Текст взят с психологического сайта


СЕРВОКОНТРОЛЬ МЫШЕЧНЫХ СОКРАЩЕНИЙ



бет36/70
Дата30.05.2022
өлшемі4.9 Mb.
#458792
1   ...   32   33   34   35   36   37   38   39   ...   70
KARL H

СЕРВОКОНТРОЛЬ МЫШЕЧНЫХ СОКРАЩЕНИЙ
В связи с существованием непосредственного контроля со стороны центральной нервной системы над рецепторными процессами посредством гамма-системы афферентных волокон, нейронную организацию рефлекса нельзя больше рассматривать как дугу или простую последовательность «стимул — реакция». Существует множество данных, свидетельствующих о том, что и сами рецепторы контролируются центральной нервной системой — особенно те из них, которые воспринимают мышечные сокращения. Этот центральный контролирующий механизм действует как система обратных связей и процессов предвосхищения, что, по существу, и определяет корригирующие возможности сервомеханизма. Получено так много доказательств справедливости этого положения, что Р. Гранит, один из первых исследователей как моторных, так и сенсорных механизмов, вынужден был недавно заявить следующее:
«... Что касается мотонейронов, то основные проблемы связаны не с рефлексами, хотя рефлексы всегда были и все еще остаются полезным средством анализа, необходимым в данной области знания. Основные проблемы касаются настройки или установки различных механизмов, посредством которых управляются мотонейроны — рефлекторно или как-либо иначе. Существует настройка мотонейронов с помощью нейромышечной интрафузальной системы гамма-волокон [находящейся в мышечных веретенах], а также посредством особых систем нейронных связей и нейрогормонов, действующих на альфа- и гамма-мотонейроны из высших уровней нервной системы» (Granit and Kellerth, 1967).
249
Относительно сервоконтроля движений многое стало известно после эксперимента, проведенного в духе нейропсихологических исследований и давшего парадоксальные результаты.
«Если мышца длительное время находится в состоянии сокращения под влиянием разрядов моторных импульсов, идущих от спинного мозга, удар тока, нанесенный на моторный нерв, приведет к возникновению судорожных всплесков на тензозаписи. Во время судорожного сокращения наблюдается прекращение разрядов моторных импульсов, идущих к мышце

Рис. ХП-3. Периоды молчания в работе подошвенной мышцы человека, регистрация с помощью игольчатых электродов (нижняя запись). Под пяткой испытуемого закрепляется петля, и натяжение разгибателей щиколотки (верхняя запись) регистрируется при' давлении вниз на палец ноги. Время: 10 и 100 мсек; 5 суперпозиций в каждой записи; 1 — период молчания во время подергивания сухожилия, возникающего при ударе молоточком по ахиллесову сухожилию. При контакте молоточка с кожей возникает «всплеск» на кривой; 2 — запись во время рефлекса сокращения, вызванного электрическим раздражением афферентных волокон в подколенной ямке, 3 — запись во время судороги в латеральной части икроножной мышцы, вызванной стимуляцией выше этой мышцы. Обратите внимание, что подошвенная мышца сама по себе не возбуждается стимуляцией. Отметка времени (нижняя кривая на каждой записи) указывает 10 и 100 мсек (Granit, 1955).
(рис. ХП-3). Это — период молчания. Это — рефлекторный акт (обсуждение этого вопроса см. Merton, 1951), который возникает, по-видимому, вследствие прекращения разрядов от мышечных веретен во время судороги. Именно эти разряды в обычных условиях вызывают рефлекс растяжения мышцы, и при их исчезновении мотонейроны замолкают. С точки зрения сервотеории, период молчания можно интерпретировать следующим образом: электрический ток размыкает замкнутую сервосистему и тем самым возбуждает поток добавочных моторных импульсов, который и вызывает сокращение мышцы; следовательно, механизм отрицательной обратной связи отключает спинальные моторные разряды до тех пор, пока мышца посредством расслабления не восстановит своей первоначальной длины.
250
Надо отметить, что отрицательная обратная связь не только нейтрализует эффекты изменений нагрузки или интенсивности добавочного потока импульсов, но делает работу мышц независимой от утомления или изменения синаптической возбудимости, точно так же, как усилитель, сконструированный по принципу обратной связи, не чувствителен к изменениям интенсивности поступающего тока или к напряжению электронных ламп. Стабильность — вот единственное требование, предъявляемое к системе обратных связей: в усилителе это сеть обратных связей со стабильным сопротивлением, в мышцах же это неутомляемые сенсорные органы. Как известно из работ Мэтгьюза, мышечные веретена как раз и обладают этими свойствами...
Возвращаясь к проприоцептивному механизму периода молчания, следует сказать, что мышечные, веретена прекращают свои разряды во время судороги потому, что они соединены параллельно с главными мышечными волокнами. При сокращении мышцы натяжение веретен уменьшается и они не посылают больше разрядов. Это «параллельное» соединение веретен и является ключом ко всей теории. Важная роль этого механизма состоит в том, что он дает возможность веретенам посылать сигнальную информацию о длине мышц, тогда как если бы веретена были соединены последовательно, они могли бы отвечать только на их напряжение. Таким механизмом, как серворефлекс растяжения, который столь очевидно обеспечивает поддержание определенной длины мышц, а не их напряжения, должны обязательно обладать рецепторы, сигнализирующие о длине мышц» (Merton, 1955, р. 248-259).
Существуют, конечно, и другие рецепторно-эффекторные связи, контролирующие сокращения мышц. Есть рецепторы в сухожилиях и суставах — нельзя не учитывать также и растяжение кожи вокруг мышцы и суставов как источник информации для контроля над движениями. Хотя о, рамма-системе известно больше, чем о других механизмах контроля движений, иннервация, поступающая от мышечных веретен, является, по всей вероятности, основным механизмом, на котором надстраиваются другие контролирующие механизмы (рис. ХИ-4).
Как было установлено, гамма-волокна бывают двух типов. Один тип реагирующих волокон обнаруживает постоянную частоту разрядов, если мышца сохраняет постоянную длину. Другой тип, напротив, обнаруживает уменьшение частоты разрядов во время завершения динамической фазы растяжения. Мэт-тьюз (1964) в обширном обзоре, посвященном этой теме, приходит к заключению, что такая двойная гамма-иннервация каждого мышечного веретена «обеспечивает относительно независимый контроль за общим режимом работы и отключением сервосистемы», поскольку каждый тип контроля раздельно управляется с помощью центральной стимуляции (рис. ХП-5).
Этот анализ важен с двух точек зрения. Во-первых, он привлекает наше внимание к тому факту, что любое, даже самое простое мышечное сокращение должно управляться набором сигналов, которые адресуются либо только к мышечным рецепторам, либо идут одновременно с теми сигналами, которые поступают к сократительным элементам мышцы. Факты (см. следующие разделы) свидетельствуют о том, что некоторые области
251
мозга, а именно базальные ганглии и передняя часть мозжечка, функционируют совместно, непосредственно управляя сократительной альфа-системой и опосредованно воздействуя на рецепторы, контролирующие гамма-разряды, благодаря чему и достигается подобная согласованность движений.
Во-вторых, управление рефлекторным сервомеханизмом легко представить себе, поскольку этот процесс разыгрывается на

Время—>-
Рис. XII-4. Примеры ответов сенсорных нервных волокон, идущих от сухожильного органа Гольджи (а) и рецептора мышечного веретена (б) и обеспечивающих растяжение и сокращение мышцы. Обратите внимание, что ответ рецептора мышечного веретена (который действует посредством у-системы) выражается как в форме растяжения, так и в форме удлинения мышцы. См. текст н р и с. ХП-5, где обсуждаются эти эффекты (Granit, 1955, см. Thompson, 1967).
уровне рецепторов. Следовательно, нет необходимости в специальном устройстве типа клавиатуры фортепиано, с помощью которого импульсы, идущие от мозга, передавали бы мышцам сообщения; дело вовсе не в том, чтобы осуществить сначала одно, а потом другое сокращение, изменить длину того или иного из мышечных волокон. Существующее состояние сокращения мышечного волокна предопределяет вариативное состояние его рецепторов. Набор нервных импульсов взаимодействует с этим фоновым состоянием, изменяя режим работы мышечной сервосистемы и таким образом регулируя мышечное сокращение. Мозг все время должен посылать сигналы, организованные по пространственному и временному принципам, однако сообщения,
252
передаваемые этими сигналами, не должны быть закодированы таким образом, чтобы прямо соответствовать сокращению или расслаблению мышцы, которое эти сообщения вызывают, поскольку эта информация уже содержится в вариативном состоянии рецептора. В следующей главе мы детально проанализируем эти сообщения, которые должны содержать подобный код.
Подведем итоги. Нейрофизиологические данные свидетельствуют о существовании прямых анатомических афферентных путей, идущих от спинного мозга к мышечным рецепторам. Наиболее фундаментальным фактом является то, что основным

Рис. ХН-5. Двойная иннервация мышечного веретена с позиций концепции Т — О — Т — Е.
принципом организации даже самого простого рефлекса является не дуга: стимул — центральная нервная система — реакция, а замкнутая сервосистема в виде последовательности: проба (test) — операция (operate)—проба (test)—результат (exit) (Т—О—Т—Е). Когда с помощью центральной нервной системы рефлексы объединяются в Сложные движения, эта интеграция не может быть эффективной при посылке серий сигналов непосредственно или исключительно сокращающимся мышцам, вызывая в них мелодии, как на клавиатуре фортепиано. Подобные сигналы только бы нарушали сервопроцессы. Чтобы предотвратить эти нарушения, наборы сигналов должны передаваться либо только мышечным рецепторам, либо одновременно с другими сигналами адресоваться непосредственно к мышечным волокнам. Таким образом, интегрированное движение в основном зависит от режима работы, настройки мышечных рецепторов.
253


Достарыңызбен бөлісу:
1   ...   32   33   34   35   36   37   38   39   ...   70




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет