значит, что археологические свидетельства об огромной древности человека, документированные в книге «Запрещенная археология», могут стать барьером для безудержных спекуляций исследователей генетиков, необходимость в котором давно наметилась.

Итак, к чему же мы пришли? Анализ генетических свидетельств и, в особенности, данных исследований митохондриальной ДНК, так и не дал ясной картины происхождения современного человека. К примеру, некоторые ученые утверждают, что небольшая группа вида Homo произошла от Australopithecus примерно 2 000 000 лет назад в Африке. Эта группа развилась в Homo Erectus и затем распространилась по всей Евразии, положив начало неандертальцам и близким к ним группам. Около 100 000 лет назад небольшая группа Homo sapiens с современным анатомическим строением появилась в Африке и затем распространилась по всему миру, сменив более древние группы Homo Erectus и неандертальцев без значительного смешения с ними (Vigilant et al. 1991; Stoneking et al. 1986). Эти анатомически современные люди затем развились в разных регионах мира в различные расы, которые мы встречаем в настоящее время. Другие ученые, исходя из тех же генетических, археологических и палеонтологических свидетельств, приходят к выводу, что различные расы анатомически современных людей возникли одновременно в разных частях мира непосредственно из групп Homo erectus и неандертальцев, которые населяли те части света (Templeton. 1993). Согласно этой теории, люди с современным анатомическим строением возникли большими группами в обширных географических областях, а не в маленькой замкнутой группе, ограниченной небольшим географическим регионом. Третьи ученые полагают, что изначально существовала небольшая группа анатомически современных людей, ограниченная небольшим ареалом распространения, с той разницей, что разделение на расы произошло среди них еще до того, как они распространились за границы региона своего обитания. После этого расовые группы мигрировали в другие регионы и там увеличили свою численность (Rogers, Jorde. 1995. P. 1). Вкратце можно лишь сказать, что с генетическими свидетельствами и их трактовкой связана большая неопределенность.



Y хромосомы

Обсуждая митохондриальную ДНК, я вкратце упомянул ядерную ДНК, которая находится в ядрах клеток человека, и в связи с этим привел несколько примеров. Давайте теперь детально рассмотрим другой пример подобного рода свидетельства – Y хромосому.

У человека насчитываются 23 пары хромосом в ядре каждой клетки. Одна из этих пар определяет пол индивидуума. Пара половых хромосом у женщин состоит из двух X хромосом (ХХ). Пара половых хромосом у мужчин состоит из одной Х хромосомы и одной Y хромосомы (ХY).

Итак, что определяет пол каждого из нас? Репродуктивные клетки (сперматозоид и яйцеклетка) отличны от других клеток тела. Нерепродуктивные клетки имеют полный комплект из 23 пар хромосом, то есть из 46 хромосом. Что же касается сперматозоида и яйцеклетки, то в них содержится только половина от этого числа – по 23 хромосомы вместо 23 пар хромосом. Когда сперматозоид и яйцеклетка сливаются, восстанавливается полный комплект хромосом (46 или 23 пары). В яйцеклетке, возникшей в женском организме, всегда присутствует Х хромосома, поскольку женская пара половых хромосом состоит из двух этих хромосом. Поэтому при разделении пары ХХ в каждой яйцеклетке всегда оказывается по одной Х хромосоме. Но поскольку у мужчин половые хромосомы образуют пару XY, при делении в сперматозоиде может оказаться либо X хромосома, либо Y хромосома. При слиянии сперматозоида, несущего Х хромосому, с яйцеклеткой в оплодотворенной яйцеклетке образуется пара половых хромосом XX, в результате чего из нее развивается девочка. Если же с яйцеклеткой сольется сперматозоид с Y хромосомой, то в яйцеклетке возникнет пара половых хромосом XY, – и родится мальчик. Y хромосома передается только от отца к сыну. Женщины не несут в себе этой хромосомы.

Некоторые участки хромосомы подвержены процессу так называемой рекомбинации, когда части одной хромосомы заменяются частями другой. Однако большой участок Y хромосомы не поддается таким изменениям. Теоретически, единственные изменения, которые могут произойти с этим участком Y хромосомы, будут носить характер случайных мутаций. Y хромосома представляет собой мужской вариант митохондриальной ДНК, передаваемой только от матери и также не поддающейся изменениям, за исключением случаев произвольных мутаций. Поэтому Y хромосома может быть использована при исследованиях происхождения человека таким же образом, как и митохондриальная ДНК, – в качестве молекулярных часов и определителя географического местонахождения. Некоторые исследователи предположили, что помимо африканской Евы существовал также и африканский Адам или, как его еще называют, «Y хромосомный Адам». Однако мы увидим далее, что заключения, сделанные на основании исследований Y хромосомы, грешат многими недостатками, и поэтому некоторые исследователи рассматривают «Y хромосомного Адама» как «статистическую условность – плод сомнительных эволюционных допущений» (Bower. 2000a).

В номере журнала «Science» от 26 мая 1995 года Роберт Л. Дорит из Йельского университета и его соавторы опубликовали результаты исследования вариаций гена ZFY в Y хромосоме 38 человек из разных частей мира. Они сравнивают эти вариации с вариациями, обнаруженными у шимпанзе. Переводя величину вариаций на шкалу лет, Дорит исходил из предположения, что человеческая ветвь отделилась от ветви шимпанзе около 5 миллионов лет назад. Это позволило ему прийти к выводу, что все исследованные им люди происходили от одного предка, который жил примерно 270 000 лет назад. Эта цифра отличается от общепринятой 200 000 лет, полученной на основании исследований митохондриальной ДНК (Adler. 1995). Однако в статье, опубликованной в «Science News», указывается на то, что «Дорит и его соавторы признают, что объяснить полученные ими результаты можно и другими факторами, помимо существования единого предка», и что в своих заключениях они полагались на большое число «вспомогательных допущений» (Adler. 1995).

В номере журнала «Nature» от 23 ноября 1995 года Майкл Хаммер из Аризонского университета в Тусоне публикует результаты исследования вариаций Y хромосомы у восьми африканцев, двух австралийцев, трех японцев и двух европейцев. Он приходит к выводу, что у них всех был общий предок, который жил 188 000 лет назад. Географическое местоположение общего предка не было точно определено. Хаммер также предположил, что повторный анализ данных, полученных Доритом, показал бы, что ближайший предок исследованных индивидуумов жил в промежутке 160 000–180 000 лет назад (Ritter. 1995).

В 1998 году Хаммер и несколько его соавторов опубликовали результаты более тщательного исследования вариаций Y хромосомы человека. Согласно полученным данным, возраст исследованных вариаций составил 150 000 лет, и корнем статистического древа была названа африканская группа. Используя гнездовой метод корневого анализа, ученые, на основании исследования Y хромосомы, выявили два пути миграции ее носителей. Один из путей направлялся из Африки в Старый Свет, а другой – из Азии обратно в Африку. «Таким образом, высокий уровень генетических вариаций Y хромосомы, обнаруженный ранее в Африке, может отчасти быть результатом такой двусторонней миграции», – утверждают исследователи (Hammer et al. 1998. P. 427). Хаммер и группа других ученых пришли к похожим выводам, исследовав в 1997 году участок YAP Y хромосомы (Hammer et al. 1997). Миграция населения Азии в Африку представляет немалый интерес в свете сведений, содержащихся в исторических трактатах Древней Индии, согласно которым, аватарой Парашурамой деградировавшие представители царских династий были изгнаны из Индии в другие части мира, где, согласно некоторым источникам, они смешались с местным населением.

В номере журнала «Nature Genetics» за ноябрь 2000 года Питер Андерхилл и его соавторы утверждают, что, по данным исследования Y хромосомы, ближайший общий предок современного человека по мужской линии обитал в Восточной Африке, откуда переселился в Азию 39 000–89 000 лет тому назад. Для сравнения, данные исследования митохондриальной ДНК показывают, что наша общая прародительница по женской линии покинула Африку 143 000 лет назад. Андерхилл делает простой вывод, что скорость изменений Y хромосомы и митохондриальной ДНК различны (Bower. 2000a). Но как и в случае с митохондриальной ДНК, никому доподлинно не известна скорость изменений Y хромосомы. В своей статье в «Science News» Бауэр утверждает: «Новый анализ показал, что участки Y хромосомы отличаются значительно меньшим числом вариаций, чем участки ДНК, изученные в других хромосомах. Исследователи полагают, что низкий уровень генетических вариаций может являться следствием естественного отбора, то есть, в нашем случае, результатом распространения выгодных мутаций Y хромосомы после миграции людей из Африки. Ученые признают, что этот сценарий сводит на нет показания молекулярных часов, делая невозможным получение достоверной информации о скорости мутаций путем исследования Y хромосомы» (Bower. 2000a). Генетик Розалина М. Хардинг из оксфордского медицинского центра Джона Рэдклиффа пишет: «Мы не знаем, как естественный отбор и структура населения отражаются на Y хромосоме. Я бы не стала делать никаких эволюционных заключений на основе данных [полученных Андерхиллом]» (Bower. 2000a). Андерхилл, к примеру, полагает, что Африка была родиной наиболее позднего общего предка современных людей, поскольку он обнаружил у африканцев наибольшее число вариаций Y хромосомы. Однако Хардинг отмечает, что эти вариации могли возникнуть не потому, что в Африке обитали первые люди, а потому, что ее население было многочисленнее, чем население других частей мира. Кроме того, генные вариации у людей, живших за пределами Африки, могли сократиться вследствие распространения среди них особенно благоприятных генов. Бауэр пишет: «Если критики правы, Y хромосомный Адам мог быть исторической, а не доисторической личностью» (Bower. 2000а). Иными словами, люди могли существовать многие миллионы лет назад, а генетические вариации, которые мы наблюдаем сейчас, могут отражать лишь недавние генетические события в этой долгой истории. Более ранние результаты могли просто исчезнуть со временем.

Самые последние исследования Y хромосомы показывают, что делать однозначные выводы на их основе пока еще рано. Группа китайских и американских исследователей (Ke et al. 2001) взяла образцы у 12 127 мужчин из 163 народностей Восточной Азии и исследовала три маркера Y хромосомы: YAP, M89 и M130. Согласно полученным данным, три мутации этих маркеров (YAP+, M89T и M130T) возникли в Африке, и их происхождение можно проследить до другой африканской мутации M168T, которая появилась на африканском континенте 35 000–89 000 лет назад. Исследователи обнаружили, что испытуемые из Восточной Азии имели одну из трех африканских мутаций, происходящих от мутации М168Т. Они сочли это указанием на то, что мигрировавшие из Африки народы полностью вытеснили гоминидов – коренное население Восточной Азии. Иначе были бы обнаружены Y хромосомы, не имеющие этих трех африканских маркеров.

По словам Ке и его соавторов, «было наглядно продемонстрировано, что все Y хромосомные гаплотипы, обнаруженные за пределами Африки, моложе 39 000–89 000 лет и происходят из Африки» (Ке et al. 2001. P. 1152). Однако они отмечают, что «эти данные очень приблизительны и зависят от нескольких допущений». Эти допущения не были прямо упомянуты в их отчете. Авторы не отрицают возможности «селекционной чистки, которая удалила устаревшую информацию из Y хромосомы у современного населения Восточной Азии». Также они признают, что информация Y хромосомы «подвержена стохастическим процессам, т.е. генетическому сдвигу, который также мог привести к уничтожению архаичных родословных».

Ке и его соавторы признают существование и другой проблемы, которая, по их словам, «создает затруднения» (Ке et al. 2001. P. 1152). Они заметили, что возраст наиближайшего общего предка, определенный путем анализа вариаций митохондриальной ДНК и ДНК Y хромосомы, сильно отличается от тех цифр, что были получены путем анализа вариаций ДНК X хромосомы и аутосом (неполовых хромосом). Они пишут: «Возраст общего предка, полученный при анализе генов аутосом и Х хромосом, составляет 535 000–1 860 000 лет, что намного больше, чем получается при анализе митохондриальной ДНК и Y хромосомы» (Ке et al. 2001. P. 1152). Авторы пускаются в предположения, что во времена массовых миграций из Африки мужчин было в 3–4 раза больше, чем женщин, что привело к появлению больших вариаций в ДНК аутосом и Х хромосом.

По мнению Милфорда Уолпоффа, убежденного сторонника теории об одновременном происхождении человека в разных регионах мира, нет ничего удивительного в том, что Y хромосома имеет признаки африканского происхождения, поскольку по численности населения Африка долгое время превосходила все другие регионы. Поэтому африканское население положило начало наибольшему количеству Y хромосомных родословных, которые со временем вытеснили другие родословные, изначально существовавшие параллельно африканским (Gibbons. 2001. P. 1052). Энн Гиббонс говорит о трудностях в проверке надежности данных, полученных в результате анализа Y хромосомы и митохондриального ДНК. В идеале, требовалось бы сравнить эти данные с данными исследований ДНК многих других хромосом в ядре клетки, чтобы выяснить, соответствуют ли они заключениям о возрасте и географическом источнике человека c современным анатомическим строением. Однако Гиббонс отмечает: «Датирование ядерных родословных сопряжено со многими сложностями, поскольку большинство ядерных ДНК, в отличие от ДНК митохондрий и Y хромосом, перемешиваются, когда гомологические хромосомы обмениваются своим генетическим материалом при слиянии яйцеклетки и сперматозоида. Это делает определение генетической родословной настолько сложным, что многие генетики опасаются, что им никогда не удастся подтвердить или опровергнуть полноту замещения. Розалина Хардинг говорит: „Генетические тесты не дают ясной картины. На этот вопрос могут ответить только ископаемые“» (Gibbons. 2001. P. 1052).

Люди и неандертальцы

Как мы уже убедились, одна группа ученых утверждает, что современные люди возникли от обезьяноподобного Homo erectus в разных частях мира, пройдя стадию неандертальцев или неандерталоподобных. Согласно этому взгляду, называемому мультирегиональной гипотезой, современное население Азии произошло от азиатского Homo erectus, пройдя через стадию неандерталоподобных. Аналогично этому, предполагается, что современные европейцы происходят от типичных западноевропейских неандертальцев.

Некоторые ученые сравнили ДНК людей и неандертальцев с целью прояснить их эволюционные связи. Однако полученные ими данные неоднозначны и могут интерпретироваться по разному. Ученые во главе с Матиасом Крингсом извлекли образцы ДНК из кости неандертальца, чей скелет был обнаружен в Германии в XIX веке (Krings et al. 1997). ДНК тщательно проанализировали, дабы убедиться, что она происходит из кости, а не является следствием биологического загрязнения. Эта ДНК была митохондриальной, то есть передалась непосредственно от матери к ребенку.

Исследователи сравнили образцы митохондриальной ДНК неандертальца с аналогичной ДНК, взятой у 1600 современных людей из Европы, Африки, Азии, обеих Америк, Австралии и Океании. Фрагмент митохондриальной ДНК, используемый для сравнения, состоял из 327 нуклеотидных основ. Соответствующие участки митохондриальной ДНК современного человека отличались от образца митохондриальной ДНК неандертальца в среднем по 27 нуклеотидным основам из 327. ДНК 1600 современных людей отличались друг от друга в среднем по 8 нуклеотидным основам из 327. Шимпанзе отличается от современных людей по 55 нуклеотидным основам из 327. Из этого ученые заключили, что неандертальцы не состоят в близкой связи с современным человеком. Если бы такая связь существовала, то разница в нуклеотидных основах между людьми и неандертальцами была бы немногим больше средней разницы между людьми – примерно по 10–12 нуклеотидным основам.

Ученые, которые исследовали ДНК неандертальца, пришли к выводу, что его связь с современными европейцами ничуть не ближе связи с любой другой группой современных людей. Они сочли это опровержением теории о том, что современное население Европы происходит от европейских неандертальцев. По их мнению, ДНК неандертальцев свидетельствует в пользу гипотезы их африканского происхождения, согласно которой, современные люди лишь однажды возникли в Африке около 100 000 лет назад, потом распространились по Европе и Азии, заместив гоминидов неандертальского типа и при этом избежав значительного скрещивания с ними. Однако эти же ученые признают: «Полученные нами результаты не исключают возможности того, что неандертальцы поделились некоторыми своими генами с современными людьми» (Krings et al. 1997. P. 27).

Группа исследователей во главе с Крингсом, изучая ДНК неандертальцев, определила предположительное время разделения неандертальцев и гоминидов, от которых произошли современные люди. По их мнению, люди и шимпанзе разделились 4–5 миллионов лет назад, что следует из скорости мутации митохондриальной ДНК. Используя эти данные как отправную точку, они определили, что разделение людей и неандертальцев произошло 55000–690000 лет назад. Но они признают возможность «ошибки на неизвестное количество лет» (Krings et al. 1997. P. 25). Иными словами, указанное ими время довольно приблизительно. К тому же в своих выводах они исходят из допущения о существовании эволюционной связи между людьми, шимпанзе, неандертальцами и т. д. и допущения о том, что связи, отраженные в их ДНК, указывают на их принадлежность к одной биологической родословной. Однако это всего лишь допущения.

Вслед за Крингсом и его коллегами, Уильям Гудвин, генетик из университета Глазго, извлек несколько митохондриальных ДНК из детского скелета неандертальца, обнаруженного в Мезмайской пещере на Северном Кавказе (Bower. 2000b). Считается, что этому скелету 29 000 лет. Гудвин сравнил полученную митхондриальную ДНК кавказского неандертальца с митохондриальной ДНК немецкого неандертальца (Krings et al. 1997). Он обнаружил такое же количество различий между ними, как и между митохондриальными ДНК современных людей. Иными словами, эти два неандертальца были генетически близки друг другу. Кроме того, митохондриальная ДНК кавказского неандертальца отличалась от митохондриальной ДНК современных людей примерно настолько, насколько и у немецкого неандертальца, что тоже указывает на его генетическое отличие от современных людей. По мнению Гудвина, это свидетельствует в пользу африканского происхождения человека. Однако Милфорд Х. Уолпофф, сторонник гипотезы мультирегионального происхождения современного человека, предположил, что митохондриальная ДНК анатомически современных людей, живших 30 000 лет назад, отличалась бы от митохондриальной ДНК современных людей настолько же, насколько отличается ДНК неандертальца. Это можно было бы проверить, протестировав ДНК представителя Homo sapiens, жившего 30 000 лет назад.

В июньском выпуске «American Journal of Human Genetics» за 2000 год Лутц Бачманн и его коллеги из музея Филда в Чикаго опубликовали результаты исследования ядерной ДНК двух неандертальцев и анатомически современного Homo sapiens, жившего 35 000 лет назад. Используя метод гибридизации ДНК, который показывает степень соответствия между двумя образцами, они обнаружили, что ДНК Homo sapiens отличается от ДНК неандертальца. Это подтверждает результаты исследования Крингса и Гудвина. Однако антрополог Эрик Тринкаус с ними не оглашается. Он отмечает, что метод гибридизации ДНК позволяет судить об отличиях лишь приблизительно. По его словам, суждения о том, к каким различиям между видами приводит какое отличие в ДНК, носит сугубо субъективный характер. Сам Тринкаус полагает, что люди и неандертальцы скрещивались друг с другом (подразумевая под этим, что их ДНК были схожими). При этом он утверждает, что генетические следы этого скрещивания со временем настолько стерлись, что их невозможно обнаружить посредством грубого метода гибридизации ДНК (Bower. 2000c).

Последние исследования митохондриальной ДНК внесли новый элемент в спор об отношениях между современными людьми и неандертальцами. Группа исследователей из Парижского университета Пьера и Марии Кюри во главе с Грегори Дж. Адкоком исследовала образцы митохондриальных ДНК, извлеченных из скелетов анатомически современных людей, живших от 2 000 до 62 000 лет назад. Митохондриальная ДНК самого старого скелета, найденного близ озера Мунго в Австралии, имела большее отличие от ДНК современных людей, чем митохондриальные ДНК упомянутых выше неандертальцев (Bower. 2001). Поэтому, даже если ДНК неандертальцев имеют значительные отличия от ДНК современных людей, это не исключает того, что неандертальцы скрещивались с анатомически современными людьми.

Как бы там ни было, природа отношений между современными людьми и неандертальцами остается загадкой. Возможно, люди и неандертальцы являются лишь подвидами одного вида. Возможно также, что они принадлежат к двум разным видам, которые скрещивались между собой. Если оставить в стороне эволюционные домыслы, то исследования ДНК неандертальцев показывают лишь то, что современные люди и неандертальцы существовали параллельно. На основе имеющихся генетических данных невозможно точно определить, как далеко в прошлое уходит их сосуществование. Все это согласуется с мнением, выраженным в книге «Запрещенная археология», согласно которому анатомически современные люди и другие типы гоминидов сосуществовали в течение необозримого периода времени.



Заключение

Биохимические и генетические данные не настолько надежны, как нас пытаются в этом уверить. Что касается поисков ответа на вопрос о происхождении человека и древности его существования, то многие исследователи придают большую важность ископаемым свидетельствам, чем генетическим свидетельствами. Так Фрайер и его соавторы пишут (Frayer et al. 1993. P. 19): «В отличие от генетических данных, полученных при исследовании материалов, взятых у живущих людей, ископаемые могут быть использованы в качестве мерила правильности тех или иных теорий о прошлом человека, позволяющего обходиться без длинного списка допущений относительно генетических маркеров, скорости мутации и других необходимых условий для составления картины прошлого на основе современных генетических вариаций… Генетическая информация, в лучшем случае, позволяет строить теории о том, как мог появиться современный человек, если допущения, использованные при трактовке генетических данных, правильны». Принимая во внимание то, насколько сложно использовать генетические свидетельства при разработке теорий происхождения человека и его древности, генетик из Оксфордского университета Розалинд Хардинг утверждает: «Не существует абсолютно точных генетических тестов. На этот вопрос мы будем искать ответа у ископаемых останков людей» (Gibbons. 2001. P. 1052). Если рассмотреть все имеющиеся ископаемые свидетельства, то видно, что анатомически современные люди существуют настолько давно, что их присутствие на планете невозможно объяснить дарвиновской теорией эволюции. К тому же, если рассматривать происхождение человека в рамках еще более масштабного вопроса о происхождении жизни на Земле, то нетрудно заметить, что современная наука так и не смогла ответить, как возникли первые живые существа с их генетическими системами.

Исследователи вопросов создания искусственного интеллекта и искусственной жизни также не смогли представить убедительной модели живых организмов. Родни Брукс из лаборатории искусственного интеллекта Массачусетского технологического института пишет в своей откровенной статье в журнале «Nature»: «Никто из специалистов по искусственному интеллекту или искусственной жизни так и не смог представить артефакты, которые хотя бы отдаленно напоминали живые существа. Так называемый искусственный интеллект не может сравниться даже с интеллектом простейших животных, а искусственная жизнь намного уступает по сложности даже простейшим формам жизни» (Brooks. 2001. P. 409). Брукс считает, что за этой неудачей стоит нечто большее, чем недостаточная мощность компьютеров, неверные параметры или недостаточно сложное моделирование. Он говорит о возможности того, что «мы упускаем нечто фундаментальное, доселе неучтенное в наших моделях». Что же это такое? «Вполне возможно, – предполагает Брукс, – что какой то аспект живых организмов остается для нас невидимым. В настоящее время ученые рассматривают живые организмы как машины, деталями в которых служат биомолекулы. Вполне вероятно, что вскоре мы обнаружим новые свойства биомолекул или какой нибудь неизвестный ранее компонент… Давайте назовем это гипотезой неизвестного компонента, смысл которой в том, что в живых организмах может присутствовать нечто неподдающееся современному научному пониманию» (Brooks. 2001. P. 410). Что же представляет собой это нечто? Брукс ссылается, например, на философа Дэвида Чалмерса, который предположил, что таким неисследованным компонентом может быть сознание. Брукс продолжает: «Другие философы, как религиозные, так и светские, предлагают в этом качестве еще более трудно распознаваемый феномен – душу или так называемую „жизненную силу“» (Brooks. 2001. P. 409). Вслед за этими учеными, я бы предположил, что у людей и других живых существ есть душа (сознающее «я»), а также жизненная сила. Признание этого – необходимое условие для объяснения существования живых существ и их происхождения.




Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   ...   61




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет