Юрий Александров Основы психофизиологии Александров Ю. И. (ред.)



бет6/29
Дата01.07.2016
өлшемі4.28 Mb.
#171778
1   2   3   4   5   6   7   8   9   ...   29

3. СЛУХОВАЯ СИСТЕМА

В связи с возникновением речи как средства межличностного общения, слух у человека играет особую роль. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передаётся в слуховую область коры мозга через ряд последовательных отделов, которых особенно много в слуховой системе.



3.1. Структура и функции наружного и среднего уха

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющей наружное ухо от барабанной полости, или среднего уха. Это тонкая перегородка, которая колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход. В среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Благодаря особенностям геометрии слуховых косточек эти колебания передаются уменьшенными в амплитуде, но увеличенными в силе. Именно поэтому даже слабые звуковые волны способны привести к колебаниям жидкости в улитке.



3.2. Структура и функции внутреннего уха

Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, который по всей длине разделён вестибулярной и основной мембранами на три хода: верхний, средний и нижний (рис. 4.7). Полость среднего канала не сообщается с полостью других каналов и заполнена эндолимфой, а верхний и нижний каналы сообщаются друг с другом и заполнены перилимфой. Внутри среднего канала улитки на основной мембране расположен спиральный (кортиев) орган, содержащий рецепторные клетки, которые трансформируют механические колебания в электрические потенциалы.




Рис. 4.7. Поперечный разрез завитка улитки с увеличенной частью спирального (кортиева) органа, очерченной сверху прямоугольником

Колебания мембраны овального окна вызывают колебания перилимфы в верхнем и нижнем каналах, кроме того, начинает колебаться и основная мембрана. На ней расположены два вида рецепторных волосковых клеток: внутренние и наружные.



Механизмы слуховой рецепции. При колебаниях основной мембраны длинные волоски рецепторных клеток касаются текторинальной мембраны и несколько наклоняются. Это приводит к натяжению тончайших нитей, которые открывают ионные каналы в мембране рецептора. Пресинаптическое окончание волосковой клетки деполяризуется, что приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает в нём генерацию возбуждающего постсинаптического потенциала и импульсов, которые распространяются в нервные центры.

Передача в мозг акустической информации. Сигналы от волосковых клеток поступают в мозг по 32 000 афферентных нервных волокон, входящих в состав кохлеарной ветви 8-го черепно-мозгового нерва. Они являются дендритами ганглиозных нервных клеток спирального ганглия. По волокнам слухового нерва даже в тишине следуют спонтанные импульсы с частотой до 100 имп./с. При звуковом раздражении частота импульсации в волокнах увеличивается и остаётся повышенной в течение всего периода, когда действует звук. Степень учащения разрядов различна у разных волокон и связана с интенсивностью и частотой звукового воздействия. В центральных отделах слуховой системы много нейронов, возбуждение которых длится в течение всего периода действия звука, а в слуховой коре разряды ряда нейронов длятся десятки секунд после его прекращения.

3.3. Анализ частоты звука (высоты тона)

При действии звуков разной частоты возбуждаются разные рецепторные клетки кортиева органа. В улитке сочетаются два типа кодирования высоты звука: пространственный и временной [Сомьен, 1975]. Пространственное кодирование основано на определённом расположении возбуждённых рецепторов на основной мембране. При действии низких и средних тонов кроме пространственного осуществляется и временное кодирование: частота следования импульсов в волокнах слухового нерва повторяет частоту звуковых колебаний. Нейроны всех уровней слуховой системы настроены на определённую частоту и интенсивность звука. Для каждого нейрона может быть найдена оптимальная частота звука, на которую порог его реакции минимален. Частотно-пороговые кривые разных клеток не совпадают, в совокупности перекрывая весь частотный диапазон слышимых звуков, что обеспечивает их полноценное восприятие.



Анализ интенсивности звука. Сила звука кодируется частотой импульсации и числом возбуждённых нейронов. При слабом стимуле в реакцию вовлекается лишь небольшое количество наиболее чувствительных нейронов, а при усилении звука в реакции участвует всё большее количество дополнительных нейронов с более высокими порогами.

3.4. Слуховые ощущения



Тональность (частота) звука. Человек воспринимает звуковые колебания с частотой от 16 до 20 000 Гц. Этот диапазон соответствует 10–11 октавам. Верхняя граница частоты воспринимаемых звуков зависит от возраста: она постепенно понижается (в старости часто не слышат высоких тонов). Различение частоты звука характеризуется тем минимальным различием по частоте двух близких звуков, которое ещё улавливается человеком. При низких и средних частотах человек способен заметить различия в 1–2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.

Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютным порогом слуховой чувствительности. Пороги слышимости сильно зависят от частоты звука. В области частот от 1000 до 4000 Гц слух человека максимально чувствителен. В этих пределах слышен звук, имеющий ничтожную энергию. При звуках ниже 1000 и выше 4000 Гц чувствительность резко уменьшается: например при 20 и при 20 000 Гц пороговая энергия звука в 1 млн раз выше (нижняя кривая AEFGD на рис. 4.8). При усилении звука можно дойти до возникновения неприятного ощущения давления и даже боли в ухе. Звуки такой силы характеризуют верхний предел слышимости (кривая ABCD на рис. 4.8) и ограничивают область нормального слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых распределяются звуки речи.

Громкость звука. Кажущуюся громкость звука следует отличать от его физической силы. Ощущение громкости не идёт строго параллельно нарастанию интенсивности звучания. Единицей громкости звука является бел. Эта единица представляет собой десятичный логарифм отношения действующей интенсивности звука I к пороговой его интенсивности I0. На практике обычно используется в качестве единицы громкости децибел (дБ), т.е. 0,1 бела.

Дифференциальный порог по громкости в среднем диапазоне слышимых частот (1000 Гц) составляет всего 0,59 дБ, а на краях шкалы частот доходит до 3 дБ. Максимальный уровень громкости звука, вызывающий болевое ощущение, равен 130–140 дБ над порогом слышимости человека. Громкие и длительные звуки (например, рок-музыка, рёв реактивного двигателя) приводят к поражению рецепторных клеток и к снижению слуха.




Рис. 4.8. Область звукового восприятия человека. Зависимость пороговой интенсивности звука (ось ординат – звуковое давление в дин/см) от частоты тональных звуков (ось абсцисс в Гц). Кривая AEFGD – абсолютные пороги восприятия; ABCD – пороги болевого ощущения при действии громких звуков

Адаптация. Если на ухо долго действует тот или иной звук, то чувствительность к нему падает. Степень этого снижения чувствительности (адаптации) зависит от длительности, силы звука и его частоты. Участие в слуховой адаптации нейронных механизмов типа латерального и возвратного торможения несомненно. Известно также, что сокращения мышц среднего уха могут изменять энергию сигнала, передающуюся на улитку.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью порядка 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, то звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удалённости источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах имеются нейроны с острой настройкой на определённый диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определённое направление движения источника звука в пространстве.




4. ВЕСТИБУЛЯРНАЯ СИСТЕМА

Вестибулярная система играет важную роль в пространственной ориентации человека. Она получает, передаёт и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярной системы не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела.



4.1. Строение и функции рецепторного вестибулярного аппарата

Периферическим отделом вестибулярной системы является вестибулярный аппарат, расположенный в пирамиде височной кости. Он состоит из преддверия и трёх полукружных каналов. Полукружные каналы (рис. 4.9) располагаются в трёх взаимно перпендикулярных плоскостях. Один из концов каждого канала расширен (ампула). Вестибулярный аппарат включает в себя также два мешочка. В них на возвышениях находится отолитовый аппарат: скопления рецепторных клеток. Выступающая в полость мешочка рецепторная клетка оканчивается длинным подвижным волоском и 60–80 склеенными неподвижными волосками. Они пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция – отолиты. Волосковые клетки возбуждаются при скольжении отолитовой мембраны по волоскам, т.е. при их сгибании.

В перепончатых полукружных каналах, заполненных эндолимфой, рецепторные волосковые клетки сконцентрированы в ампулах. Во время угловых ускорений эндолимфа приходит в движение, волоски сгибаются и волосковые клетки возбуждаются. При противоположно направленном движении они тормозятся. Это связано с тем, что отклонение волоска в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении закрывает каналы и гиперполяризует рецептор. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхолина и через синапсы активирует окончания волокон вестибулярного нерва.

Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый




Рис. 4.9. Строение отолитового аппарата: 7 – отолиты; 2 – отолитовая мембрана; 3 – волоски рецепторных клеток; 4 рецепторные клетки; 5 – опорные клетки; 6 – нервные волокна.

Продолговатый мозг. Импульсы, приходящие по этим волокнам, активируют нейроны бульбарного вестибулярного комплекса (ядра: преддверное верхнее Бехтерева, преддверное латеральное Дейтерса, Швальбе и др.). Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору мозга, ретикулярную формацию и вегетативные ганглии.



4.2. Электрические явления в вестибулярной системе

Даже в полном покое в волокнах вестибулярного нерва регистрируется спонтанная импульсация. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при поворотах в другую сторону (детекция направления движения). Две трети волокон обнаруживают эффект адаптации (уменьшение частоты разрядов) во время длящегося действия углового ускорения. Нейроны вестибулярных ядер обладают способностью реагировать и на изменение положения конечностей, повороты тела, сигналы от внутренних органов, т.е. осуществлять синтез информации, поступающей из разных источников.

Нейроны вестибулярных ядер обеспечивают контроль и управление различными двигательными реакциями. Вестибуло-спинальные влияния изменяют импульсацию нейронов сегментарных уровней спинного мозга. Так осуществляется динамическое перераспределение тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия. В вестибуло-вегетативные реакции вовлекаются сердечно-сосудистая система, желудочно-кишечный тракт и другие внутренние органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает болезнь движения (например, морская болезнь). Вестибуло-глазодвигательные рефлексы (глазной нистагм) состоят в медленном ритмическом движении глаз в противоположную вращению сторону, сменяющемся их скачком обратно. Возникновение и характеристики вращательного глазного нистагма – важные показатели состояния вестибулярной системы и широко используются в эксперименте и клинике.

4.4. Основные афферентные пути и проекции вестибулярных сигналов

Два основных пути поступления вестибулярных сигналов в кору мозга обезьян следующие: прямой – через вентральное постлатеральное ядро и непрямой – через вентролатеральное ядро. В коре основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. В моторной коре кпереди и книзу от центральной борозды обнаружена вторая вестибулярная зона. Локализация вестибулярной зоны в коре мозга человека окончательно не выяснена.



4.5. Функции вестибулярной системы

Вестибулярная система помогает ориентироваться в пространстве при активном и пассивном движении. При пассивном движении лабиринтный аппарат с помощью корковых отделов системы анализирует и запоминает направление движения и повороты. Следует подчеркнуть, что в нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем.

Чувствительность вестибулярной системы здорового человека очень высока: отолитовый аппарат позволяет воспринять ускорение прямолинейного движения, равное всего 2 см/с 2 . Порог различения наклона головы в сторону – всего около 1 углового градуса, а вперёд и назад – 1,5–2 угловых градуса. Рецепторная система полукружных каналов позволяет человеку замечать ускорения вращения в 2–3 угловых градуса в 1 с 2 .


5. СОМАТОСЕНСОРНАЯ СИСТЕМА

В соматосенсорную систему входят система кожной чувствительности и чувствительная система скелетно-мышечного аппарата, главная роль в которой принадлежит проприорецепции.



5.1. Кожная рецепция



Кожные рецепторы сосредоточены на огромной кожной поверхности (1,4–2,1 м 2 ). В коже находится множество рецепторов, чувствительных к прикосновению, давлению, вибрации, теплу и холоду, а также к болевым раздражениям. Они весьма различны по строению, локализуются на разной глубине кожи и распределены неравномерно по её поверхности. Больше всего их в коже пальцев рук, ладоней, подошв, губ и половых органов. У человека в коже с волосяным покровом (90% всей кожной поверхности) основным типом рецепторов являются свободные окончания нервных волокон, идущих вдоль мелких сосудов, а также более глубоко локализованные разветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность волос к прикосновению. Рецепторами прикосновения являются также осязательные мениски (диски Меркеля), образованные в нижней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук.

В коже, лишённой волосяного покрова, находят много осязательных телец (телец Мейснера). Они локализованы в сосочковом слое кожи пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках груди. Другими инкапсулированными нервными окончаниями, но более глубоко расположенными, являются пластинчатые тельца, или тельца Пачини (рецепторы давления и вибрации). Они имеются также в сухожилиях, связках, брыжейке.



Теории кожной чувствительности многочисленны и во многом противоречивы. Наиболее распространено представление о наличии специфических рецепторов для четырёх основных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой. Исследования электрической активности одиночных нервных окончаний и волокон свидетельствуют о том, что многие из них воспринимают лишь механические или температурные стимулы.

Механизмы возбуждения кожных рецепторов. Механический стимул приводит к деформации мембраны рецептора. В результате этого электрическое сопротивление мембраны уменьшается, т.е. увеличивается её проницаемость для ионов. Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При достижении рецепторным потенциалом критического уровня деполяризации генерируются импульсы, распространяющиеся по волокну в ЦНС.

Адаптация кожных рецепторов. По скорости адаптации при длящемся действии раздражителя большинство кожных рецепторов подразделяются на быстрои медленноадаптирующиеся. Наиболее быстро адаптируются тактильные рецепторы, расположенные в волосяных фолликулах, а также пластинчатые тельца. Адаптация кожных механорецепторов приводит к тому, что мы перестаём ощущать постоянное давление одежды или привыкаем носить на роговице глаз контактные линзы.

5.2. Свойства тактильного восприятия

Ощущение прикосновения и давления на кожу довольно точно локализуется человеком на определённом участке кожной поверхности. Эта локализация вырабатывается и закрепляется в онтогенезе при участии зрения и проприорецепции. Абсолютная тактильная чувствительность существенно различается в разных частях кожи: от 50 мг до 10 г. Пространственное различение на кожной поверхности, т.е. способность человека раздельно воспринимать прикосновения к двум соседним точкам кожи, также сильно отличается в разных её участках. На языке порог пространственного различия равен 0,5 мм, а на коже спины – более 60 мм. Эти отличия связаны главным образом с различными размерами кожных рецептивных полей (от 0,5 мм 2 до 3 см 2 ) и со степенью их перекрытия [Кейдель, 1975; Физиол. сенсорн. систем, 1971, 1972, 1975].



5.3. Температурная рецепция

Температура тела человека колеблется в сравнительно узких пределах. Именно поэтому информация о температуре внешней среды, необходимой для деятельности механизмов терморегуляции, имеет особо важное значение. Терморецепторы располагаются в коже, на роговице глаза, в слизистых оболочках, а также в гипоталамусе. Они подразделяются на два вида: холодовые и тепловые (последних намного меньше). Больше всего терморецепторов в коже лица и шеи. Полагают, что терморецепторами могут быть немиелинизированные окончания дендритов афферентных нейронов.

Терморецепторы подразделяются на специфические и неспецифические. Первые отвечают лишь на температурное воздействие, вторые реагируют и на механическое раздражение. Рецептивные поля большинства терморецепторов локальны. Терморецепторы реагируют на изменение температуры повышением частоты импульсов, устойчиво длящимся в течение всего времени действия стимула. Это повышение пропорционально изменению температуры, причём постоянная частота разрядов у тепловых рецепторов наблюдается в диапазоне температур от +20 до +50°С, а у холодовых – от +10 до +41°С. Дифференциальная чувствительность терморецепторов велика: достаточно изменить температуру на 0,2°С, чтобы вызвать длительные изменения их импульсации.

Температурное ощущение человека зависит как от абсолютного значения температуры, так и от разницы температуры кожи и действующего раздражителя, его площади и места приложения. Так, если руку держали в воде с температурой +27°С, то в первый момент после переноса руки в воду, нагретую до +25°С, она кажется холодной. Однако уже через несколько секунд становится возможной оценка абсолютной температуры.



5.4. Болевая рецепция

Болевая, или ноцицептивная, чувствительность имеет особое значение для выживания организма, так как сигнализирует о действии чрезмерно сильных и вредных факторов. В симптомокомплексе многих заболеваний боль – одно из первых, а иногда и единственное проявление патологии и важный показатель для диагностики. Несмотря на интенсивные исследования, до сих пор не удаётся решить вопрос о существовании специфических болевых рецепторов и адекватных им болевых раздражителей. Сформулированы две альтернативные гипотезы об организации болевого восприятия: а) существуют специфические болевые рецепторы (свободные нервные окончания с высоким порогом реакции) и б) специфических болевых рецепторов не существует, и боль возникает при сверхсильном раздражении любых рецепторов.

В электрофизиологических опытах на одиночных нервных волокнах типа С обнаружено, что некоторые из них реагируют преимущественно на чрезмерные механические, а другие – на чрезмерные тепловые воздействия. При болевых раздражениях импульсы возникают также в волокнах типа А. Соответственно разной скорости проведения импульсов в волокнах типа С и А отмечается двойное ощущение боли: вначале чёткое по локализации и короткое, а затем – длительное, разлитое и сильное (жгучее).

Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен. Предполагают, что значимыми являются изменения рН ткани в области нервного окончания, так как этот фактор обладает болевым эффектом при концентрациях водородных ионов, встречающихся в реальных условиях. Таким образом, наиболее общей причиной возникновения боли можно считать изменение концентрации этих ионов при токсическом воздействии на дыхательные ферменты или при механическом или термическом повреждении клеточных мембран.

Адаптация болевых рецепторов возможна: ощущение укола от продолжающей оставаться в коже иглы быстро проходит. Однако в очень многих случаях болевые рецепторы не обнаруживают существенной адаптации, что делает страдания больного особенно длительными и требует применения анальгетиков.

Болевые раздражения вызывают ряд рефлекторных соматических и вегетативных реакций. Если эти реакции умеренно выражены, то они имеют приспособительное значение, но могут привести к тяжёлым патологическим эффектам, например к шоку. При болевых воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов часты так называемые отражённые боли, проецирующиеся в определённые части кожной поверхности (зоны Захарьина–Геда). Так, при стенокардии кроме болей в области сердца ощущается боль в левой руке и лопатке. При тактильных, температурных и болевых раздражениях «активных» точек кожной поверхности (иглоукалывание или акупунктура) включаются цепи рефлекторных реакций, опосредуемых центральной и вегетативной нервной системой. Они могут избирательно изменять кровоснабжение и трофику тех или иных органов и тканей.



5.5. Мышечная и суставная рецепция (проприорецепция)

В мышцах человека содержатся три типа специализированных рецепторов: первичные окончания веретён, вторичные окончания веретён и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата (см. также гл. 5).



Мышечное веретено имеет длину в несколько миллиметров, ширину в десятые доли миллиметра, одето капсулой и расположено в толще мышцы. Внутри капсулы находится пучок интрафузальных мышечных волокон. Веретена расположены параллельно внешним по отношению к капсуле экстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении – уменьшается. В расслабленной мышце импульсация, идущая от веретён, невелика, но они реагируют повышением частоты разрядов на удлинение мышцы. Таким образом, веретена дают мозгу информацию о длине мышцы и её изменениях. Импульсация, идущая от веретён, в спинном мозге возбуждает мотонейроны своей мышцы и тормозит мотонейроны мышцы-антагониста, а также возбуждает мотонейроны сгибателей и тормозит мотонейроны разгибателей.

Сухожильные рецепторы Гольджи находятся в зоне соединения мышечных волокон с сухожилием и расположены последовательно по отношению к мышечным волокнам. Они слабо реагируют на растяжение мышцы, но возбуждаются при её сокращении, причём их импульсация пропорциональна силе сокращения. Поэтому сухожильные рецепторы информируют мозг о силе, развиваемой мышцей. Идущие от этих рецепторов волокна в спинном мозге вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов мышцы-антагониста. Информация от мышечных рецепторов по восходящим путям спинного мозга поступает в высшие отделы ЦНС, включая кору большого мозга.

Суставные рецепторы изучены меньше, чем мышечные. Известно, что они реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата.

5.6. Передача и переработка соматосенсорной информации

Чувствительность кожи и ощущение движения связаны с проведением в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спиноталамическому, значительно различающимся по своим свойствам.



Лемнисковый путь передаёт в мозг сигналы о прикосновении к коже, давлении на неё и движениях в суставах. Отличительная особенность этого пути – быстрая передача в мозг наиболее точной информации, дифференцированной по силе и месту воздействия.

По мере перехода на всё более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значительно увеличиваются рецептивные поля нейронов (в продолговатом мозге – в 2–30, а в коре большого мозга – в 15–100 раз). Несмотря на увеличение размеров рецептивных полей, нейроны остаются достаточно специфичными (нейроны поверхностного прикосновения, глубокого прикосновения, нейроны движения в суставах и нейроны положения или угла сгибания суставов). Для корковой части лемнискового пути характерна чёткая топографическая организация, т.е. проекция кожной поверхности осуществляется в центры мозга по принципу «точка в точку» [Кейдель, 1975; Сомьен, 1975; Дудел и др., 1985]. При этом площадь коркового представительства той или иной части тела определяется её функциональной значимостью: формируется так называемый «сенсорный гомункулюс» (рис. 4.10). Роль соматосенсорной коры состоит в интегральной оценке соматосенсорных сигналов, включении их в сферу сознания и в сенсорное обеспечение выработки новых двигательных навыков.



Спиноталамический путь значительно отличается от лемнискового сравнительно медленной передачей афферентных сигналов, нечётко дифференцированной информацией о свойствах раздражителя и не очень чёткой её топографической локализацией; он служит для передачи температурной, всей болевой и в значительной мере тактильной чувствительности.


Рис. 4.10. Корковое представительство кожной чувствительности. Расположение в соматосенсорной зоне коры больших полушарий мозга человека проекций различных частей тела:

1– половые органы; 2 – пальцы ноги; 3 – ступня; 4 – голень; 5 – бедро; 6 – туловище; 7– шея; 8 – голова; 9 – плечо; 10–11 – локоть; 12 – предплечье; 13 – запястье; 14 – кисть; 15–19 – пальцы руки; 20 – глаза; 21 – нос; 22 – лицо; 23 – верхняя губа; 24,26 – зубы; 25 – нижняя губа; 27 – язык; 28 – глотка; 29 – внутренние органы. Размеры изображений частей тела соответствуют размерам их сенсорного представительства

Болевая чувствительность практически не представлена на корковом уровне (раздражение коры не вызывает боли), поэтому считают, что высшим центром болевой чувствительности является таламус, где 60% нейронов в соответствующих ядрах чётко реагирует на болевое раздражение. Таким образом, спиноталамическая система играет важную роль в организации генерализованных ответов на действие болевых, температурных и тактильных раздражителей.


6. ОБОНЯТЕЛЬНАЯ СИСТЕМА

Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий имеет толщину 100–150 мкм и содержит около 10 млн. рецепторных клеток диаметром 5–10 мкм, расположенных между опорными клетками (рис. 4.11). На поверхности каждой обонятельной клетки имеется сферическое утолщение – обонятельная булава, из которой выступает 6–12 волосков длиной до 10 мкм. Обонятельные волоски погружены в жидкую среду, вырабатываемую боуменовыми железами. Наличие подобных волосков в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ. От нижней части рецепторной клетки отходит аксон. Аксоны всех рецепторов образуют обонятельный нерв, который проходит через основание черепа и вступает в обонятельную луковицу.

Молекулы пахучих веществ попадают в обонятельную слизь с постоянным током воздуха. Здесь они взаимодействуют с находящимся в волосках рецептора рецепторным белком. В результате этого взаимодействия в мембране рецептора открываются натриевые каналы, и генерируется рецепторный потенциал. Это приводит к импульсному разряду в аксоне рецептора – волокне обонятельного нерва.

Каждая рецепторная клетка способна ответить возбуждением на характерный для неё, хотя и широкий, спектр пахучих веществ. Спектры чувствительности разных клеток сильно перекрываются. Вследствие этого более чем 50% пахучих веществ оказываются общими для любых двух обонятельных клеток.

Электроольфактограммой называют суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия. Это монофазная негативная волна длительностью в несколько секунд, возникающая даже при кратковременном воздействии пахучего вещества.

Кодирование обонятельной информации. Одиночные рецепторы отвечают на запах увеличением частоты импульсации, которое зависит от качества и интенсивности стимула [Физиол. сенсорн. систем, 1972; Кейдель, 1975; Сомьен, 1975; Тамар, 1976; Батуев, Куликов, 1983; Дудел и др., 1985]. Каждый обонятельный рецептор отвечает на многие пахучие вещества, отдавая «предпочтение» некоторым из них. Считают, что на этих свойствах рецепторов может быть основано кодирование запахов и их опознание в центрах обонятельной системы. В обонятельной луковице регистрируется электрический ответ, который зависит от пахучего вещества: при разных запахах меняется пространственная мозаика возбуждённых и заторможенных участков обонятельной луковицы.




Рис. 4.11 . Схема строения обонятельного эпителия по данным электронной микроскопии:

ОБ – обонятельная булава; ОК – опорная клетка; ЦО – центральные отростки обонятельных клеток; БК – базальная клетка; БМ – базальная мембрана; ВЛ – обонятельные волоски; МВР – микроворсинки обонятельных и МВО – микроворсинки опорных клеток



Центральные проекции обонятельной системы. Выходящий из луковицы обонятельный тракт направляется в разные отделы мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндалевидного комплекса. Обонятельная луковица связана также с гиппокампом, пириформной корой и другими отделами «обонятельного мозга» через несколько переключений. Наличие многих центров «обонятельного мозга» обеспечивает связь обонятельной системы с другими сенсорными системами и организацию на этой основе пищевого, оборонительного и полового поведения.

Чувствительность обонятельной системы человека чрезвычайно велика: один обонятельный рецептор может быть возбуждён одной молекулой пахучего вещества, а возбуждение небольшого количества рецепторов приводит к возникновению ощущения. В то же время изменение интенсивности запаха (дифференциальный порог) оценивается людьми довольно грубо: наименьшее воспринимаемое различие в силе запаха составляет 30–60% от его исходной концентрации. Адаптация в обонятельной системе происходит сравнительно медленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и от концентрации пахучего вещества.

7. ВКУСОВАЯ СИСТЕМА

В процессе эволюции вкус формировался как механизм выбора или отвергания пищи. Выбор предпочитаемой пищи отчасти основан на врождённых механизмах, но в значительной мере зависит от связей, выработанных в онтогенезе. Вкус, так же как и обоняние, основан на хеморецепции и даёт информацию о характере и концентрации веществ, поступающих в рот. В результате запускаются реакции, изменяющие работу органов пищеварения или ведущие к удалению вредных веществ, попавших в рот.

Вкусовые рецепторы сконцентрированы во вкусовых почках, расположенных на языке, задней стенке глотки, мягком нёбе, миндалине и надгортаннике. Больше всего их на кончике языка. Каждая из примерно 10 000 вкусовых почек человека состоит из нескольких рецепторных и опорных клеток. Вкусовая почка соединена с полостью рта через вкусовую пору. Вкусовая рецепторная клетка имеет длину 10–20 мкм и ширину 3–4 мкм и снабжена на конце, обращённом в просвет поры, 30–40 тончайшими микроворсинками. Считают, что они играют важную роль в рецепции химических веществ, адсорбированных в канале почки. Многие этапы преобразования химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов ещё неизвестны.

Электрические потенциалы вкусовой системы. Суммарный потенциал рецепторных клеток возникает при раздражении языка сахаром, солью и кислотой. Он развивается медленно: максимум потенциала приходится на 10–15-й с после воздействия, хотя электрическая активность в волокнах вкусового нерва начинается раньше.

Проводящие пути и центры вкуса. Проводниками для всех видов вкусовой чувствительности служат так называемая «барабанная струна» и языкоглоточный нерв, ядра которых расположены в продолговатом мозге. Многие из волокон специфичны, так как отвечают лишь на соль, кислоту, хинин или сахар. Наиболее убедительной считается гипотеза о том, что четыре основных вкусовых ощущения – горькое, сладкое, кислое и солёное – кодируются не импульсацией в одиночных волокнах, а распределением частоты разрядов в большой группе волокон, по-разному возбуждаемых вкусовым веществом.

Афферентные сигналы, вызванные вкусовой стимуляцией, поступают в ядро одиночного пучка ствола мозга. От этого ядра аксоны вторых нейронов восходят в составе медиальной петли до таламуса, где расположены третьи нейроны, аксоны которых направляются в корковый центр вкуса.



7.2. Вкусовые ощущения и восприятие

У разных люден абсолютные пороги вкусовой чувствительности существенно отличаются вплоть до «вкусовой слепоты» к отдельным агентам. Абсолютные пороги вкусовой чувствительности сильно зависят от состояния организма, изменяясь, например, при голодании и беременности. Абсолютный порог вкусовой чувствительности оценивают по возникновению неопределённого вкусового ощущения, отличающегося от вкуса дистиллированной воды. Дифференциальные пороги вкусового различения минимальны при средних концентрациях веществ, но при переходе к большим концентрациям резко повышаются. Так, 20%-ный раствор сахара воспринимается как максимально сладкий, 10%-ный раствор хлорида натрия как максимально солёный, 0,2%-ный раствор соляной кислоты – как максимально кислый, а 0,1%-ный раствор сульфата хинина – как максимально горький. Пороговый контраст ( dI/ I) для разных веществ значительно колеблется.



Вкусовая адаптация. При длительном действии вкусового вещества развивается адаптация к нему, которая пропорциональна концентрации раствора. Адаптация к сладкому и солёному развивается быстрее, чем к горькому и кислому. Обнаружена и перекрёстная адаптация, т.е. изменение чувствительности к одному веществу при действии другого. Последовательное применение нескольких вкусовых раздражителей даёт эффекты вкусового контраста. Например, адаптация к горькому повышает чувствительность к кислому и солёному, а адаптация к сладкому обостряет восприятие всех других вкусовых ощущений. При смешении нескольких вкусовых веществ возникает новое вкусовое ощущение, отличающееся от вкуса составляющих смесь компонентов.


8. ВИСЦЕРАЛЬНАЯ СЕНСОРНАЯ СИСТЕМА

Большая роль в жизнедеятельности человека принадлежит висцеральной, или интерорецептивной, сенсорной системе [Черниговский, I960]. Она воспринимает изменения внутренней среды организма и поставляет центральной и вегетативной нервной системе информацию, необходимую для рефлекторной регуляции работы всех внутренних органов.



8.1.Интерорецепторы

Механорецепторы реагируют на изменение давления в полых органах и сосудах, их растяжение и сжатие [Физиол. сенсорн. систем, 1975]. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержании постоянства внутренней среды организма [Черниговский, I960].

Возбуждение хеморецепторов головного мозга может быть вызвано высвобождением из его элементов гистамина, индольных соединений, изменением содержания в желудочках мозга двуокиси углерода и другими факторами. Рецепторы каротидных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН и повышение напряжения углекислоты. Терморецепторы внутренних органов участвуют в терморегуляции.

8.2. Проводящие пути и центры висцеральной сенсорной системы

Проводящие пути и центры висцеральной сенсорной системы представлены, в основном, блуждающим, чревным и тазовым нервами. Блуждающий нерв передаёт афферентные сигналы в ЦНС по тонким волокнам с малой скоростью от практически всех органов грудной и брюшной полости, чревный нерв – от желудка, брыжейки и тонкого кишечника, а тазовый – от органов малого таза. В составе этих нервов имеются как быстро-, так и медленнопроводящие волокна. Импульсы от многих интероцепторов проходят по задним и вентролатеральным столбам спинного мозга.

Интероцептивная информация поступает в ряд структур ствола мозга и подкорковые образования. Следует отметить, что важную роль играет гипоталамус, где имеются проекции чревного и блуждающего нервов. Высшим отделом висцеральной сенсорной системы является кора больших полушарий.

8.3. Висцеральные ощущения и восприятие

Возбуждение некоторых интероцепторов приводит к возникновению чётких локализованных ощущений, т.е. к восприятию (например, при растяжении стенок мочевого пузыря или прямой кишки). В то же время возбуждение интероцепторов сердца и сосудов, печени, почек, селезёнки, матки и ряда других органов не вызывает ясных осознаваемых ощущений. Возникающие в этих случаях сигналы часто имеют подпороговый характер. И.М.Сеченов указывал на «тёмный, смутный» характер этих ощущений.

Изменение состояния внутренних органов, регистрируемое висцеральной системой (даже если оно не осознаётся человеком), оказывает значительное влияние на его настроение, самочувствие и поведение. Это связано с тем, что интероцептивные сигналы приходят в кору мозга, изменяя активность многих её отделов. Особенно важна роль интероцептивных условных рефлексов в формировании сложнейших цепных реакций, лежащих в основе пищевого и полового поведения.


9. ОСНОВНЫЕ КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ СЕНСОРНЫХ СИСТЕМ ЧЕЛОВЕКА

Ближняя точка ясного видения 10 см

Диаметр жёлтого пятна сетчатки около 0,5 мм (1,5–2 угловых градуса)

Сила аккомодации около 10 диоптрий (D)

Диапазон изменения диаметра зрачка при изменении освещённости 1,8–7,5 мм

Время «инерции зрения» 0,03–0,1 с

Дифференциальный порог световой чувствительности 1–1,5%

Диапазон длин волн видимого света 400–700 нм

Нормальная острота центрального зрения 1 угловая минута

Поле зрения для бесцветных предметов 150 угловых градусов по горизонтали и 130 угловых градусов по вертикали

Частота слышимых звуковых колебаний 16–20000 Гц (10-11 октав)

Максимальный уровень громкости 130–140 дБ над порогом слышимости

Дифференциальный порог по частоте до 1–2 Гц

Дифференциальный порог по громкости до 0,59 дБ

Дифференциальный порог по направлению на источник звука до 1 углового градуса

Пороговое ускорение прямолинейного движения 2 cм/c;

Порог различения наклона головы вбок 1 угловой градус

Пороговое давление на кожу от 50 мг до 10 г

Пространственное различение на кожной поверхности от 0,5 до 60 мм

Дифференциальная чувствительность терморецепторов кожи до 0,20 С

Порог различения силы запаха 30–60% от исходной концентрации




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   29




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет