Энзимология как учение о ферментах. Простые и сложные ферменты



бет3/8
Дата27.06.2016
өлшемі3.9 Mb.
#160265
1   2   3   4   5   6   7   8
Раздел 3.6

Регуляция по принципу обратной связи.


В результате аллостерических механизмов и ковалентной модификации происходит изменение активности уже имеющихся в клетке молекул фермента. Существуют также механизмы, влияющие на скорость реакций обмена веществ путём изменения количества молекул ферментативного белка в клетке.


В настоящее время установлено, что синтез и распад ферментов, как и других белков, происходит в организме непрерывно. У взрослого здорового человека в условиях динамического равновесия процессы синтеза и распада имеют одинаковую скорость, благодаря чему общее содержание фермента не изменяется во времени. Для каждого фермента характерна своя скорость распада. В большинстве случаев полное прекращение синтеза фермента привело бы к исчезновению 50% молекул фермента за несколько дней, но некоторые ферменты обновляются значительно быстрее. Скорость синтеза фермента может варьировать от нуля до максимума, тогда как скорость распада представляется постоянной. Таким образом, любое вещество, влияющее на скорость синтеза фермента, способно оказать существенное воздействие на регуляцию обмена веществ путем изменения соотношения ферментов в организме. В основе многих гормональных воздействий на обмен веществ у человека лежат, как было установлено, именно такие контролирующие влияния на выработку каталитически активных белков.

Рисунок 3.14. Регуляция синтеза фермента.



Конечный продукт (Г) цепи метаболических реакций снижает концентрацию фермента, катализирующего этап Б → В путем репрессии его синтеза. Субстрат (Б) индуцирует синтез того фермента, который превращает его в В, препятствуя действию репрессора.
Вещество, которое избирательно препятствует синтезу определенного фермента, называется репрессором. При помощи механизма репрессии конечные продукты реакций обмена веществ могут регулировать процесс их собственного образования по принципу обратной связи. Было доказано, что в некоторых системах накопление метаболитов, образующихся в итоге цепи последовательных реакций, предотвращает синтез одного из ферментов, функционирующего в начале этой цепи (рисунок 3.14). Продукт реакции в таком случае действует как специфический репрессор синтеза этого фермента предотвращая как ненужное потребление субстратов, вовлекаемых в реакции данной метаболической цепи, так и бесполезный расход энергии и аминокислот, необходимых для образования каталитически активного белка.
Примером того, как конечные продукты цепи химических реакций способны замедлять синтез ферментных белков, катализирующих начальные стадии процесса (то есть снижать количество молекул этих ферментов), может служить регуляция синтеза гемоглобина в клетках кроветворных органов. По мере накопления гема в этих клетках подавляется синтез фермента, катализирующего первую реакцию синтеза гема (рисунок 3.15). Тем самым предупреждается избыточное накопление гемоглобина в клетке.

Рисунок 3.15. Регуляция синтеза гема по механизму репрессии на уровне фермента, катализирующего начальную реакцию этого метаболического пути.
Явление, противоположное репрессии, известно под названиями индукция фермента или дерепрессия. В типичном случае субстрат определенного фермента способен индуцировать синтез этого фермента, что в свою очередь стимулирует потребление данного субстрата. Воздействуя на механизм синтеза фермента, индуктор, вероятно, прямо или косвенно противодействует репрессору. Соотношение между репрессором (конечным продуктом) и индуктором (субстратом) определяет, таким образом, количество ключевых ферментов и обеспечивает приспособление последовательности метаболических реакций к количеству метаболитов, поступающих в клетки организма с пищей.
Как и в случае регуляторных ферментов, лишь немногие ключевые ферменты способны реагировать подобным образом на изменение физиологических потребностей. Такие ферменты называют индуцибельными (или адаптивными); ферменты, содержание которых в таких условиях не изменяется, называют конститутивными; они составляют постоянное содержимое клетки.
У человека на адаптивные ферменты, вероятно, в большей мере влияют эндокринные факторы, нежели промежуточные продукты реакций обмена веществ. Так, гормоны коры надпочечников глюкокортикоиды стимулируют синтез ферментов, участвующих в образовании сахара крови (глюкозы), тогда как гормон поджелудочной железы инсулин противодействует этому. Глюкокортикоиды прямо или косвенно играют роль индукторов ферментов, когда как инсулин усиливает процесс репрессии. От определяемой противоположными воздействиями индукции и репрессии уровня синтеза ферментов зависит физиологическая регуляция содержания глюкозы в крови этими противоборствующими эндокринными системами.
Ингибирование - частичное или полное торможение ферментативной реакции под действием веществ различной химической природы. Вещества, вызывающие ингибирование ферментов, называют ингибиторами.
Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкое снижение скорости реакции, то это необратимое ингибирование. При этом образуются ковалентные связи между молекулами фермента и ингибитора. Некоторые ферменты полностью ингибируются очень малыми концентрациями ионов тяжёлых металлов, например, ионов ртути (Hg2+), серебра (Ag+) и мышьяка (As+), или иодуксусной кислотой. Эти ингибиторы необратимо соединяются с SH-группами ферментов и вызывают денатурацию ферментного белка.
Диизопропилфторфосфат (ДФФ) – соединение из группы нервнопаралитических отравляющих веществ. Он является ингибитором ацетилхолинэстеразы, которая инактивирует нейромедиатор ацетилхолин. ДФФ связывается с остатком аминокислоты серина в активном центре и блокирует действие фермента. В результате ацетилхолин накапливается в синаптической щели, нервные импульсы следуют один за другим, мышца не расслабляется, и наступает паралич или смерть.

Рисунок 3.16. Необратимое ингибирование фермента ацетилхолинэстеразы диизопрропилфторфосфатом.


Другим примером необратимого ингибирования может служить действие цианидов на фермент цитохромоксидазу, участвующую в окислительно-восстановительных процессах в митохондриях клеток. Отравление цианидами может привести к смерти.
Если ингибитор соединяется с ферментом при помощи нековалентных связей, то возможно восстановление исходной активности фермента после удаления ингибитора, например, путём диализа. Такое ингибирование называется обратимым.
Обратимое ингибирование можно разделить на конкурентное и неконкурентное.
Запомните особенности, характерные для конкурентного ингибирования:

конкурентный ингибитор сходен по строению с субстратом.

конкурентный ингибитор взаимодействует с активным центром фермента, образуя фермент-ингибиторный комплекс, и препятствует взаимодействию активного центра с субстратом.

действие конкурентного ингибитора зависит от его концентрации: чем выше концентрация ингибитора, тем ниже скорость ферментативной реакции.

действие конкурентного ингибитора можно снять, увеличив концентрацию субстрата.
График зависимости скорости ферментативной реакции от концентрации субстрата в присутствии конкурентного ингибитора даёт такую же величину Vmax, как и в отсутствии ингибитора. Величина KM в данном случае будет увеличена, поскольку для обеспечения скорости, равной половине максимальной, в присутствии ингибитора потребуется больше субстрата. Отсюда следует, что конкурентный ингибитор препятствует образованию фермент-субстратного комплекса, но не влияет на процесс распада фермент-субстратного комплекса с образованием продуктов реакции.

Рисунок 3.17. Влияние конкурентного ингибитора на кинетические свойства фермента.


Примером конкурентного ингибирования является ингибирование фермента сукцинатдегидрогеназы малоновой кислотой. Сукцинатдегидрогеназа катализирует реакцию дегидрирования янтарной кислоты с образованием фумаровой кислоты. Малоновая кислота, как и янтарная кислота, содержит две карбоксильные группы, но обладает более короткой углеродной цепью. Поэтому дегидрирование малоновой кислоты невозможно. Если концентрация малоновой кислоты в среде будет превышать концентрацию янтарной, то активность сукцинатдегидрогеназы снижается. Ингибирующее действие малоновой кислоты исчезает при увеличении концентрации янтарной кислоты.

Рисунок 3.18. Конкурентное ингибирование сукцинатдегидрогеназы малоновой кислотой.


Запомните особенности, характерные для неконкурентного ингибирования:

неконкурентный ингибитор не сходен по строению с субстратом.

неконкурентный ингибитор может взаимодействовать, как правило, не с активным центром фермента, а с другими участками в молекуле фермента. Поэтому фермент-ингибиторный комплекс может присоединять субстрат. На ввиду изменения конформации активного центра сродство к субстрату будет понижено.

действие неконкурентного ингибитора не зависит от его концентрации.

действие неконкурентного ингибитора нельзя снять, увеличив концентрацию субстрата.
График зависимости скорости реакции от концентрации субстрата в присутствии неконкурентного ингибитора показывает сниженную величину Vmax. Субстрат не может вытеснить ингибитор из его соединения с ферментом. Величина KM в присутствии неконкурентного ингибитора не меняется. Это значит, что неконкурентный ингибитор воздействует на фермент на стадии распада фермент-субстратного комплекса, но не влияет на связывание субстрата.

Рисунок 3.19. Влияние неконкурентного ингибитора на кинетические свойства фермента.
Неконкурентные ингибиторы снижают количество молекул субстрата, которые взаимодействуют с одной молекулой фермента в единицу времени (число оборотов фермента).
Ингибиторы ряда ферментов используются в медицине как химиотерапевтические препараты. Целью химиотерапии является уничтожение возбудителя болезни при помощи химических веществ, не повреждая при этом организма-хозяина.
Раздел 4.1

Распределение ферментов в тканях и в клетке. Изоферменты и мультиферменты: особенности структурной организации, биологическая роль.

Локализация ферментов в клетке
В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 4.1). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 4.1. Внутриклеточное распределение ферментов различных метаболических путей.


В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.
В митохондриях находятся сложные системы окислительно-восстановительных ферментов.
Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.
В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.
В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.
Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.
Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.
Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.
При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 4.2. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

Изоферменты (изозимы)


Изоферментами или изозимами называют множественные формы ферментов, которые существуют у одного и того же вида, в одной и той же ткани, и даже в одной и той же клетке. Все эти формы фермента катализируют одну и ту же реакцию, но различаются по своим кинетическим свойствам, а также по первичной структуре. Изоферменты играют регуляторную роль в обмене веществ и позволяют метаболизму в разных тканях лучше приспосабливаться к действию внутренних и внешних факторов.
Примером фермента, у которого были обнаружены такие формы, может служить лактатдегидрогеназа (L-лактат:НАД+-оксидоредуктаза, КФ 1.1.1.27), катализирующая обратимую окислительно-восстановительную реакцию:

Лактатдегидрогеназа (ЛДГ) присутствует в тканях животных в виде пяти разных изоферментов, которые различаются на уровне четвертичной структуры. Молекула ЛДГ состоит из четырех протомеров двух типов, Н (от англ. heart - сердце) и М (от англ. muscle - мышца), которые различаются по аминокислотному составу и последовательности аминокислот. Каталитической активностью обладает только тетрамерная молекула.
Протомеры могут быть скомпонованы следующими способами:

Изофермент

HHHH


HHHM

HHMM


HMMM

MMMM
Обозначение

ЛДГ1

ЛДГ2


ЛДГ3

ЛДГ4


ЛДГ5

Изоферменты сывороточной лактатдегидрогеназы могут быть обнаружены с помощью электрофореза при рН 8,6. При данном значении рН изозимы несут разный заряд и распределяются на электрофореграмме в пяти разных местах. Наибольшим отрицательным зарядом обладает изозим ЛДГ1.


Распределение изоферментов ЛДГ (изоферментный спектр) в тканях также отличается. Так, изоформа ЛДГ, содержащая четыре М-субъединицы, преобладает в печени и скелетной мышце, а изоформа, состоящая из четырех Н-субъединиц, преобладает в миокарде (рисунок 4.3).

Рисунок 4.3. Относительное содержание изоферментов ЛДГ (в процентах от суммарной активности) в некоторых тканях человека (Мосс, Баттерворт, 1978).

Мультиферменты


Мультиферменты (мультэнзимы) - надмолекулярные комплексы, в состав которых входят ферменты, катализирующие последовательные стадии превращения субстрата.
Например, для в реакциях превращения метаболита A в метаболит D :

комплекс ферментов Е1, Е2, Е3 является мультиферментом. Объединение нескольких ферментов в один комплекс имеет важное преимущество: резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться от фермента к ферменту. Поэтому суммарная скорость таких метаболических путей довольно высока.
Примером мультэнзима может служить пируватдегидрогеназный комплекс, находящийся в митохондриях и катализирует последовательные реакции окислительного декарбоксилирования пирувата:

Пируватдегидрогеназный комплекс состоит из трёх ферментов: пируватдекарбоксилазы, трансацилазы и дигидролипоилдегидрогеназы.

В промежуточных реакциях участвует пять коферментов:

тиаминдифосфат;

липоевая кислота;

коэнзим А;

ФАД;

НАД.
Регуляторным ферментом комплекса является пируватдекарбоксилаза, активность которой (и всего комплекса в целом) снижается при высокой концентрации АТФ в клетке.


Раздел 4.2

Основные методы фракционирования белков, основанные на их различиях по физико-химическим свойствам и биологической активности.


Вся информация об отдельных метаболических реакциях, о промежуточных соединениях, образующихся на последовательных этапах различных метаболических путей, а также о механизме регуляции работы катализаторов получена главным образом с использованием очищенных препаратов ферментов. Высокоочищенные препараты ферментов необходимо иметь также и для того, чтобы получить надежные данные о кинетике, кофакторах, активных центрах, о структуре и механизме действия ферментов.


Процесс очистки состоит в выделении данного фермента из грубого клеточного экстракта, содержащего множество других компонентов. Основная проблема — отделить нужный фермент от сотен химически и физически сходных белков.
Как вам уже известно, различные белки отличаются друг от друга по своим физико-химическим свойствам и биологической активности. На этих различиях основаны широко используемые в медицине и биотехнологии методы разделения белковых смесей на фракции и выделения отдельных белков.

Методы разделения белков по молекулярной массе



Рисунок 4.5. Разделение пептидов методом гель-фильтрации

С этой целью наиболее часто применяют методы гель-фильтрации, ультрацентрифугирования, диализа и диск-электрофореза.
Гель-фильтрация – метод, основанный на различной способности молекул разных размеров проходить через своеобразные «молекулярные сита» – сефадексы – инертные гидратированные полисахаридные материалы, представляющие собой пористые гранулы. Крупные белковые молекулы не способны диффундировать внутрь гранул сефадекса и элюируются (выходят из колонки) в первую очередь. В то же время молекулы небольшого размера проникают через поры гранул, задерживаются в них и движутся в колонке с более низкой скоростью (рисунок 4.5). Метод гель-фильтрации эффективно используется и при очистке белков от низкомолекулярных примесей.
Ультрацентрифугирование. Метод основывается на измерении скорости седиментации (осаждения) белковых частиц под действием центробежной силы, создаваемой в ультрацентрифуге. Скорость седиментации частиц пропорциональна их молекулярной массе.
Диализ – процесс разделения высокомолекулярных и низкомолекулярных веществ при помощи полупроницаемой мембраны. Белки не способны проходить через такую мембрану, поэтому данный метод применяется для очистки белков от неорганических соединений.
Диск-электрофорез в полиакриламидном геле проводят в присутствии детергента – додецилсульфата натрия (ДСН), маскирующего заряд ионогенных групп в молекуле белка. Поэтому электрофоретическая подвижность белков, связанных с ДСН, будет пропорциональна их молекулярной массе.

Методы разделения белков по электрическому заряду



Рисунок 4.6. Разделение пептидов методом ионообменной хроматографии

На различии белков по электрическому заряду основаны методы высаливания, ионообменной хроматографии, электрофореза, изоэлектрического фокусирования.
Высаливание – процесс осаждения белков из раствора при добавлении сульфата аммония, а также солей щелочных и щелочноземельных металлов. Чем больше величина заряда белка, тем более высокая концентрация соли требуется для его осаждения.
Ионообменная хроматография – метод, основанный на взаимодействии заряженных групп белка с ионными группами полимеров-ионообменников. При разделении смеси белков на анионите (например, диэтиламиноэтилцеллюлозе) в первую очередь элюируются положительно заряженные белки, затем – нейтральные и, наконец, отрицательно заряженные белки (рисунок 4.6). При разделении смеси белков на катионообменнике (например, карбоксиметилцеллюлозе) элюция происходит в обратном порядке.
Электрофорез – метод, основанный на различной скорости движения белков в электрическом поле на различных носителях (бумага, полиакриламидный и крахмальный гели и т.д.). Эта скорость зависит от величины заряда белка при данном значении рН.
Изоэлектрическое фокусирование – методика проведения электрофореза на колонке или в тонком слое с градиентом рН, создаваемом при помощи синтетических полиаминокарбоновых кислот – амфолинов. Каждый белок разделяемой смеси будет располагаться на колонке в участке со значением рН, соответствующем его изоэлектрической точке (см. 1.4.2).

Рисунок 4.7. Разделение пептидов методом гидрофобной хроматографии


Методы разделения белков по гидрофобным свойствам
Различная гидрофобность белковых молекул используется при проведении гидрофобной хроматографии. В качестве носителя в данном случае применяется силикагель с ковалентно присоединёнными углеводородными радикалами, содержащими 8 или 18 углеродных атомов. Связывание белков с такими носителями обусловлено гидрофобными взаимодействиями между алкильными цепями и гидрофобными участками белковой молекулы. Чем выше гидрофобность белковой молекулы, тем прочнее она связывается с частицами модифицированного силикагеля. Белки наносят в составе растворов с высоким содержанием соли, например (NH4)2SO4, и элюируют раствором с понижающейся концентрацией этой же соли. При элюции вначале выделяются наиболее гидрофильные белки, а в последнюю очередь – наиболее гидрофобные (рисунок 4.7).

Методы разделения белков по биологической активности


Способность белков избирательно взаимодействовать с определёнными лигандами составляет основу метода аффинной или биоспецифической хроматографии.

Рисунок 4.8. Разделение пептидов методом аффинной хроматографии

Достоинством этого метода очистки является то, что он позволяет избирательно извлекать из сложной смеси белков один конкретный белок или по крайней мере небольшое их число. Метод основан на использовании иммобилизованного лиганда, который специфически взаимодействует с тем белком, который требуется получить в очищенном виде. Из всех белков, присутствующих в смеси, с этим иммобилизованным лигандом связываются только те белки, которые способны вступать с ним в сильное взаимодействие. После удаления всех прочих несвязавшихся белков нужный фермент элюируют с иммобилизованного лиганда либо концентрированными солевыми растворами, либо раствором, содержащим растворимую форму лиганда (рисунок 4.8). Применение метода аффинной хроматографии позволяет добиться в ходе очистки результатов, обычно превосходящих результаты последовательного применения многочисленных классических методов.
Как известно, ферменты обладают высокой специфичностью по отношению к своим субстратам и коферментам, поэтому наиболее подходящими лигандами служат производные субстратов и коферментов, ковалентно связанные с носителем, например с сефадексом. Они могут быть присоединены к носителю либо непосредственно, либо через связующую «ножку» (линкер) из 3—8 атомов углерода.
Примером успешного применения аффинной хроматографии может служить очистка множества различных дегидрогеназ на аффинных носителях с НАД+ в качестве лиганда. При этом с лигандом могут связываться несколько дегидрогеназ, которые при элюировании их раствором НАД+ выходят вместе, и их дальнейшее разделение проводят, используя уже не коферментные, а субстратные аффинные носители.
С аффинной хроматографией во многом сходна хроматография, при которой в качестве лигандов используются красители (голубая, зеленая или красная сефароза), а также хроматография на гидрофобных лигандах, где носителем является октил- или фенилсефароза. В первом случае в качестве иммобилизованного лиганда используют органический краситель, являющийся аналогом субстрата, кофермента или аллостерического эффектора. Элюирование обычно осуществляют солевым раствором увеличивающейся концентрации.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет