Устройство и эксплуатация водозаборов


Рис. 13. Ковшовый водозабор на р. Норилке



бет3/10
Дата19.06.2016
өлшемі1.9 Mb.
#146585
1   2   3   4   5   6   7   8   9   10

Рис. 13. Ковшовый водозабор на р. Норилке

1 — трубопроводы; 2 — водоприемный колодец, совмещенный с насосной стан­цией I подъема; 3 — водоприемный ковш; 4 — рыбозаградительная запань

Для защиты от обмерзания к водоприемным окнам -береговых и русловых водозаборов подается нагретая вода с температурой до 25 °С из расчета подогрева забираемой воды до 0,5 °С. Сороудерживающие решетки на водоприемном оголовке имеют, кроме того, электрообогрев, а к окнам с целью шугозащиты подается сжа­тый воздух.

Малые глубины в руслах рек и их разветвленность диктовали необходимость строительства регулирующих сооружений в комплексе водозаборов. На Якокутском водозаборе были построены дамбы для перекрытия мел­ких проток выше по течению, расчищены перекаты и по­роги, на отдельных участках каменной наброской укреп­лены берега, у противоположного от водозабора берега построена дамба. На Огоджинском водозаборе вдоль ряжевой стенки сделаны прорезь шириной 6 м и четыре полузапруды у противоположного берега. Как видно, во­дозаборы в условиях Севера имеют весьма сложное уст­ройство и принципиально отличаются от водозаборов в средней полосе нашей страны.

Надежный водозабор на Крайнем Севере в условиях вечной мерзлоты построен на р. Норилке [38]. Опреде­ляющим фактором при выборе типа водозабора стали шуголедовые явления: зашугованность реки достигает 60 % живого сечения, толщина ледяного покрова 1,9 м, продолжительность периода ледостава около 8 мес. При столь тяжелых шуголедовых условиях и большом отборе воды (более 60 % минимального стока) исключается применение обычных (русловых или береговых) воде-приемников, в связи с чем был применен водозабор ков­шового типа с низовым входом воды (рис. 13). Для за­бора воды из основного русла реки ковш расположили на затапливаемом острове и выполнили в полувыемке-полунасыпи, а головные сооружения построили на неза­тапливаемых отметках.

Средством борьбы с шугой является и подача нагре­той воды во входную часть ковша и у водоприемных окон, причем от двух источников тепла: основного — от ТЭЦ. и резервного — от местных электроподогревателей. Ры­бозащитным средством на входе в ковш служит уста­новленная наплавная запань с погружными (на 1,4 м) щитами. Важным преимуществом ковшового водозабора в данном случае является также предварительное от­стаивание воды, позволяющее упростить технологию по­следующей ее обработки.

Освоение Крайнего Севера сопровождается строи­тельством гидротехнических, в том числе и водозабор­ных, сооружений. Только в бассейне Вилюя за последние два десятилетия построено около 20 плотин различного назначения [6] высотой 5...75 м (в основном 10...20 м). Все они возведены на вечной мерзлоте из местных мате­риалов с отсыпкой тела плотины не только летом, но и зимой при температуре наружного воздуха до — 40 °С: Принципиально новым решением, специфическим для условий Крайнего Севера, является устройство в плоти­нах щитовых и ряжевых диафрагм, мерзлотных противо-фильтрационных завес и др. (рис. 14).

Из-за крайне неравномерного стока северных рек и больших паводковых расходов определенную сложность представляют устройство и эксплуатация водосбросных сооружений плотин, в большей степени, чем сами плоти­ны, подверженных отрицательному воздействию клима­тических факторов: глубокому промерзанию зимой и от­таиванию летом, образованию фильтрационных потоков и т. д. По этой причине ранее водосбросные сооружения на Севере нередко разрушались и приводили даже к раз­рушению самих плотин.


Рис. 14. Плотина с мерзлотной противофильтрационной завесой

1 — камень; 2 — супесь; 3 — ядро; 4 — автодорога; 5 — упорная призма из по­лускальных грунтов; 6 — морозильные колонки

В современных плотинах стоимость строительства во­досбросных сооружений близка к стоимости плотин. Но­вые конструктивные решения по устройству плотин и во­досбросов, способы возведения, технология производства-работ обеспечили высокую их устойчивость и опровергли ранее существовавшее мнение о ненадежности плотины на вечной мерзлоте. Благодаря этому открылись новые возможности для применения приплотинных водозабо­ров хозяйственно-питьевого и промышленного назначе­ния.



В случаях, когда возведение плотины нецелесообраз­но по технико-экономическим соображениям, а забор во­ды непосредственно из рек затруднен из-за их перемер-зания, создают искусственные водоемы — копани с се­зонным заполнением их водой из расчета водообеспечения на весь зимний период. Копани уже давно используют в системах водоснабжения поселков Мыс Шмидта, Дик-сон, Баренцбург и др. Строят их в основном зимой взрыв­ным методом с последующей зачисткой дна и стенок выемки. Восточно-Сибирским отделением Союзводока-налпроекта копани запроектированы, в частности, для водоснабжения одного из предприятий и станционного поселка на БАМе. Правда, применение копаней не всегда дает ожидаемый эффект. Так, в поселке Баренц-бург на о. Шпицберген потери воды на инфильтрацию из копани достигали 80 %. Если запас воды в копани ис­черпывается до наступления паводка, воду подвозят из отдаленных источников с доставкой иногда на 20...30 км.
4. Нестационарные водозаборы
В практике коммунального водоснабжения нередко используют мобильные водозаборы, представляющие со­бой насосные станции на шасси или наплывных средст­вах. До недавнего времени их применяли только в вы­нужденных случаях: остановка основного водозабора, необходимость временного увеличения мощности дейст­вующего водозабора (например, в Волгограде, Рубцов­ске и др.). В аварийных ситуациях наиболее приемлемы небольшие насосные станции на прицепе к автомобилю (рис. 15) или наплавных средствах (рис. 16). Ниже да­ны их технические характеристики.



Рис. 15. Водозабор с передвижной насосной станцией заводского изготовления СНП-50/80

1 — всасывающий трубопровод; 2 — лебедка; 3 — насос; 4 — топливный бак; 5 — задвижка; 6 — напорный трубопровод; 7 — втулочно-пальцевая муфта; S — двигатель; 9 — разборный трубопровод РТ-180; 10 — газоструйный вакуум-ап­парат


Рис. 16. Водозабор с плавучей насосной станцией заводского изготовления НСП-0,5/10

1 — насосная станция; 2 — береговой трубопровод; 3 — шаровое соединение; 4 — береговой якорь; 5 — трап



Рис. 17. Временный плавучий водозабор с погружными насосами

а — на судне; о — на понтоне; 1 — речное судно; 2 — понтон; 3 — погружные электронасосы; 4 — напорный трубопровод (гофрированный шланг); 5 — элект­рокабель; 6 — переключатель; 7 — подвески из уголковой стали; 8 — фиксиру­ющий якорь
Использование погружных электронасосов позволяет без особой сложности переоборудовать инвентарные на­плавные средства (понтоны, легкие речные суда и др.) в плавучие водозаборы временного типа (рис. 17). Одна­ко уже накоплен опыт многолетнего использования мо­бильных водозаборов в качестве постоянных водозабор­ных установок, например, в Уфе, Сургуте, Нижневартов­ске. Гидромехпроектом Минэнерго СССР разработаны береговые и плавучие водозаборные насосные станции производительностью 0,25...1,3 м3/с. Монтируют их из унифицированных строительных блоков непосредственно на площадке строительства. Южгипроводхозом (Ростов-на-Дону) разработаны проекты на семь типов усовер­шенствованных плавучих водозаборных насосных стан­ций [37].

Ряд плавучих водозаборов действует сейчас в ороси­тельных системах на Волге (Астраханская и Волгоград­ская области, Калмыцкая АССР), Кубани (Ставрополь­ский и Краснодарский края), Иртыше (Омская, Семипа­латинская и Восточно-Казахстанская обл.),Урале (Гурь-евская и Уральская области), что позволяет рассматри­вать их как перспективные и дающие качественно новый экономический эффект.

Береговые насосные станции с водоприемниками рус­лового типа (табл. 2) собирают из унифицированных строительных элементов на месте эксплуатации. Приме­няют их в системах временного водоснабжения: на строй­площадках, в вахтовых поселках, летних санаториях, до­мах отдыха и т. д.

Более прогрессивным устройством водозаборов явля­ется применение передвижных насосных станций заводского изготовления, имеющих производительность 0,03... 0,7 м3/с (табл. 3). Такие станции найдут широкое при­менение в водоснабжении малых населенных пунктов, особенно в отдаленных районах, где устройство стационарных водозаборов затруднено. Их можно рассматри­вать и как резервные водозаборные устройства. Станции имеют геодезическую высоту всасывания около 3...4,5 м, длину всасывающего трубопровода до 6 м. Монтируют их на шасси с пневматической ходовой частью (одноос­ный или двухосный прицеп) или на салазках (прицеп санного типа); оборудуют электродвигателем или двига­телем внутреннего сгорания; транспортируют на прицепе к автомобилю или к трактору (транспортная скорость до 25 км/ч). Водоприемник поднимается и опускается с по­мощью специальной лебедки, находящейся в комплекте с насосной станцией. Насос запускают с помощью газо­струйного эжектора или вакуум-насоса. Обслуживает та­кую станцию, как правило, один человек. В комплекте станции имеется напорный трубопровод длиной до 300 м. Вода может подаваться в береговой колодец насосной станции I подъема или во всасывающий трубопровод ос­новных насосов.


Таблица 2. Техническая характеристика нестационарных береговых водозаборов с насосными станциями Гидромехпроекта

Производительность, м3

Напор, м

Мощность двигателей, кВт

0,25

137

680

0,4

90

500

0,45

38

240

0,75

58

575

0,83

23

280

1,3

20

360


Таблица 3. Техническая характеристика данных передвижных насосных станций заводского изготовления




Тип станций

Показатель

СНП 250/18

СНП 240/30

СНП 120/30

СНПЭ 240/30

Производительность, м3

0,17. ..0,26

0,16. ..0,34

0,08. ..0,17

0,17...0,36*

Напор, м

24... 18

28... 16

39... 23

33... 21

Масса, т

3,8

2,8

2,6

3,485

Габаритные размеры, м

3,5X2,2X1,3

6,1X3,3X3,7

6,83X2,64X2,58

7,46X2,85X2,6

Ходовая часть

Салазки

Пневматический

Пневматический

Салазки







одноосный

одноосный





Продолжение табл. 3


Показатель

Тип станций



СНП 50/80

СНП 50/40

СНП 500/10

СНП 75/100

СНП 150/5

Производительность, м3

0,03. ..0,14

0,05

0,54. ..0,07

0,27. ..0,54

0,12. ..0,19

Напор, м

85... 25

40

10. ..5

100... 50

6, 2. ..3,2

Масса, т

2,68

2,3

5,525

3,7

0,97

Габаритные размеры, м

9,4X2,48X2,4

3,28X1,27X2,05

4,2X1,5X2,12

5,73X1,89X2,45

3,25X1,4X1,48

Ходовая часть

Пневматический одноосный

Салазки

Салазки

Пневматический одноосный

Салазки

* Питание осуществляется от линии электропередачи,
В аварийных ситуациях такие насосные станции мо­жно использовать для подачи воды отдельным потреби­телям или группе потребителей непосредственно из ис­точника, а также из водопроводной сети или резервуа­ров. Применение их в качестве постоянно действующих водозаборов (например, в отдаленных вахтовых посел­ках, на стройплощадках и т.д.), особенно в суровых кли­матических условиях, может потребовать строительства отапливаемых помещений с размещением в них одной или нескольких станций, которые удобны для подачи во­ды для нужд летнего полива.

Разработанные Гидромехпроектом плавучие насосные станции (табл. 4) имеют производительность 0,03... 1,25 м3/с; как и береговые насосные станции, они мон­тируются из унифицированных строительных конструк­ций и не рассчитаны на буксировку на большие рассто­яния.




Таблица 4. Техническая характеристика плавучих водозаборов с насосными станциями Гидромехпроекта

Производительность, м3

Напор, м

Мощность двигателей, кВт

0,03

120

75

0,2

89

250

0,35

44

250

0,45

90

500

0,55

34

240

1

71

1000

1,25

90

1350

Более совершенными являются плавучие насосные станции, разработанные Южгипроводхозом [37]. Важно, что такие насосные станции (табл. 5) изготовляют цен­трализованно на заводах, а следовательно, на более вы­соком техническом уровне, чем на площадке строитель­ства. Серийный выпуск станций осуществляют предприя­тия Министерства судостроительной промышленности СССР. Преимуществом их использования является уско­рение освоения капиталовложений и ввода объектов в действие.


Таблица 5. Техническая характеристика плавучих водозаборных насосных станций

Южгипроводхоза

Индекс проекта

Производительность, м3

Напор, м

3408

1...1.8

143... 20

РН-2Э

1,5...2,3

107... 10

РН-4Х630

2,6...4, 6

60... 47

РН-4Х450

4...5, 7

35... 28

РН-6Х320

3,9...9,3

21. ..7

5811

6. ..14,7

107. ..10

5815

14,4... 24

35... 26

Нормативный срок изготовления станций в заводских условиях, транспортирования к месту установки и монта­жа составляет в сумме 6...8 мес, в то время как продол­жительность строительства стационарных станций той же производительности превышает 18 мес. Предназнача­ются они для гидромелиоративных целей, но, как пока­зывают анализ их характеристик и уже имеющийся опыт, с успехом могут быть использованы также в коммуналь­ном и промышленном водоснабжении.

Плавучая насосная станция (ПНС) представляет со­бой стоечное судно, корпус которого разделен на несколь­ко водонепроницаемых отсеков: машинное и энергетиче­ское отделения, мастерская, бытовые помещения и др. Водоприемник ПНС оборудован высокоэффективным струйным рыбозаградительным устройством. Шаровые соединения трубопроводов насосной станции с береговы­ми трубопроводами обеспечивают надежную работу во­дозабора при амплитуде колебания уровня воды в источ­нике более 12 м. Поскольку такие станции рассчитаны на эксплуатацию не только летом, но и зимой, они могут применяться (что особенно важно) и в северной клима­тической зоне, в том числе во вновь осваиваемых районах Сибири и Дальнего Востока. Разумеется, при этом дол­жны предусматриваться дополнительные меры эксплуа­тации: защита от шуги, околка льда, ограждение от ле­дохода и др.

Применению ПНС на водозаборах из крупных судо­ходных рек благоприятствует возможность буксировки их в готовом виде водными путями от заводов-изготови­телей до мест использования. Это подтверждается опы­том доставки плавучих насосных станций с судостроительных заводов Северным морским путем на Ир­тыш в район Усть-Каменогорска (около 12,5 тыс. км). Буксировка длилась около месяца, включая 10 сут на прохождение арктического участка. Освоена буксировка ПНС также по Каспийскому морю.

Южгипроводхозом разрабатывается унифицирован­ная ПНС УТ-ЗХО,2 небольшой мощности для Сибири и Дальнего Востока с расчетом доставки ее в готовом ви­де железнодорожным транспортом.

В 1978 — 1982 гг. в конструкторском бюро по иррига­ции Минводхоза СССР [9] разработан типовой ряд элек­трифицированных ПНС (табл. 6), которые оснащены но­вейшими типами оборудования, отвечающего современ­ным требованиям, и рекомендованы для рек и других во­доемов при амплитуде колебания уровней воды до 4 м.



Большое число водозаборов в системах коммунально­го и промышленного водоснабжения города и сосредото­чение их в ведении городского водопровода (как, напри­мер, в Калуге, Ульяновске и др.) позволяют использо­вать 1...2 ПНС как резерв для всех водозаборов. Это значит, чтоб зависимости отшуголедовой обстановки, ре­жима уровней и наносов ПНС может быть оперативно подключена к тому или иному водозабору, действующе­му в единой водохозяйственной системе города.
Таблица 6. Техническая характеристика плавучих насосных станций конструкторского бюро по ирригации

Тип станции

НСПЭ-4/10

НСП-05/10

НАП-ЫМ

СНПлЭ-500/10

СНПЭ-2/5

Производительность, м3

4. ..4, 8

0,5. ..0,7

1,62. ..1,3

0,6. ..0,7

2, 34.. .2, 47

Напор, м

10. ..6

10. ..5

12, 5. .-17

10. ..5

8. ..6

Число агрегатов, шт.

2

1

2

1

1

Обслуживающий персо­нал в смену, чел.

2

1

2

1

1

Габаритные размеры корпуса, м

19,6X6,5X1,5

7,4X3,1X1,2

17,4X6,5X1,4

7,4X3,1X1,2

10,8x5,5x1,5

Электродвигатель мощ­ностью, кВт

250

81... 95

173

110

250

Тип насоса

ОГ5-70

ПГ-50

Д2600-17

ПГ-50

ОГ5-70

Примечания: 1. В таблице приведены плавучие несамоходные станции. 2. Во всех случаях — класс судна Л.
5. Усовершенствование водозаборов
В последние два десятилетия водозаборы, как ни од­но другое звено системы коммунального водоснабжения, подверглись существенному усовершенствованию. За это время появились водоприемные оголовки с вихревыми камерами, фильтрующие водоприемники с засыпными и пакетно-реечными кассетами, комбинированные водопри­емники, водоприемные самопромывающиеся ковши, усо­вершенствована система обратной промывки самотечных линий и водоприемных окон и т.д., что стало возможным благодаря широкому изучению опыта эксплуатации и дальнейшим научным исследованиям водозаборов (в первую очередь ВНИИ ВОДГЕО и ВНИИГ им. Б. Е. Веденеева) в лабораторных и натурных условиях.

Кроме повышения надежности водоснабжения усо­вершенствование водозаборов в большинстве случаев да­ло большой экономический эффект. Так, применение ого­ловков с вихревыми камерами позволило в 1,3...1,5 раза уменьшить удельный (на 1 м2 площади водоприемных от­верстий) объем их строительства и соответственно капи таловложения.

Важным технологическим усовершенствованием явля­ется замена обычной (от насосов или резервуаров) об-ратной промывки самотечных линий и оголовков импуль­сной промывкой, предложенной и исследованной А. С. Образовским и В. В. Остриковым. При несложных конструктивных дополнениях (установка в приемных ка­мерах берегового колодца гидроколонн высотой 6...8 м на концах самотечных линий и вакуум-насоса) достига­ется высокий эксплуатационный эффект — восстановле­ние пропускной способности водоприемных отверстий и трубопроводов без большого расхода воды и электро­энергии.

В начале 60-х годов Союзводоканалпроектом были разработаны типовые проекты водозаборов на реках и водохранилищах с насосными станциями I подъема про­изводительностью до 6 м3/с, получившие массовое рас­пространение как в промышленном, так и в коммуналь­ном водоснабжении. Использование же артезианских по­гружных насосов позволило создать в диапазоне произ­водительности 0,02...! м3/с более компактные насосные станции I подъема (рис. 18), в результате чего сущест­венно снизилась стоимость строительства водозаборов. В то же время благодаря научным исследованиям и обо­бщению производственного опыта были усовершенство­ваны ранее известные и созданы новые типы затоплен­ных водоприемных оголовков, ковшовых и комбинирован­ных водозаборов, насосных станций I подъема. Насосная станция I подъема трубчатого типа, разработанная впервые для системы временного водоснабжения Сургута, представляет собой колодец в виде стальной трубы диа­метром 1800 мм, заглубляемой с помощью вибропогру­жателей. Вода из реки поступает в колодец по сифонно­му трубопроводу, проходит через цилиндрическую сетку и откачивается артезианским погружным насосом. Сетку периодически поднимают на поверхность и промывают. Преимуществом такой станции является ее компактность и возможность высокой индустриализации строительст­ва. Однако ее применяют только на источниках с малым содержанием наносов и плавающих веществ.



Массовое гидротехническое строительство в нашей стране, изменившее условия забора воды из многих рек, вызвало необходимость разработки специальных водоза­борных сооружений и устройств для обеспечения устой­чивой их работы при интенсивной переработке берегов и миграции наносов, образовании шуги, развитии планк­тона и т.д.



Рис. 18. Водозабор с погружными насосами

1 — водоприемный оголовок; 2 — гравийно-щебеночный фильтр; 3 — линия естественной поверхности земли; 4 — кре­пление откоса (каменная наброска); 5 — насосная станция; 6 — напорный трубопровод; 7 — подготовка из щебня; 8 — погружной электронасос


Рис. 19. Водохранилищный водоза­бор башенного типа

Рис. 20. Водохранилищный берего­вой водозабор при большой ампли­туде колебания уровня воды

1 — 5 — уровни воды соответственно максимальный, нормальный под­порный, ежегодной сработки, мини­мальный, катастрофический мини­мальный; 6 — сифонный водопри­емник; 7, 8 — водоприемники соот­ветственно второго и третьего яру­сов; 9 — водоприемный колодец; 10 — насосная станция





В последнее время появились отдельно стоящие водо­заборы башенного типа с многоярусным расположением водоприемных окон (рис. 19), например из р. Б. Тесьмы для Златоуста; встроенные в тело плотины, например из Ангары для Иркутска, Енисея для Дивногорска, а так­же береговые водохранилищные водозаборы с водопри­емниками на разных уровнях (рис. 20) и др.


Рис. 21. Водозабор на Енисее

1 — 4 — уровни воды соответственно: максимальный зарегулированный, мини­мальный, мертвого объема, бытовой (до зарегулирования); 5 — фильтрующий оголовок; 6 — сработка берега; 7 — водоподводящая штольня; 8 — водоприем­ная камера; 9 — скважины с погружными насосами; 10 — насосная станция
Комплексное решение задач гидротехнического строи­тельства и водоснабжения, взаимоувязка сроков возведе­ния объектов позволили в ряде случаев построить водо­хранилищные водозаборы на незатопленных отметках (до заполнения водохранилищ), что существенно умень­шило продолжительность строительства и снизило капи­таловложения. Так, водозабор на Енисее (рис. 21) был построен незадолго до заполнения водохранилища Крас­ноярской ГЭС на отметках, значительно превышающих бытовые отметки уровня воды в реке, что позволило при­менить новые конструктивные решения и способы стро­ительства водозабора. Вместо самотечных трубопрово­дов был сделан туннель высотой 2,5 м и длиной 86 м, вы­полненный штольной проходкой на глубине до 30 м с внутренним креплением стенок. Заканчивается туннель водосборной камерой, в перекрытие которой входят об­садные трубы скважин с установленными в них погруж­ными насосами; над скважинами сделан наземный па­вильон с установкой там энергетического оборудования; на входе в туннель построен железобетонный оголовок с фильтрующей обсыпкой. Благодаря отсутствию подтопления строительной площадки достигнуто высокое качест­во всех строительных работ. В короткий срок был по­строен аналогичный водозабор на Артемовне, только вместо проходки штольни здесь уложили трубу диамет­ром 2000 мм и непосредственно в нее установили погруж­ные насосы.

Интересен водозабор из водохранилища Чиркейской ГЭС на р. Сулак, служащий для водоснабжения Буйнакска. Водозабор бе­регового типа представляет собой пробитый в скальных породах туннель протяженностью 60 м и площадью сечения около 17 м2, в который с поверхности пробурено 15 скважин глубиной 60 м. Вход в туннель перекрыт, как на обычном водоприемнике, решеткой и сет­кой. Скважины объединены в три куста, каждый из которых вклю­чает четыре водоподъемные скважины диаметром по 600 мм с арте­зианскими насосами типа АТН и одну скважину для обслуживания диаметром 1200 мм (для спуска водолаза). При заполнении водо­хранилища до НПГ водоприемник находится на глубине 55 м, при максимальной сработке уровня — 15 м. На такой глубине водопри­емник не подвержен воздействию волновых процессов.

Таким образом удалось исключить необходимость строительства берегового колодца большой глубины. Эксплуатация водозабора на протяжении нескольких лет подтверждает его высокую техническую и санитарную надежность.

Положительный опыт устройства и эксплуатации во­дозабора из водохранилища Чиркейской ГЭС учтен при проектировании и строительстве Миатлинской ГЭС, сле­дующей в каскаде гидроузлов на Сулаке. Здесь принят единый водоприемник для ГЭС и водоснабжения насе­ленных пунктов, от которого вода проходит по выруб­ленному в скале напорному туннелю диаметром 6 м и протяженностью 2,5 км до уравнительного резервуара. Из резервуара отходят самотечные водоводы группового водопровода для городов Кизилюрт, Махачкала, Кас­пийск, Избербаш, Хасавьюрт и многих сельских населен­ных пунктов, являющегося по существу объединенным водопроводом Дагестана.

Помимо удобства строительства таких водозаборов они имеют еще и существенные технологические преиму­щества. Благодаря расположению водоприемных окон на больших глубинах обеспечивается возможность полу­чения воды высокого качества. Так, на водозаборе из Чиркейского водохранилища вода соответствует ГОСТ 2874 — 82 без какой-либо очистки, и перед подачей потре­бителям ее только хлорируют. Поэтому отпала необхо­димость строительства водоочистной станции, предусмот­ренной проектом.

По проекту Гипрокоммунводоканала на Кубанском водохранилище построен водозабор для группы городов Кавказских Минеральных Вод. Большая амплитуда ко­лебания уровня воды в водохранилище (15 м), интенсив­ное волнообразование и пологие берега обусловили большую (более 500 м) удаленность водоприемного ко­лодца с насосной станцией I подъема от уреза воды при ГНВ и большую глубину заложения подводящих трубо­проводов. В связи с этим соединение оголовков с берего­вым колодцем отличается от общепринятых решений: на участке около 100 м от оголовков уложены самотечные стальные трубопроводы диаметром 1400 мм, а далее на участке 526 м — щитовой проходкой построены два тун­неля. Самотечные трубопроводы уложены открытым спо­собом в подводные траншеи глубиной до 6 м. Туннели проходят на расстоянии 14 м один от другого на глуби­не 8,5...18 м, имеют внутренний диаметр 1700 мм и уклон 0,008, закреплены они железобетонными блоками-обо­лочками с устройством внутренней монолитной бетонной рубашки толщиной 210 мм. Оголовки раструбного типа подняты на высоту 4 м над дном водохранилища и опи­раются на рамные металлические опоры. Помимо соро-удерживающих решеток они оснащены рыбозащитными сетками.

Повсеместное использование малых рек, как прави­ло, с зарегулированием стока и увеличение отбора воды из них расширило строительство приплотинных водоза­боров, потребовало принципиально новых решений как в устройстве самих водозаборов, так и в регулировании стока. Н. В. Ересновым для одного из промышленных объектов с большим водопотреблением разработана си­стема водоснабжения с четырьмя приплотинными водо­заборами, расположенными последовательно на одной реке. Регулирование стока для всех четырех водозаборов осуществляется одной водохранилищной плотиной, в то время как при ниже расположенных по течению реки водозаборах сделаны облегченные водоподъемные плоти­ны. Русло реки использовано в качестве водоподводяще-го канала, что позволило исключить строительство водо­водов. Подобная система водоснабжения построена, в частности, на р. Белой. Экономичность такого решения очевидна.

Усовершенствованы водозаборы с фильтрующими во­доприемниками, издавна применяемыми на реках Сибири. Наряду с традиционными оголовками с каменной об­сыпкой сейчас стали широко применять подрусловые га­лереи, фильтрующие дрены в скальном грунте, донные водоприемники с фильтрующими кассетами и т.д. А. С. Образовским и Ю. И. Вдовиным исследованы воп­росы кольматации таких водоприемников и предложены методы восстановления водопроницаемости фильтров. Особенно много таких водозаборов построено в систе­мах железнодорожного и промышленного водоснабжения (например, на р. Шире в Хакасской автономной области) на водопроводах малой производительности. Обеспечивая малые входные скорости потока, они оказались более устойчивыми для работы в сложных условиях (малые глубины в источнике, шугоход, лесосплав и т.д.).

Часто фильтрующие водоприемники устраивают с по­толочным приемом воды и заглубляют в дно реки. По­верх водоприемной решетки до уровня дна укладывают слой фильтрующего материала (отсортированный гра­вий, галечник насыпной или уложенный в кассеты). Иногда такие водозаборы устраивают с расчетом не только фильтрующего, но и открытого приема воды с взаимным резервированием водоприемников. Так, водо­забор на р. Белокуриха на Алтае, имея открытый водо-прием через донные решетки, в период паводков пере­ключается на фильтрующий прием воды через гравийную обсыпку и боковые окна того же оголовка, причем пото­лочные водоприемные окна в период паводка могут за­крываться специальными крышками. Такая конструкция оголовка позволяет устанавливать технологию отбора во­ды с учетом не только бесперебойности водоснабжения, но и предварительной очистки воды. Аналогичный водо­забор запроектирован на р. Томь.



Рис. 22. Новый водозабор ковшового типа на Оби

Водоприемные ковши, построенные в рассматривае­мый период в системах коммунального водоснабжения в Омске, Новосибирске, Армавире, Кемерове, Барнауле, Междуреченске и др., выполнены с самопромывающимся входом на основе исследований ВНИИ ВОДГЕО (А. С. Образовский). Благодаря этому достигнута надеж­ная защита водоприемников от воздействия наносов и шуги и, следовательно, получена основа для более ши­рокого применения ковшей в коммунальном водоснабже­нии. Ковшовые водозаборы запроектированы в последние годы для Тулы, Калинина, Саранска, Уфы и др.

Совершенствование ковшей наиболее четко прослеживается на водозаборах из рек Томь и Обь, где по истече­нии 50-летнего периода появилось их третье поколение. Современные самопромывающиеся ковши (рис. 22) ря­дом с ковшами 30-х годов большой протяженности с не­затопляемыми ограждающими дамбами на всей их дли­не, в отдельных случаях с двусторонним входом воды от­личаются гидравлическим совершенством, меньшими объемами и, следовательно, экономичностью строитель­ства. В ряде случаев новые ковши примыкают к старым, увязываясь с ними конструктивно и технологически, т.е. появились спаренные ковши, когда верховая дамба ра­нее построенного ковша становится низовой дамбой но­вого, а струенаправляющие сооружения могут иметь об­щее назначение.

Крупных осложнений в работе ковшовых водозабо­ров новых конструкций не наблюдается. Более того, в ряде случаев отпала необходимость ежегодной чистки ковшей от наносов. Так, ковши на водопроводах Между-реченска и Осинников надежно проработали без профи­лактической чистки около 7 лет, а ковш новосибирского водопровода — 5 лет. К концу летней межени на Между-реченском ковше наблюдается отложение наносов в рус­ле (перед входом в ковш) в виде песчаной косы за шпо­рой верховой дамбы. Иногда эту косу удаляют с по­мощью экскаватора-драглайна, но большей частью она размывается паводковыми потоками. Однако технологи­ческое совершенство вновь построенных ковшей не ис­ключает полностью необходимости их периодической чистки. Наблюдения показывают, что если ковши не чи­стить 5...7 лет, они начинают интенсивно зарастать вы­сокорослыми травами и кустарником. Очевидно, эксплуа­тация ковшей в этих условиях требует дальнейшего со­вершенствования.


6. Реконструкция и увеличение производительности водозаборов
Одна из задач одиннадцатой пятилетки — модерниза­ция и техническое перевооружение действующих пред­приятий. Применительно к водозаборным сооружениям это означает реализацию таких инженерных решений, ко­торые повышают надежность работы водозаборов и, сле­довательно, дают возможность бесперебойного отбора не только расчетного, но и дополнительного расхода воды. Водозаборные сооружения рассчитывают, как уже отме­чалось, на самые неблагоприятные условия работы. Сле­довательно, если осуществить меры по улучшению усло­вий работы и снижению степени отрицательного воздей­ствия природных и других факторов, то водозабор может работать с большой надежностью и даже с увеличенной производительностью.

Из практики эксплуатации систем коммунального во­доснабжения известны многочисленные факты модерни­зации водозаборных сооружений с увеличением их про­изводительности в 2...3 раза по отношению к расчетной без больших дополнительных капиталовложений (водо-. заборы в Пензе, Новосибирске, Новокузнецке, Искитиме). В связи с этим проектированию и строительству но­вого водозабора должно предшествовать изучение состо­яния существующих водозаборов, условий их эксплуата­ции и возможностей реконструкции. Большого внимания заслуживает производственный опыт повышения надеж­ности работы водозаборов. На рис. 23 даны схемы прак­тикуемой реконструкции речных водозаборов.





Рис. 23. Схемы реконструкции реч­ных водозаборов

1 — водоприемные оголовки; 2 — самотечные или сифонные линии; 3 — береговой колодец, смещенный с насосной станцией I подъема; 4раструбные оголовки; 5 — водопри­емный ковш; 6 — береговой водо­приемник; 7 — соединительный трубопровод для переключения водоводов; _______ —первоначальные сооружения; ---------- — сооружения последующего раз­вития
При общих благоприятных условиях работы водоза­бора производительность его может быть увеличена пу­тем замены насосно-энергетического оборудования (ра­зумеется, при наличии соответствующей пропускной спо­собности всех коммуникаций), а также профилактичес­ких мероприятий на водоприемниках (расчистка русла, углубление перекатов, шугозащита и т. д.). Однако здесь возрастают входные скорости потока в водоприемных окнах, что может привести к непредвиденным осложне­ниям на водозаборе. Вследствие этого возникает необхо­димость расширения или устройства дополнительных во­доприемных окон, что требует больших трудозатрат. При выполнении работ в береговом кольце на одном из водо­заборов Новосибирска по предложению академика М. А. Лаврентьева был применен взрывной метод с по­мощью кумулятивных зарядов, благодаря чему в десят­ки раз были сокращены сроки производства работ по ре­конструкции и их трудоемкость. Таким же способом были успешно выполнены дноуглубительные работы в скаль-ном грунте.

Чаще всего наряду с заменой оборудования требует­ся строительство дополнительных водоприемников, самотечных или сифонных линий и напорных водоводов, которое может осуществляться в зависимости от мест­ных условий по схемам 23, а или 23, в. Дополнительный оголовок может быть вынесен дальше в русло реки или, наоборот, приближен к берегу, так как за предшеству­ющий период эксплуатации водозабора могут изменить­ся гидрологические условия, требования других водо­пользователей, появиться новые конструкции водоприем­ников и т. д. Такая реконструкция осуществлена на водопроводах Свердловска, Омска, Томска, Барнаула, в результате чего в комплексе одного водозабора действу­ет до 5 и более водоприемных оголовков и 2...3 берего­вых колодца.

Практика эксплуатации подтверждает, что наличие даже простейшего дополнительного водоприемника (ти­па незащищенного раструбного оголовка, рис. 23, в) в эстремальных условиях позволяет предотвратить полную остановку водозабора.

Если по каким-либо причинам дальнейшая эксплуата­ция русловых водоприемников невозможна или крайне затруднена, реконструкцию водозабора можно осущест­вить с устройством ковша по схеме 23, г или подводящей прорези. В противоположной ситуации, когда забор во­ды у берега становится невозможным (например, по при­чине интенсивного отложения наносов, понижения уров­ня воды в реке и т.д.), проводят реконструкцию водоза­бора путем строительства дополнительного руслового затопленного водоприемника по схеме 23, д. Когда же возможности замены насосно-энергетического оборудова­ния исчерпаны, осуществляется строительство дополни­тельных насосных станций I подъема (рис. 23,6 и 23, д) с переключениями на напорных, а иногда и на всасыва­ющих водоводах. Достигается, таким образом, взаимное резервирование насосно-энергетического оборудования насосных станций. При строительстве дополнительных водоприемников целесообразно применять более совер­шенные для данных условий типы оголовков (с вихре­выми камерами, фильтрующие и т.д.), благодаря чему достигается не только увеличение производительности, но и повышение надежности работы водозаборов.

Надо отметить ошибки, часто встречающиеся на практике, когда строительство дополнительных оголов­ков привязывают к действующим самотечным или си­фонным линиям, рассчитывая одинаково использовать как прежние, так и новые водоприемники. Поскольку со­противление движению воды от разных водоприемников при этом неодинаковое, оголовки будут работать с раз­ной интенсивностью и, следовательно, с разной устойчи­востью забора воды. Работу оголовков в этом случае сложно проконтролировать. И поэтому более целесооб­разно строительство дополнительных оголовков с само­стоятельными самотечными или сифонными трубопрово­дами.

Второй характерной ошибкой является подсоединение самотечных трубопроводов к всасывающим линиям на­сосов, минуя водоприемные камеры и сороудерживаю-щие сетки. То и другое решение может рассматриваться как временная мера, но не как средство увеличения про­изводительности водозаборов. Даже в относительно бла­гоприятных условиях (например, на Волге в Волгогра­де) работа водоприемников в режиме всасывания сопро­вождается осложнениями, вызываемыми вовлечением наносов и всевозможного речного мусора не только в на­сосные станции, но и в водоочистные сооружения. Оп­равданным может быть лишь временный перевод водо­приемника на всасывающий режим работы, например, при зимнем устойчивом ледоставе и низком горизонте воды к реке, когда не возникает каких-либо помех, что подтверждается опытом эксплуатации водозабора из Лены в Якутске.

Массовое гидротехническое строительство в нашей стране существенным образом повляло на условия забо­ра воды из рек и технологию ее очистки. Изменился ре­жим наносов, шуголедовый режим рек, возросла цвет­ность и уменьшилась мутность воды, а также изменился ее солевой состав. Все это потребовало существенной корректировки ранее применяемых решений по устрой­ству и эксплуатации не только водозаборов, но и стан­ций очистки воды, глубокого изучения особенностей за­бора воды из водохранилищ.

Многочисленные факты перебоев в работе водозабо­ров на ряде водохранилищ обусловили необходимость натурных и лабораторных исследований. Во ВНИИ ВОДГЕО А. А. Смирновым впервые были детально ис­следованы водозаборы на Каховском водохранилище, подвергавшиеся непрогнозированному шуголедовому воздействию с перебоями в подаче воды. Пять исследо­ванных здесь водозаборов имеют аналогичное устройство — водоприемники (затопленные оголовки) руслово­го типа с береговыми колодцами, самотечными и сифон­ными подводящими трубопроводами протяженностью 10...560 м. Оголовки расположены на глубине 1...14 м от расчетного уровня воды и в основном в защищенных от волнового воздействия акваториях. Тем не менее все они в большей или меньшей степени испытывали отри­цательное воздействие либо шуги, либо наносов. Воз­действие шуги начинало проявляться, как правило, при скорости ветра v>5 м/с и температуре воздуха t< — 6°С. Обратная промывка и даже продувка водоприемников горячим воздухом не устраняли этого воздействия. На некоторых водозаборах наблюдалось интенсивное во­влечение планктона. Исследования А. А. Смирнова по­казали, что определяющим фактором в данном случае являются вдольбереговые течения, вызывающие отрица­тельные последствия при каком-то определенном на­правлении ветра. Иногда отрицательное воздействие оказывают также градиентные, плотностные и компенса­ционные течения. Скорость вдольбереговых течений мо­жет достигать 1...2 м/с на пологих береговых склонах и до 3 м/с — на крутых. Лишь там, где водоприемные ого­ловки находились за пределами зоны вдольбереговых течений, водозаборы работали устойчиво.

Возникают такие течения в прибойных зонах под воздействием волн, подходящих к берегу под острым углом. На изгибах берегового склона направление вдольберегового течения отклоняется от берега, а сфор­мировавшийся поток транспортирует на большие глуби­ны наносы, шугу, планктон и т.д. (рис. 24). Оказавшие­ся в зоне распространения этого потока водоприемники как раз и испытывают отмеченные выше осложнения. На одном из водозаборов, подвергавшихся воздействию шуги, было выявлено отложение наносов у водоприем­ного оголовка в виде конуса выноса с высотой гребня 5,5 м, вытянутого в направлении вдольберегового тече­ния.

Очевидно, чтобы избежать воздействия вдольберего­вых течений необходимо располагать водоприемники вне зоны их распространения или применять специаль­ные сооружения и устройства (шпоры, буны), изменяю­щие направление вдольберегового течения (рис. 24). Строительство таких сооружений на действующих водо­заборах можно рассматривать как их реконструкцию.





Рис. 24. Вдольбереговые течения на водохранилищных водозаборах (по А. А. Смирнову)

а — водоприемник подвержен воздейст­вию вдольбереговых течений; б — во­доприемник не подвержен воздействию вдольбереговых течений; в — вдольбе-реговое течение при наличии взвесе-перехватывающей шпоры; 1 — водопри­емник; 2 — подводящие трубопроводы; 3 — береговой колодец; 4, 5 — вдольбе­реговые течения при различных на­правлениях ветра; 6 — взвесеперехва-тывающая шпора
Когда же шпоры или буны построить невозможно, ре­конструкция должна включать, как и на речных водоза­борах, строительство дополнительных водоприемников вне зоны вдольбереговых течений. В любом случае ре­конструкции или строительству новых водозаборов дол­жно предшествовать детальное изучение топографиче­ских условий водоема, направлений ветров, условий вол­нообразования и т. д.

Реконструкция ковшовых водозаборов, как и русло­вых, нередко осуществляется заменой насосно-энергети-ческого оборудования станций I подъема, а также стро­ительством дополнительных водоприемников в ковшах (например, в Кемерове), устройством шуго- и наносоза-щитных шпор и струенаправляющих стенок. На водо­проводе Киева реконструкция ковша произведена с установкой продольных распределительных стенок, что обеспечило параллельно-струйное движение воды в ков­ше и улучшило тем самым его технологические возмож­ности.






Рис. 25. Ковшовый водозабор на р. Томь

1 — насосная станция I подъема; 2 — водоприемный колодец; 3, 4 — соответ­ственно верховая и низовая ветви ковша; 5 — струенаправляющий выступ; 6 — срезка осередка; 7 — ограждающая дамба; 8 — полузапруды

Наиболее показательным примером из практики реконструкции ковшовых водозаборов является реконструкция ковша на р. Томь в Новокузнецке (рис. 25). Несмотря на то что ковш имел двустороннее питание, он не обеспечивал требуемую подачу воды и на­дежность водоснабжения, так как с одной стороны шуга перекры­вала проход воды к водоприемнику, а с другой происходил подсос загрязненной воды из устья притока. Чтобы исключить строитель­ство нового водозабора, на основе исследований А. С. Образовского были приняты меры по улучшению гидравлического режима источ­ника и самого ковша: произведена срезка осередка перед входом в ковш, разделявшего русло на две протоки; построены четыре дон­ные полузапруды у противоположного берега реки; построен струе­направляющий выступ на верховом входе в ковш; сделана донная прорезь на подходе к ковшу. Благодаря реконструкции, своевремен­ной чистке ковша и проведению других профилактических мероприя­тий полностью устранены причины осложнений в его работе и до­стигнута требуемая надежность водоснабжения. Последующий бо­лее чем 20-летний опыт эксплуатации этого водозабора подтвердил правильность и экономичность инженерных решений.

Реконструкция с устройством верховой струенаправляющей дамбы ковша в 1976 г. была осуществлена на водозаборе из р. Бердь в Искитиме, что позволило снизить интенсивность заиле­ния ковша. В сочетании с заменой оборудования на насосной стан­ции I подъема это дало возможность увеличить производитель­ность водозабора более чем в 2 раза.

Опыт реконструкции и интенсификации работы мно­гих водозаборов заслуживает более широкого внедрения в производство и более глубокого изучения, так как он дает основу для дальнейшего усовершенствования водо­заборных сооружений.




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет