Дженерик – это копия препарата.
Они производятся по истечению срока действия патента и монополии компании-патентодержателя. Но ведь в патенте описан состав препарата. Почему его, тем не менее, трудно произвести и для чего здесь нужно привлекать ИИ?
Можно провести аналогию с кулинарией: вы хотите приготовить какое-то блюдо, спрашиваете у подруги рецепт и по нему готовите. Но получилось невкусно, хотя вроде бы состав у вас есть, все правильно. Почему так произошло? Да потому что, если хозяйку расспрашивать более подробно, выяснится, что она не рассказала о многих нюансах.
На самом деле окажется, что, добавляя, допустим, яйца, хозяйка отделила желток от белка, а не клала их вместе. Все это, ставилось на плиту, например, на 20 минут сначала, а не на 35, на определенной температуре, с добавлением масла. Эти нюансы нужно знать, и они в патенте не указаны.
Технологические нюансы являются одной из самых больших тайн при любом производстве препаратов, будь то дженерик или оригинальный.
То есть у нас есть состав лекарства, мы знаем, какая молекула используется, но получить таблетку совершенно идентичную по своим свойствам, как и где она должна распадаться, за какое время высвобождаться действующее вещество, задача не самая простая.
Технологи изучают нормативную документацию, патенты, открытые источники и пытаются воспроизвести технологию создания препарата. Иногда это сделать легче, а иногда технологии вообще толком не описаны, приходится додумывать. Потом нужно масштабировать, — это тоже проблема, так как тут есть свои нюансы производства. Одно дело в лаборатории сделать лекарство, а другое дело – на заводе, в больших количествах.
Планируется создать и обучить нейросетевую модель, которая будет помогать разрабатывают эту технологию, а потом ее масштабировать. Это позволит быстрее и качественнее делать готовую лекарственную форму, будь то дженерик, который нужен прямо сейчас для импортозамещения и обеспечения наших пациентов лекарствами, или оригинальный препарат.
Идет работа над инструментами на основе методов ИИ, который поможет технологу ускорить процесс.
Возьмем дженерик. Дается поручение технологу воссоздать производство препарата: он сидит и один-два месяца собирает нужную информацию, потом предлагает варианты технологий создания препарата. Из них выбирается та, которая больше всего приближена к производственной площадке. Параллельно подбираются сырье и материалы, — они тоже влияют на технологию.
Затем технолог вручную создает несколько разных таблеток с разными технологическими подходами и передает их на изучение в аналитическую лабораторию. Там аналитики смотрят, какая из таблеток больше всего похожа на оригинал. Если попадания в точку нет, процесс повторяется. В среднем это занимает 12-15 месяцев.
Если говорить про искусственный интеллект, то он значительно ускоряет процесс сбора информации, он отсекает все лишнее, сводя количество ошибок к минимуму, и предлагает наиболее рациональные технологические варианты: как технологию делать, из какого сырья, в каких форматах и с чем работать.
Достарыңызбен бөлісу: |