Рита Л. Аткинсон, Ричард С. Аткинсон, Эдвард Е. Смит, Дэрил Дж. Бем, Сьюзен Нолен-Хоэксема Введение в психологию



бет14/85
Дата29.06.2016
өлшемі9.72 Mb.
#165554
түріУчебник
1   ...   10   11   12   13   14   15   16   17   ...   85

Зрительные ощущения
Человек наделен следующими видами чувствительности: а) зрением, б) слухом, в) обонянием, г) вкусом, д) осязанием (или кожным чувством) и е) чувством положения тела (позволяющим ощущать, например, положение головы относительно туловища). Поскольку чувство положения тела не всегда вызывает сознательные ощущения интенсивности и качества, в этой главе оно рассматриваться не будет.

Только зрение, слух и обоняние позволяют получать информацию (часто необходимую для выживания), удаленную от нас на расстояние, и из этой группы зрение у человека имеет наиболее тонкое строение. Переходя к зрению, мы сначала рассмотрим характер стимульной энергии, к которой чувствительно зрение; затем мы опишем зрительную систему, уделив особое внимание тому, как рецепторы осуществляют процесс превращения энергии; после этого обратимся к обработке информации об интенсивности и качестве в зрительной модальности.


Зрение и свет
Каждый орган чувств реагирует на определенный вид физической энергии, и для зрения физическим стимулом является свет. Свет — это электромагнитное излучение, вид энергии, которая излучается Солнцем и остальной частью вселенной и в которой постоянно купается наша планета. К электромагнитной энергии относится не только свет, но и космическое излучение, рентгеновские лучи, ультрафиолетовое и инфракрасное излучение, а также волны радио- и телевизионного диапазона. Электромагнитная энергия распространяется в виде волн, длина которых (расстояние между соседними пиками волны) варьируется в огромном диапазоне — от самых коротких космических лучей (с длиной волны 4 триллионных доли сантиметра) до самых длинных радиоволн (длиной несколько километров). Глаза человека чувствительны только к крошечному участку этого диапазона — длинам волн от 400 до 700 нанометров. Нанометр — это одна миллиардная метра, и видимый диапазон занимает только очень малую часть всего электромагнитного спектра. Излучение в видимом диапазоне называется светом; ко всем другим длинам волн мы слепы.
Зрительная система
К зрительной системе человека относятся: глаза, некоторые части мозга и соединяющие их проводящие пути (упрощенная иллюстрация зрительной системы приводилась ранее на рис. 2.14). В первую очередь нас будет интересовать, что происходит внутри глаза. В глазу имеются две системы: одна — для формирования изображения, а другая — для преобразования этого изображения в электрические импульсы. Основные компоненты этих систем представлены на рис. 4.6.


Рис. 4.6. Правый глаз: вид сверху. Поступающий в глаз свет на своем пути к сетчатке проходит через роговицу, водянистое тело, хрусталик и стекловидное тело. Количество света, поступающего в глаз, регулируется величиной зрачка — небольшого отверстия в радужной оболочке, расположенной в передней части глаза. Радужная оболочка состоит из круговых мышц, которые могут сжиматься и расслабляться, регулируя тем самым размер зрачка. [Радужная оболочка состоит из круговой мышцы и радиальных мышечных волокон: первая сужает зрачок, вторые расширяют его. Примеч. ред.] Радужная оболочка придает глазам их характерный цвет (голубой, карий и т. д.).
Система формирования изображения работает подобно фотоаппарату. Ее задача — сфокусировать отраженный от объекта свет, так чтобы получилось его изображение на сетчатке, тонком слое на задней поверхности внутри глазного яблока (рис. 4.7).


Рис. 4.7. Формирование изображения в глазу. Лучи света от каждой точки объекта идут во всех направлениях, и только некоторые из них попадают в глаз. Они проходят через хрусталик в разных его местах. Чтобы формируемое изображение было четким, эти расходящиеся лучи нужно опять собрать (сконвергировать) вместе в одном месте сетчатки. Каждой точке объекта будет соответствовать одна точка ретинального изображения. Заметьте, что ретинальное изображение перевернуто и обычно намного меньше реального объекта. Заметьте также, что наибольшее преломление световых лучей происходит в роговице.
Система формирования изображения включает роговицу, зрачок и хрусталик. Без нее мы видели бы свет, но не изображение. Роговица — это прозрачная передняя поверхность глаза, через нее входит свет, лучи которого роговица преломляет вовнутрь, начиная тем самым формировать изображение. Хрусталик завершает процесс, фокусируя свет на сетчатке (см. рис. 4.7). Чтобы сфокусировать свет от объектов, находящихся на различном расстоянии, хрусталик меняет свою форму. Для близких объектов он становится более выпуклым, для далеких — более плоским. Иногда зрачок глаза не может стать достаточно плоским, чтобы сфокусировать далекие объекты, хотя близкие он фокусирует хорошо; про людей с такими глазами говорят, что у них миопия (близорукость). Иногда зрачок глаза не может стать достаточно выпуклым, чтобы сфокусировать близкие объекты, хотя он хорошо фокусирует дальние; про людей с такими глазами говорят, что у них гиперметропия (дальнозоркость). Такие оптические дефекты достаточно распространены и могут быть легко скорректированы при помощи очков или контактных линз. Зрачок, третий компонент системы формирования изображения, — это круглое отверстие, диаметр которого меняется в ответ на изменение интенсивности света. В темноте его величина наибольшая, на ярком свету — наименьшая; тем самым он поддерживает количество света, необходимое для формирования качественного изображения при различной интенсивности света.

Все вышеперечисленные компоненты служат для фокусировки изображения на задней стенке глазного яблока, т. е. на сетчатке. Там начинается работа системы преобразований. Сердцем этой системы являются рецепторы. Рецептивные клетки подразделяются на два вида: палочки и колбочки, названные так из-за своей различной формы (рис. 4.8). Эти два вида рецепторов имеют разную специализацию, отвечающую разным целям. Палочки устроены так, чтобы видеть в условиях ночного освещения; они работают при низких интенсивностях и не дают ощущения цвета. Колбочки наиболее удобны для дневного зрения; они реагируют на высокую интенсивность и дают цветовые ощущения. Любопытно, что палочки и колбочки расположены в том слое сетчатки, который дальше всего отстоит от роговицы (обратите внимание на стрелку, показывающую направление света на рис. 4.8). Сетчатка содержит также сеть нейронов плюс опорные клетки и кровеносные сосуды.




Рис. 4.8. Схематическое строение сетчатки. Этот схематический рисунок сетчатки основан на наблюдении ее под электронным микроскопом. Биполярные клетки получают сигналы от одного или более рецепторов и передают их ганглиозным клеткам, аксоны которых образуют зрительный нерв. Заметьте, что есть несколько типов биполярных и ганглиозных клеток. В сетчатке есть также боковые отводы, или латеральные соединения. Нейроны, называемые горизонтальными клетками, образуют латеральные соединения на уровне, близком к рецепторам; нейроны, называемые амакриновыми клетками, образуют латеральные соединения на уровне, близком к ганглиозным клеткам (по: Dowling & Boycott, 1966).
Когда мы хотим рассмотреть детали объекта, мы, как правило, двигаем глазами так, чтобы он проецировался на центр сетчатки, в зону, называемую фовеа. Причина, по которой мы это делаем, связана с особенностями распределения рецепторов по сетчатке. В зоне фовеа рецепторов много, и они плотно упакованы; за пределами фовеа, на периферии, рецепторов меньше. Неудивительно, что фовеа — участок глаза, наиболее подходящий для рассматривания деталей.

Чтобы получить представление о том, как изменяется ваше восприятие деталей, когда изображение удаляется от вашей зоны фовеа, посмотрите на рис. 4.9 и настройте свое зрение на расположенную в центре букву А. Размеры окружающих ее букв подобраны таким образом, чтобы они зрительно воспринимались одинаково хорошо с ней. Заметьте, что для того чтобы зрительное восприятие было одинаково легким, буквы, расположенные на внешней окружности, должны иметь размер, приблизительно в 10 раз превышающий размеры центральной буквы.




Рис. 4.9. Снижение остроты зрения на периферии. Масштаб размеров букв подобран таким образом, что если смотреть прямо на центральную букву А, все остальные буквы приблизительно одинаково легко читаются.
Учитывая, что свет, отраженный от объекта, должен войти в контакт с клеткой рецептора, каким же образом рецептивная клетка преобразует отраженный от объекта свет в электрические импульсы? В палочках и колбочках содержится химическое вещество, называемое фотопигментом, которое поглощает свет. Поглощение света фотопигментом дает начало процессу, в результате которого получается нервный импульс. После того как этот этап преобразования завершен, электрическим импульсам предстоит проделать путь к мозгу через цепочку промежуточных нейронов. Сначала реакции палочек и колбочек передаются биполярным клеткам, а от них — к другим нейронам, которые называются ганглиозными клетками (см. рис. 4.8). Длинные аксоны ганглиозных клеток тянутся от глаза к мозгу, образуя зрительный нерв. В том месте, где зрительный нерв выходит из глаза, рецепторов нет; в этой зоне мы слепы к стимулам (рис. 4.10). Этой частичной слепоты — дыры в зрительном поле — мы не замечаем, потому что мозг автоматически компенсирует ее (Ramachandran & Gregory, 1991).


Рис. 4.10. Как обнаружить слепое пятно. а) Закрыв правый глаз, посмотрите на крест в правом верхнем углу. Держите книгу в 30 см от глаз и двигайте ее вперед-назад. Когда круг слева исчезнет, это будет означать, что его проекция попала на слепое пятно. б) Не открывая правого глаза и не меняя положения книги, посмотрите на крест в правом нижнем углу. Когда белый промежуток совпадет со слепым пятном, линия будет казаться сплошной. Это явление помогает понять, почему мы обычно не замечаем существования слепого пятна. На самом деле зрительная система заполняет те части зрительного поля, к которым мы нечувствительны; поэтому они выглядят, как окружающий фон.
Восприятие света
Чувствительность и острота зрения. Чувствительность к интенсивности света определяется палочками и колбочками. Между ними есть два существенных различия, объясняющие ряд явлений, связанных с восприятием интенсивности, или яркости. Первое различие состоит в том, что в среднем одна ганглиозная клетка соединена с большим количеством палочек, чем колбочек; поэтому «палочковые» ганглиозные клетки имеют больше входов, чем «колбочковые». Второе различие состоит в том, что палочки и колбочки размещены на сетчатке по-разному. В зоне фовеа много колбочек, но нет палочек, а на периферии много палочек, но относительно мало колбочек. Из-за того, что ганглиозная клетка соединена с большим количеством палочек, чем колбочек, палочковое зрение оказывается более чувствительным, чем колбочковое. На рис. 4.11 показано, как именно это происходит. В левой части рисунка изображены три соседних колбочки, каждая из которых подсоединена (не непосредственно) к одной ганглиозной клетке; в правой части рисунка показаны три соседних палочки, которые все подсоединены (не непосредственно) к одной ганглиозной клетке.


Рис. 4.11. Соединение палочек и колбочек с ганглиозными клетками. На схеме показано, чем отличаются соединения палочек и колбочек с ганглиозными клетками. Для простоты мы исключили биполярные клетки. Линии, исходящие от ганглиозных клеток, — это аксоны, составляющие зрительный нерв.
Чтобы понять, что означают эти различные схемы «подключения» колбочек и палочек, представьте, что палочкам и колбочкам предъявляются три очень слабых близко расположенных световых пятна. Когда их предъявляют колбочкам, каждое из пятен света в отдельности может быть слишком слабым, чтобы вызвать нервный импульс в соответствующем рецепторе, и следовательно, ни один нервный импульс не дойдет до ганглиозной клетки. Но когда те же три пятна предъявляются палочкам, активация от этих трех рецепторов может быть объединена, и тогда эта сумма окажется достаточной, чтобы вызвать нервную реакцию в ганглиозной клетке. Поэтому подсоединение нескольких палочек к одной ганглиозной клетке обеспечивает конвергенцию нервной активности, и именно благодаря такой конвергенции палочковое зрение чувствительнее колбочкового.

Но за это преимущество в чувствительности приходится платить, а именно — меньшей остротой зрения по сравнению с колбочковым зрением (острота зрения — это способность различать детали). Снова обратимся к двум схемам на рис. 4.10, но теперь представим, что три рядом расположенных пятна света достаточно яркие. Если их предъявить колбочкам, каждое пятно вызовет нервную реакцию в соответствующем рецепторе, что, в свою очередь, приведет к появлению нервных импульсов в трех различных ганглиозных клетках; в мозг будут посланы три различных сообщения, и у системы будет возможность узнать о существовании трех различных объектов. Если же эти три соседних световых пятна предъявить палочкам, нервная активность от всех трех рецепторов будет объединена и передана единственной ганглиозной клетке; поэтому в мозг поступит только одно сообщение, и у системы не будет возможности узнать о существовании более чем одного объекта. Короче, способ соединения рецепторов с ганглиозными клетками объясняет различия в чувствительности и остроте палочкового и колбочкового зрения.



Еще одно следствие этих различий состоит в том, что слабый свет человек лучше обнаруживает на палочковой периферии, чем в зоне фовеа. Так что хотя острота зрения сильнее в фовеа, чем на периферии, чувствительность на периферии выше. То, что чувствительность на периферии выше, можно установить, измерив абсолютный порог испытуемого при предъявлении ему вспышек света в темной комнате. Порог будет ниже (что означает большую чувствительность), если испытуемый смотрит немного в сторону, так чтобы видеть вспышки периферическим зрением, чем если он смотрит на вспышки прямо и свет попадает в фовеа. Мы уже видели одно из последствий того, что на периферии расположено меньшее количество колбочек (см. рис. 4.9). Последствия распределения палочек могут быть обнаружены, когда мы смотрим на звезды ночью. Возможно, вы замечали, что для того чтобы увидеть слабую звезду как можно более отчетливо, необходимо слегка изменить направление взгляда на один край звезды. Благодаря этому светом звезды активизируется максимально возможное число палочек.

Световая адаптация. До сих пор мы подчеркивали, что человек чувствителен к изменениям стимуляции. Другой стороной медали является то, что если в стимуле не происходит изменений, человек к нему адаптируется. Хороший пример световой адаптации можно увидеть, войдя в темный кинотеатр с освещенной солнцем улицы. Сначала вы почти ничего не различаете в слабом свете, отраженном от экрана. Однако через несколько минут вы уже видите достаточно хорошо, чтобы найти себе место. Еще через какое-то время вы можете различать лица при слабом свете. Когда вы опять выходите на ярко освещенную улицу, почти все выглядит сначала болезненно ярким, и в этом ярком свете невозможно что-либо различить. Все, однако, возвращается в норму меньше чем за минуту, поскольку адаптация к более яркому свету происходит быстрее. На рис. 4.12 показано, как снижается абсолютный порог со временем пребывания в темноте. Кривая состоит из двух ветвей. Верхняя ветвь связана с работой колбочек, а нижняя — палочек. Палочковая система адаптируется намного дольше, но она чувствительна к гораздо более слабому свету.


Рис. 4.12. Ход световой адаптации. Испытуемые смотрят на яркий свет, пока сетчатка не станет адаптированной к свету. Когда их после этого помещают в темноту, их световая чувствительность начинает постепенно расти, а абсолютный порог — снижаться. Этот процесс называется световой адаптацией. На графике показана величина порога через разное время после выключения адаптирующего света. Точки на верхней части кривой соответствуют пороговым вспышкам, цвет которых можно было различить; точки на нижней кривой соответствуют вспышкам, которые казались белыми независимо от их спектра. Заметьте резкий перелом кривой примерно на 10-й минуте; это называется палочко-колбочковым переходом. Во многих экспериментах показано, что первая часть этой кривой соответствует колбочковому зрению, а вторая — палочковому. Данные аппроксимированы по различным источникам.
Восприятие паттернов
Остротой зрения (визуальной остротой) называется способность глаза различать детали. Существует несколько способов измерения остроты зрения, но наиболее широко распространенным является использование знакомой всем оптометрической таблицы, какие висят в офтальмологических кабинетах. Данная таблица была разработана Германом Снелленом в 1862 году Острота зрения по Снеллену определяется по отношению к зрению человека, не нуждающегося в очках. Так, острота 20/20 означает, что данный индивидуум способен различать на расстоянии 20 футов (ок. 3 метров) буквы такого же размера, как и человек, обладающий нормальным зрением. Острота 20/100 означает, что данный индивидуум может различать на расстоянии 20 футов буквы такого размера, какие человек, обладающий нормальным зрением, может различать на расстоянии 100 футов (ок. 15 метров). В этом случае острота зрения тестируемого индивидуума ниже нормы.

По ряду причин использование таблицы Снеллена не всегда является лучшим способом измерения остроты зрения. Во-первых, данный метод не подходит для маленьких детей и других категорий людей, не умеющих читать. Во-вторых, этот метод предназначен только для измерения остроты зрения только по отношению к объектам, воспринимаемым на расстоянии (20 футов); он не позволяет измерять остроту зрения при чтении и выполнении других задач, предполагающих близкие расстояния. В-третьих, при использовании данного метода не проводится различения между пространственной остротой (способностью различать детали формы) и остротой контраста (способностью воспринимать различия по яркости (точнее по светлоте, поскольку в тесте используются не цветные, а монохромные изображения — Прим. пер.)). На рис. 4.13 представлены примеры типичных форм, используемых при тестировании остроты зрения; стрелки указывают на наиболее важные с точки зрения различения детали. Обратите внимание, что каждая такая деталь представляет собой не что иное, как зону зрительного поля, в которой имеет место изменение яркости от светлого участка к темному (Coren, Ward, & Enns, 1999).


Рис. 4.13. Некоторые типовые формы, используемые при диагностике остроты зрения. Стрелки указывают на детали, распознаваемые в каждом случае.
Сенсорный опыт, связанный с различением паттернов, определяется тем, каким образом нейроны регистрируют информацию о светлоте и темноте. Наиболее примитивным (базовым) элементом визуального паттерна является край или контур, зона, в которой имеет место переход от светлого к темному или наоборот. Одним из первичных факторов, оказывающих влияние на регистрацию краев, является характер взаимодействия ганглиозных клеток на сетчатке (см. рис. 4.11). Эффект такого рода взаимодействий можно наблюдать, рассматривая паттерн, известный как решетка Германца, показанная на рис. 4.14. Вы можете видеть серые пятна на пересечениях белых линий, разделяющих черные квадраты. Неприятное ощущение, возникающее при рассматривании этого паттерна, вызвано тем, что в том конкретном пересечении, на котором вы фокусируетесь, вы не видите серого пятна; только в тех пересечения, на которые вы не смотрите, возникает иллюзия присутствия серых пятен.


Рис. 4.14. Решетка Германна. Серые пятна, наблюдаемые на пересечении белых линий, являются иллюзией. Они видимы вашим глазом и мозгом, но не присутствуют на странице. Чтобы убедиться в том, что в действительности они отсутствуют, переместите взгляд на другие пересечения; вы убедитесь в том, что на пересечении, на которое вы смотрите прямо, серого пятна никогда не видно. Они появляются только в тех пересечениях, которые попадают в ваше периферическое зрение.
Данная иллюзия является непосредственным результатом взаимосвязей между ганглиозными клетками, снижающими активность клеток, смежных с наиболее активной. Так, ганглиозная клетка, фокусирующаяся на одном из пересечений белых линий решетки, получает сигнал, снижающий уровень сигналов, исходящих от соседних клеток (firing), находящихся со всех четырех сторон (то есть клеток, расположенных выше, ниже, правее и левее от пересечения). С другой стороны, ганглиозная клетка, находящаяся на белой горизонтальной или вертикальной линии, будет получать сигнал, снижающий активность исходящего сигнала только двух соседних клеток, находящихся на той же линии. В результате пересечения кажутся темнее, чем белые горизонтальные и вертикальные линии, потому что в этих участках находится максимальное число клеток, получающих сигналы, снижающих уровень исходящего сигнала.

Но почему темные пятна появляются только на пересечениях, на которые вы непосредственно не смотрите? Это происходит потому, что дистанции, на которые передается сигнал, значительно короче в центре зрительного поля, чем на периферии. Благодаря такому расположению ганглиозных клеток острота нашего зрения значительно выше в центре зрительного поля, чем на периферии.


Восприятие цвета
Свет различается только длиной волны. Зрительная система человека совершает с длиной волны нечто удивительное: она превращает ее в цвет, причем из разных длин волн получаются различные цвета. Например, свет с короткой длиной волны (450-500 нанометров) выглядит синим; свет со средней длиной волны (примерно 500-570 нанометров) выглядит зеленым; а свет с большой длиной волны (620-700 нанометров) выглядит красным (рис. 4.15).


Рис. 4.15. Солнечный спектр. Числами обозначены длины волн (в нанометрах, нм), соответствующие различным цветам.


Призма расщепляет свет на различные длины волн. Короткие волны кажутся синими, средние — зелеными, а длинные — красными.
В дальнейшем обсуждении цветового восприятия мы будем говорить только о длинах волн. Это совершенно адекватно в случаях, когда первоисточником ощущения цвета является объект, излучающий свет, например солнце или лампочка. Однако чаще источником цветовых ощущений является объект, отражающий свет, когда его освещает источник света. В таких случаях восприятие цвета объекта частично определяется длинами волн, которые объект отражает, частично — другими факторами. Один из таких факторов — окружающий цветовой фон. Богатое разнообразие других цветов в пространственном окружении объекта позволяет наблюдателю правильно воспринимать цвет объекта, даже когда длины волн, исходящих от объекта и достигающих глаза, не вполне точно отражают характерный цвет объекта (Land, 1986). Способность воспринимать цвет любимой джинсовой куртки как индиго, несмотря на значительные вариации окружающего освещения, носит название «константность цвета». Мы будем более подробно обсуждать эту тему в гл. 5.

Ощущение цвета. В некоторых отношениях ощущение цвета — явление субъективное. Но для научного изучения цветоощущения нам следует описывать его общепринятыми терминами. Представим себе пятно света на темном фоне. С феноменологической точки зрения его характеризуют 3 параметра: светлота, цветовой тон и насыщенность. Светлота показывает, насколько белым видится свет (ее следует отличать от яркости: очень слабо освещенный объект может тем не менее казаться белым). Два других параметра относятся непосредственно к самому цвету. Цветовым тоном называется качество, обозначаемое названием цвета, например «красный» или «зеленовато-желтый». Насыщенность означает наполненность цветом или чистоту цвета. Ненасыщенные цвета выглядят бледными (например, розовый); насыщенные цвета на вид не содержат белого. Художник Альберт Манселл предложил схему описания окрашенных поверхностей путем присваивания им одного из 10 названий цветового тона и двух чисел: одного — для указания насыщенности, другого — светлоты. Цветовая система Манселла представлена в виде цветового тела (рис. 4.16).




Рис. 4.16. Цветовое тело. Три параметра цвета можно отобразить на двойном конусе. Цветовой тон представлен точками, расположенными по окружности, насыщенность — точками вдоль радиуса, а светлота — точками на вертикальной оси. Вертикальное сечение цветового тела показывает различную насыщенность и светлоту для одного тона.
Наиболее важные характеристики цвета и звука сведены в табл. 4.3.

Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   ...   85




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет